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Abstract

In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and
histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new
computational model, in which chromatin modifications are information units that can be written onto a one-dimensional
string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying
complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this
‘‘chromatin computer’’ to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are
computationally universal – and therefore more powerful than the logic circuits often used to model transcription factor
control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of
nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin
function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of
biological computing machines.
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Introduction

Computation as a metaphor for cellular function
Computer programs and logic circuits have often been used as

metaphors for the function of cells [1,2]. A cell may be considered

to be executing a program not unlike that of a computer. Given

inputs such as the cellular environment, the cell ‘‘computes’’

outputs and behaviors such as secreted factors, shape changes, and

cell division. One might consider a multi-cellular organism to have

been ‘‘computed’’ from a single cell. Evolution itself can be

considered a computation, and has inspired a class of computer

algorithms conceived by Turing in 1948 [3], and variously called

genetic algorithms, evolutionary programming or evolution

strategies [4].

A computer implements a set of rules that operate on memory.

A formal definition of computation was invented by Turing, whose

theoretical machine could read and write symbols on an infinitely

long tape according to a finite set of rules [5]. Church’s thesis

states that every algorithm can be computed by a Turing machine

– including algorithms that cannot be computed by finite state

automata or logic circuits. Any model of computation (system of

rules operating on data) that can simulate a Turing machine is

also, therefore, computationally universal.

Several authors have shown that DNA can be used to simulate a

Turing machine [6,7,8,9]. In each of these examples, the Turing

tape is mapped to DNA, and the Turing rules are mapped to DNA

operations like reading (using DNA base pairing), cutting (using

restriction enzymes that recognize and cut at a specific DNA

sequence), and reconnecting (using DNA ligation at overhanging

complementary DNA sequences and/or DNA polymerase). To

simulate a Turing machine, the read/write head location and

machine state are encoded using a special state symbol (sequence)

at one specific location in the DNA. The execution of a rule

involves using DNA base pairing to read the current state and

symbol, and then cutting out old and inserting new DNA to move

the head or write a new symbol. While these and other

biologically-based universal DNA computers are interesting

theoretically, they do not model what really happens in a cell.

Nor are they practical for real problems: the lab operations are

time consuming and error-prone, and they are not easy to

program.

In 1994, Adleman made headlines with a DNA computer that

solved an instance of the NP-complete Hamiltonian path problem

[10]. Following this initial success, other interesting problems were

shown to be solvable with actual biochemical manipulations

[11,12,13,14]. While these examples show that DNA computers

can solve specific instances of problems, it is harder to cope with

more general problems such as multiplying two arbitrarily large

integers. These approaches do not provide an easy way to write

general-purpose programs; the solutions tend to be closely tailored

to both the computational model and the particular problem. The

execution of the program is time-consuming, as multiple

laboratory steps are required. The solutions tend to take advantage

of massive parallelism to try many different solutions to find one

that works; it is much harder, if not impossible, to program such

systems to deterministically explore a search tree.

Other forms of biomolecular computation include chemical

kinetics, membrane computing, pi-calculus and the blob model

[15,16,17,18,19,20]. Some of these were initially developed to

study systems of interacting computations, and were later applied

to model biomolecular systems. While inspired by real biomolec-

ular behavior, these approaches are, so far, more synthetic than

analytic: they are programmable, but they are either hard to

program, not practical to implement, or stray from modeling real
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biology. Some approaches rely on precise quantitation of the

number of molecules, and require engineering of one-way

reactions that can be chained and networked in arbitrary graph

topologies.

Transcription factor control over gene expression is often

expressed as a logic circuit: a combination of AND, OR and NOT

operations on Boolean values – consider, for example, the lac

repressor [21]. Diagrams to describe biological gene networks

have become common, often using the visual vocabulary of digital

logic circuits [22]. Real implementations of basic circuit elements

in E. coli include an artificial oscillating network [23], and a toggle

switch [24]; design principles of more complex circuits have been

laid out [25,26,27]. While these are useful models of biological

systems, they are not universal computational systems, and cannot

be programmed to solve problems of arbitrary complexity.

Thus, existing models of biological computation are either

powerful computationally but impractical, or not universal – and

in neither case are they easy to program.

The histone code
In living cells, DNA is packaged along with protein and RNA

into chromatin. DNA methylation has long been associated with

control, and particularly repression, of gene transcription [28,29].

In 2000, the term ‘‘histone code’’ was coined to capture the idea

that post-translational modifications on histone proteins might

have specific functions, and be read, erased and written by specific

modifiers and effectors [30,31]. A related term, ‘‘epigenetic code’’,

emphasized the idea that these molecular modifications were

stable enough to encode information, apart from DNA sequence,

that could be transmitted, in some cases, from parent to daughter

cells [32]. In the years since the proposal of this paradigm,

biologists have indeed elucidated the specific read/erase/write

functionality of many histone modifying protein domains

[33,34,35].

Chromatin-reading and -writing proteins operate as compo-

nents of molecular complexes that read and write multiple marks

in a combinatorial fashion. These complexes often include

transcription factors that recognize specific DNA sequences, as

well as effector units that carry out gene transcription or other

functions, and scaffolding proteins or RNA to bring the right

components together into the complex. The phenomenon of

engaging multiple marks at once is often referred to as ‘‘multi-

valency’’ of chromatin modifiers, or ‘‘cross-talk’’ between combi-

natorial marks [32,36,37,38]. Reading units within one complex

may target marks within one histone, in different histones in the

same nucleosome, or even across multiple nucleosomes [39]. The

same protein may take part in different complexes depending on

which subunits are currently available. Thus, a chromatin-

modifying complex can be thought of as a read-write rule with

the following form: ‘‘Find a nucleosome adjacent to DNA

sequence AGCCAT; if it is marked with H3K4me3 and

H3K27ac, and the DNA is not methylated, then mark the next

nucleosome with H3K4me3 and start transcription of a gene.’’

These rules may operate sequentially on chromatin at a

particular location. For example, in animal development, the

DNA methylation pattern is erased in the early embryo [40], a

new pattern established by the time of implantation, and further

altered over the course of somatic development. Gametogenesis

also involves coordinated erasing and rewriting of DNA methyl-

ation. These developments are carried out in a series of steps

involving chromatin modification read-write rules implemented by

complexes [41].

An idealized model of chromatin
Here I present a new computational system, in which chromatin

is the writable memory and chemical modifications are the written

symbols. Read-write rules model the molecular complexes that

recognize and place specific combinations of DNA and histone

modifications. The formalism can be easily ‘‘programmed’’ to

solve problems such as the NP-complete Hamiltonian path

problem, either by the same massively parallel guess-and-check

approach of Adleman, or by a more deterministic algorithm that

traverses the search tree, with backtracking.

I prove that chromatin computers are Turing-complete by using

one to simulate a Turing machine. The mapping to a Turing

machine is not forced, but uses components whose complexity is

no greater than that of biological chromatin. I implement a script

to simulate execution of chromatin computer programs. I show

that biological chromatin has many features that provide

computational efficiency, such as parallelism, nondeterminism,

addressable memory, modification of the program during com-

putation, and topological shortcuts. The chromatin computer

formalism is thus both a natural model of biological chromatin,

and a powerful language in which to write computer programs.

Results

Formal definition of a chromatin computer
A chromatin computer (CC) has a set of read-write rules that

operate non-deterministically on chromatin, which is an infinite

string of nucleosomes, analogous to a Turing tape. Each

nucleosome consists of k adjacent chromatin positions. Each

position contains a chromatin mark drawn from an alphabet of

finite size m. The marked chromatin defines the CC’s configu-
ration at any point in the computation.

A CC is defined by the tuple vM,B,Rw as follows:

1. M is a finite, non-empty set of possible chromatin marks, of

size m.

2. B (for ‘‘blank’’) represents the absence of any chromatin mark,

and is an element of M. (We will call B a mark even though it

means the absence of any actual chromatin mark.)

3. R : Mnk
� ?Mnk

{ is a transition function, or set of read-write

rules. Each rule reads the modifications at n adjacent

nucleosomes, and then writes updated marks at those same

positions. M� is the set M| �f g , and M{ is the set M| {f g
.

The CC operates non-deterministically on an input chromatin

configuration, which is marked everywhere by B, except for a

finite number of nucleosomes which may have other marks. At

each step, the read portion of zero or more rules will match at

various locations along the chromatin tape. One matching rule is

selected at random and applied to update the modifications at that

location. If no rule matches at any location on the chromatin, then

the CC halts.

The left hand side of each rule is a read specification for all or

some of the marks at n adjacent nucleosomes. The special symbol *

can be used in the reading specification to match any mark. (This

serves both to more closely model real chromatin reading

complexes, and to simplify the writing of the rules.) The write

specification of a rule may employ the special ‘‘no-change’’ symbol

–.

Chromatin consisting of nucleosomes that each have k mark

positions is referred to as k-chromatin. A CC that operates on k-

chromatin, with rules addressing n adjacent nucleosomes, and

reading and writing marks from an alphabet of size m, is referred

Chromatin Computation
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to as an (m,k,n)-CC. Figure 1 illustrates the application of the

(2,4,2)-CC rule XX** BB**?---- XX--.

Solving a directed Hamiltonian path problem with a
chromatin computer

In 1994 Adleman created a DNA-based solution to an instance

of the Hamiltonian path problem. Let us tackle the same problem,

shown in Figure 2, to illustrate use of a chromatin computer.

The Hamiltonian path problem asks whether there exists a path

in a directed graph from the input vertex to the output vertex,

visiting each of the other vertices exactly once. Adleman

synthesized 20-mer oligonucleotides representing the vertices and

edges in the graph. The sequence of an edge’s 20-mer was

complementary to the appropriate halves of its two vertices’ 20-

mers. These 20-mers were mixed together and ligated, resulting in

double-stranded DNA representing valid paths through the graph.

Further sizing and affinity purification steps ensured that each

node was represented once and only once in the soup of path-

representing oligonucleotides. The sequence of nodes in the

correct path was determined using PCR and running the products

on a gel. The number of starting 20-mers was large enough that

production of the correct path was highly likely.

Our first implementation of a solution to this problem using a

chromatin computer will employ a similar guess-and-check

approach, by randomly constructing many paths of up to 7 nodes,

and signaling success only for a path meeting the requirements.

The solution uses 6-chromatin: each nucleosome has six read/

write positions. Each rule looks at two adjacent nucleosomes, and

there are 10 possible marks, so the CC is a (10,6,2)-CC. One

position in each nucleosome represents the vertex number, and the

remaining five are used to check that the path contains one and

only one visit to each vertex. Figure 3 illustrates CC configurations

along the way to the correct solution.

Additional explanation, the full rule set and a perl script to

simulate the chromatin computer are provided in Text S1. A

second variant solution takes a single run of the computer, using

backtracking to randomly explore paths in the graph. A third

variant uses an insulating nucleosome to make the search more

efficient. Thus we see that it is possible to write programs that can

trade off computational space for time – it is possible to solve the

Hamiltonian path problem not just by trying every possible path in

parallel, but also by backtracking in an orderly fashion to

completely search all possible paths, in a single deterministic

computation. This is not possible in the DNA-based computa-

tional model. Moreover, no intermediate lab operations, such as

cooling to anneal, or running gels to filter solutions to the correct

size, are required; once the rules are mixed with the starting

chromatin tape, the computation proceeds to completion on its

own.

Chromatin computers are Turing complete
A Turing machine is defined by its finite set of rules; each rule

specifies a mapping from a symbol and state to a new symbol, a

new state, and a movement left or right along the memory tape. A

configuration of a Turing machine comprises a machine state, a

location of a read/write head on the infinite memory tape, and the

contents of the tape. Initially, the tape is blank except for symbols

written at a finite number of cells. At each step in the computation,

the rule corresponding to the symbol at the current tape cell and

the current machine state is applied, and specifies the writing of a

new symbol at the current tape cell, a new machine state, and a

movement left or right along the tape. If no rule applies, the

machine halts.

To prove that a chromatin computer can simulate a Turing

machine, I define a reversible mapping from any Turing machine

to a chromatin computer, and from each Turing configuration to a

chromatin configuration. I then show by induction that running

the chromatin computer results in a chromatin configuration that

maps back to the Turing configuration that would have been

achieved by running the Turing machine, and that the chromatin

computer halts whenever the Turing machine halts. The trick to

the mapping is to transform each Turing tape cell to a

nucleosome, with extra nucleosome positions to store the current

state and the current location of the read/write head. Moving left

or right along the Turing tape is accomplished on the chromatin

by moving these state and head-location marks to adjacent

nucleosomes. Figure 4 illustrates the mapping of 3 rules from a

Turing machine to the corresponding chromatin rules. The full

proof is provided in the methods section.

Figure 1. Example of the operation of a chromatin computer
rule. This diagram illustrates the operation of the rule XX**
BB**?---- XX--. The chromatin tape is composed of nucleosomes
having four writable locations. Each location can be marked with the
symbol B or X. Rules in this CC operate on two adjacent nucleosomes. In
the illustration of the read portion of the rule, matching to any symbol
(*) is shown with an empty. An empty square in the write portion of the
rule leaves the current symbol unchanged (2).
doi:10.1371/journal.pone.0035703.g001

Figure 2. Hamiltonian path problem. Figure from Adleman 1994
(5). In the pictured directed graph, there is a unique Hamiltonian path
from vertex 0 to vertex 6: 0?1?2?3?4?5?6.
doi:10.1371/journal.pone.0035703.g002
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Biological chromatin is a massively parallel, random
access, self-modifying stored procedure computer

Computer scientists have developed many models of computa-

tion that are far more efficient and easier to program than the

basic single-head non-deterministic Turing machine. These

variations are no more powerful than a Turing machine from a

computability standpoint. Non-deterministic Turing machines

allow more than one rule with the same left-hand (read) side,

and therefore many possible computational paths. Parallel Turing

machines have multiple read-write heads, all operating simulta-

neously. Multi-tape Turing machines have several tapes and

corresponding read/write heads. Random access machines allow

incrementing and decrementing values in addressable registers.

Indirect addressing allows a memory address to be operated on as

data. Stored procedure models allow the program itself to be

specified as input. Modern computer programming languages are

no more capable than a Turing machine of solving a problem, but

they can be programmed far more easily, and use fewer

computational steps.

Just as real computer languages are more practical than Turing

machines, biological chromatin implements many efficiencies

either available in our initial CC model, or easily added to it.

These efficiencies are powerful; they are exploited by living cells

and make programming a simulated CC much easier. Some are

familiar concepts from computer science; others are less familiar

and quite interesting as computational tricks.

Non-determinism. The CC model is nondeterministic,

although any particular CC may, by virtue of its rule set, be

deterministic. The CC formulation encourages us to ask the

question of whether, in a cell, more than one expressed chromatin-

modifying complex could match and operate at a given location in

a particular configuration of biological chromatin, or whether the

design is deterministic. In order to implement consistently

repeatable behavior, it seems likely that biological computation

has constrained non-determinism in the sense that a given starting

chromatin configuration with a given rule set is likely to evolve in a

fairly consistent manner upon repeated runs, even if the details of

the precise order of rule application at different locations may

change from one run to another. This will be an interesting area

for future work in modeling biological chromatin modifying

complexes.

Multiple copies of chromatin-modifying complexes;

parallel computation. There are many copies of chromatin-

modifying complexes present in the cell, and they operate in

parallel throughout the genome. Parallel rule application is readily

handled by modifying the definition of a CC to allow not just one,

but any number of non-overlapping, matching rules to be applied

at each step. To capture the number of physical copies of a

complex, the definition of R can be augmented to R x Z (where Z is

the set of non-negative integers), allowing a mapping from each

rule to the number of copies that exist. At each step, a restriction

can be placed that a rule can match any number of valid

Figure 3. Operation of a chromatin computer solving the Hamiltonian Path Problem. (A) Application of a rule to the starting
configuration. The chromatin tape is shown as a set of 7 nucleosomes, each with 6 writable positions. The top row shows the initial tape
configuration; the bottom row shows the configuration after the application of the rule 0***** B*****?------ 1-----. The leftmost position
in each nucleosomes maps to a numbered vertex in the graph. The remaining 5 positions are used to determine whether each node appears exactly
once in the path. This rule extends the path from 0 to 1. (B) Two path-checking rules operating sequentially on an intermediate configuration in the
computation. (C) The final chromatin configuration showing the successful solution.
doi:10.1371/journal.pone.0035703.g003
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chromatin tape locations, up to this integer upper limit. In a

further variation of the computer, the likelihood of a rule matching

at a location can be made proportional to the number of available

copies of that rule. Parallel computation results in a huge speed-up

over serial computation. In a yeast cell, there are 30,000 copies of

just one nuclear complex component, RNA polymerase II [42].

This is a reasonable under-estimate for the number of chromatin-

modifying complexes present in a nucleus.

Procession of complexes along chromatin. Some chro-

matin-modifying complexes, such as those containing RNA

polymerase, are known to operate sequentially along the genome.

While this can be programmed in our current CC model by

having a special mark representing the current location of a rule, it

can also be efficiently handled by augmenting the model to allow

the right-hand side of a rule to have an additional field for

movement: one of {left, right, disengage}. ‘‘Disengage’’ indicates

that the rule would not subsequently be applied to the adjacent

chromatin position; ‘‘left’’ and ‘‘right’’ indicate an immediate

application to the neighboring position. With this notion of

walking along the chromatin tape, we have resurrected the left and

right movement of the Turing head in the Turing machine system.

Looping. Chromatin is known to form loops, allowing fairly

distant regions along a chromosome to come into physical contact

[43,44], resulting in a topology beyond one dimension with

connections that can change over time. This brings transcription

factors bound at enhancers into close proximity with the promoter

of the genes whose expression they control. It also seems to

segregate segments of chromatin into nuclear compartments that

have different chromatin state. Often many transcription com-

plexes come together into a transcription factory [45]. The CC

model can be extended to allow reading across these contact

regions of loops, effectively spanning long linear distances along

the chromatin tape. One approach to this model extension builds

on the rule processing of the previous section, in which a rule

moves left or right along the chromatin tape upon completion of a

step. To model looping, we can define a further extension in which

a rule, when it first binds, binds adjacent nucleosomes. But at each

rule application, the each nucleosome component in the rule can

be stepped left or right along the chromatin tape (constrained,

however, to retain the relative order within the rule). In effect, this

allows the creation of a loop, where the rule is attached to both

ends of the loop using different rule components. An application of

this capability could be to hold onto one chromatin location while

walking along the tape to find another mark indicating the end of

this loop. There is biological precedent for such a mechanism: the

lagging strand of DNA replication fork creates loops called

Okazaki fragments; one component of the DNA polymerase

complex is attached to a fixed location on the DNA, while another

component walks along the DNA, generating a growing loop.

Transcription factors that bind DNA

motifs. Transcription factors are proteins that bind specific

DNA sequences and carry out actions including chromatin

modification, recruitment of additional proteins, and activation

or suppression of gene expression. Transcription factors are easily

modeled in our existing CC formalism as rule components that

read marks corresponding to the DNA sequence co-localized with

a nucleosome. The chromatin tape is initialized at each

nucleosome with read-only marks representing the DNA se-

quence. Transcription factor binding site recognition is analogous

to a ‘‘GOTO’’ instruction referencing an addressable memory cell

in a random-access computer – a huge efficiency in programming.

(One difference is that, while rare, the transcription factor binding

sequence usually occurs multiple times in a genome, retaining an

element of parallelism.)

Importantly, transcription factors alone would be insufficient to

implement our mapping to a Turing machine, because of the lack

of the ability to write to the chromatin tape.

A transcription factor of particular interest is CTCF. CTCF is

known to have a role both in looping and as an insulator stopping

the spread of marks along chromatin [46]. The insulator function

is a handy programming tool for the CC to set spatial boundaries

on computations; in fact, an insulating mark is used in one of our

implementations of the Hamiltonian Path solution. It is straight-

forwardly implemented as a chromatin mark in the basic CC

model.

Nucleosome remodeling. Nucleosome remodelers remove,

replace and shift histone octamers along the genome. Removal

and replacement can easily be modeled with our existing CC as

rules that simply change the marks on a CC nucleosome. If we are

modeling DNA sequence for transcription factor binding, then

Figure 4. Mapping from a Turing machine to a chromatin computer. (A) Turing machine finite state machine with three rules that rewrite the
string ‘‘xy’’ to ‘‘zz’’. (B) The corresponding chromatin computer. The first position in each 3-position nucleosome corresponds to the location of the
Turing read/write head. The second position corresponds to the state of the Turing machine. The third position corresponds to a cell on the Turing
tape.
doi:10.1371/journal.pone.0035703.g004
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nucleosome shifting relative to that sequence can be modeled in a

number of ways. For example, a straightforward modification of

the CC model would accommodate a second, read-only, tape for

the DNA sequence with an alignment to the nucleosome tape.

Rule functionality can be expanded to allow local changes in the

alignment.

Gene expression. The Turing machine does not formally

produce output beyond halting, in a final state. In practical

applications of Turing machines or their variants, the symbols on

the tape are usually read after the computation halts, providing

useful output from the computation. In a synthetic implementation

of a CC, it might be useful to read the chromatin marks after a

computation has been carried out, but another readout can be

gene ‘‘expression’’ implemented by a rule that reports the

occurrence of an expression event from a particular chromatin

tape location. The CC formalism is easily augmented to

accommodate gene expression: the right hand side of each rule

includes an output symbol corresponding to the genomic location

of the chromatin.

Signaling. Cell signaling changes chromatin state. A typical

signaling cascade starts with binding of an extracellular ligand to a

surface receptor, then transfers information via phosphorylation of

a cascade of kinases; ultimately a transcription factor binds DNA

and recruits additional complex proteins to effect a change in

chromatin state and gene expression. In the CC model, this

corresponds to a change of the program (or rule set), adding a rule

involving the transcription factor complex.

Feedback: expression of chromatin-modifying complex

genes. Stored procedure computers, or universal Turing ma-

chines, store the programming instructions on the input tape

instead of hard-coding them into the rules. The hard-coded rules

interpret and execute the instructions (the ‘‘software’’) on the tape.

Since chromatin computers can simulate any Turing machine,

they can simulate universal Turing machines. But the gene

expression augmentation to the CC formalism provides a natural

biological model for stored programs. The CC rules represent

chromatin modifying complexes, which are collections of ex-

pressed gene products. Then biological CC rules are, indeed,

written in the input chromatin: the gene products self-organize

into new rules – and these rules in turn change chromatin state

and gene expression. Thus biological chromatin is not only a

stored procedure computer, but a self-modifying stored procedure

computer.

Replication. DNA, and some of the associated chromatin

marks, is replicated when cells divide. Copying of chromatin state

is readily modeled in the CC formalism; however, a more

convenient addition to the formalism is creation of a copy of the

current tape, analogous to a multi-tape Turing machine.

Summary. Biological chromatin plays a complex role in cell

biology. Many of the features of chromatin-interacting factors can

be modeled as efficiency-gaining instructions in the CC program-

ming toolbox. I have mentioned some of them above; there are

more. None of these features invalidate the powerful Turing

completeness result that rests on the model of a linear array of

writable nucleosome positions operated on by a finite rule set.

Table 1 summarizes the mapping from computational features

to their biological counterparts under the CC model. The core

power of the CC model lies in the combination of a finite read-

write rule set with a large writeable memory.

Memory size, rule set and clock speed of biological
chromatin computers

To ask whether biological chromatin has the memory, rule set

and speed capacity to carry out interesting computations, we can

start from known biology. In Text S1, I calculate that each human

cell contains at least 80 megabytes of writeable chromatin – a

plentiful amount compared to, say, the 150,000 bytes of onboard

memory in the Apollo mission that got astronauts to the moon.

How rich are the programs that operate on that memory? Text

S1 lists 39 known nuclear complexes, each with multiple read and

write functions (provided by proteins, each of which may itself

have multiple read, write and connector domains). Because of the

combinatorial construction of these complexes, including not only

read and write components but also connector scaffolding

proteins, it is likely that there are at least hundreds of these

read/write complexes implemented in living cells. And that does

not even take into consideration DNA-reading transcription

factors – of which there are hundreds [47]. Each transcription

factor plays a reader role in one or more effector complexes.

RNA polymerase II is a protein complex that transcribes DNA.

Associated with polymerase function are factors that mark histones

– for example, methylation of H3K4 and H3K36. Let us therefore

take RNA polymerase II as one example of a chromatin-modifying

complex and consider the rate at which it operates in the cell. One

complex transcribes up to 90 nucleotides per second [48]; let’s call

it 50 nt/s. If there is a nucleosome every 200 nt, Pol II therefore

proceeds along the chromatin at a rate of 0.5 nucleosomes/s. With

30,000 Pol II complexes in the cell [42], and perhaps 20,000 of

them engaged, we have a rate of 10,000 nucleosomes processed

each second, or 10,000 Hz. This represents an under-estimate for

computation rate in a cell.

An alternate calculation starts from the assumption that an

average read/write operation might take 1 second, and that at any

Table 1. Biological equivalents for computational concepts in the CC model.

Computational concept Biological equivalent

Writeable memory Chromatin with chemical modifications

Read-write rules Chromatin-modifying complex (CMC)

Parallel computer Multiple copies of CMCs

Non-determinism Different CMCs that read the same chromatin configuration

Addressable memory Transcription factors binding specific DNA sequences

Output Gene expression or chromatin configuration

Stored procedures Genes coding for CMC components

Self-modifying code Changing expression of genes coding for CMC components

doi:10.1371/journal.pone.0035703.t001
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point in time 1% of the cell’s 10,000,000 nucleosomes might be

engaged at position 1 of a read/write complex. This gives us an

estimate of 1,000,000 operations per second, or 1 MHz.

Our lower estimate of the compute power of biological

chromatin, then, gives us hundreds of different rules operating

on at least 80 megabytes of memory at a minimum of 10,000

operations per second. While a living cell may not use this

capability to its fullest, it represents enormous capacity for

information processing on biological time scales.

Discussion

Each human cell contains at least 80 megabytes of writeable

chromatin (see Text S1 for the calculation). What computations

might real chromatin carry out using this memory? Some

programs’ function is known. Some marks spread along a

chromosome until they reach insulators. Histone modifications

are important in development; for example, they mark ‘‘poised’’

promoters in pluripotent cells, and descendent cells have one or

the other of those modifications. Chromatin can ‘‘burn in’’

repressive marks, making them more permanent over time [41].

Chromatin modifications are involved in exon selection, in tagging

enhancers differently in different cell types [49], and in transcrip-

tional pausing control [50]. Choreographed chromatin modifica-

tions play an important role in the highly ordered, stage-specific

V(D)J combinatorial rearrangement of immune system antigen-

and self-recognition proteins [51]. We are beginning to tease out

the individual steps in these computations, with experimental work

ranging from structural biology to designer histones to RNAi and

chemical inhibition of modification-altering enzymes, as well as

protein-protein interaction and genome-wide occupancy assays.

Modeling chromatin as a computer suggests a number of lines

of inquiry. DNA methylation is erased in the early embryo; does

this serve a similar function to rebooting a computer – resetting

memory to enable restarting of programs? Genes with variable

expression tend to have nucleosome-free regions (NFRs) further

upstream of their transcription start site than constitutively

expressed genes [52]. Might this be to ‘‘leave room’’ for more

computation along the nucleosome tape? The variable-expression

genes also have more histone turnover, another potential sign of

active computation. How can we achieve robustness of the system

in the face of possible ‘‘bugs’’ introduced by mutations in the rules?

What are the characteristics of a robust symbol (modification) set

for computation? How do the computational programs evolve?

Are there characteristics of the rule sets that make them more

robust in an evolutionary sense? Could we evolve a useful

chromatin computer program in silico?

With the intensive level of research in chromatin biology along

with genome-wide tools to elucidate complexes, enzymatic

function and chromatin occupancy, we may soon have enough

information about real complexes and the behavior of their

component readers and writers to simulate the chromatin

computation that occurs in cells, and to learn some of the pieces

of data that we are still missing.

The idealized chromatin model may serve as a starting point for

a new way of building DNA-based computer using chromatin

modifications for a read/write machine. A chromatin computer

would operate on a fixed DNA sequence, and use histone and

nucleotide modifications as the writable symbols. To engineer a

chromatin computer based on this insight, the rules would be

implemented in designer chromatin modification complexes built

from naturally-occurring parts (protein domains). In an early proof

of concept, researchers used human polycomb chromatin protein

and homologs from other species to construct modular synthetic

transcription factors that recognize H3K27me3 and switch

silenced genes on [53]. This designed complex re-expressed tumor

suppressor p16 (CDKN2A) and other loci in U2OS osteosarcoma

cells.

The semantics and the value of the histone code concept have

been the subject of debate, in particular the question of whether

histone modifications carry much useful information beyond what

can be inferred from transcription factor logic [54,55,56]. Here I

show a remarkably straightforward mapping to a model of

computation. It may be that biological chromatin modifications

carry out actions (or passively reflect other processes) that are

simple enough to be described as a direct mapping from

observable patterns of marks to some functional readout. Yet it

is tempting to hypothesize that considering chromatin modifica-

tions to be intermediate memory state in an ongoing computation

will yield important biological insights.

Methods

Overview of proof that the chromatin computer is Turing
complete

Here I prove that a chromatin computer can compute any

computable function. I do this by defining a reversible mapping

from any Turing machine to a chromatin computer, and from

each Turing configuration (called an Instantaneous Description

by Hopcroft and Ullman [5]) to a corresponding chromatin

configuration. We then show that running the chromatin

computer results in a chromatin configuration that maps back

to the Turing configuration that would have been achieved by

running the Turing machine, and that the chromatin computer

halts whenever the Turing machine halts. The trick to the

mapping is to transform each Turing tape cell to a nucleosome,

with extra nucleosome positions to store the current state and the

current location of the read/write head. Moving left or right

along the Turing tape is accomplished on the chromatin by

moving these state and head-location marks to adjacent

nucleosomes.

Definition of a Turing Machine
A Turing machine is defined by the 7-tuple

vQ,C,B,S,q0,F ,Dw, with the following elements:

1. Q, a finite, non-empty set of states

2. C, a finite, non-empty set of tape symbols

3. B is the blank symbol, and the only symbol allowed to be

represented infinitely many times on the tape. It is an element

of C

4. S, the set of input symbols (a subset of C)

5. q0, the start state (an element of Q)

6. F , the set of final or accepting states (a subset of Q)

7. D, a transition function Q\F|C?Q|C|fL,Rg. A deter-

ministic Turing machine has at most one rule that is applicable

for any given state and tape symbol.

A Turing machine operates on an infinitely long tape. Each

location (cell) on the tape contains a symbol. A configuration of the

Turing machine captures all the information that changes as the

Turing machine executes its program: the configuration includes

symbols written in each cell on the tape, the position of the read/

write head, and the current state. We will write a Turing machine

configuration as (T ,i,q)TM , where T is an infinite vector of

symbols written on the tape, i is an integer representing the

location of the read/write head, and q is the current state.
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In the initial configuration, a finite number of cells on the tape

can be written with symbols from S; the remaining cells are blank.

A read/write head is located at a given tape position at the start of

computation. The machine has starting state q0.

At each step in the computation, the matching rule from D is

applied to determine the new configuration from the current

configuration. For example, if the head sees symbol s1 and is in

state q1, then it would find a rule whose left hand side specified

that state and symbol, such as fq1,s1g?fq2,s2,Lg. This rule says

to change to state q2, write the symbol s2 at the current location,

and move the read/write head one cell to the left. If the new state

is a final state, then computation halts.

Mapping from any Turing configuration to a chromatin
computer configuration

To prove that a chromatin computer can compute anything

computable by a deterministic Turing machine, we will show that

any Turing machine can be mapped to a chromatin computer,

and that the computation performed by the chromatin computer

results in a final configuration that can be uniquely mapped back

to the final configuration that would be achieved by the Turing

machine.

First we map a Turing configuration (tape symbols, head

location and state) to 3-chromatin. Each cell of the Turing tape is

mapped to one nucleosome. The three positions of each

nucleosome will be used as follows:

1. Position 1 indicates the position of the read/write head on the

Turing tape and may take one of two values: B or H. Because

the read/write head exists at exactly one position, one and only

one position on the entire chromatin tape will be marked with

H; the rest are blank.

2. Position 2 is blank except when the Turing tape head is at the

corresponding position on the Turing tape. In that case,

Position 2 contains a mark representing the Turing machine

state.

3. Position 3 contains a mark representing the Turing tape

symbol written at that location.

This mapping is reversible: the single nucleosome marked with

H maps to the read/write head location; the second position at

that nucleosome maps back to the corresponding state, and the

marks at the third positions all map back to the original symbols

on the Turing tape.

A ‘‘Turing-mappable’’ configuration of the CC can be

mapped back to a Turing configuration and meets these

conditions:

1. The first position of every nucleosome is marked with B, except

for the first position of some nucleosome i, which is marked

with H.

2. The second position of every nucleosome is marked with B,

except that the second position of nucleosome i is marked with

an element qof QCC

3. The third position of every nucleosome is marked with an

element of CCC .

We write a Turing-mappable CC configuration as (T ,i,q)CC ,

where T is the vector of marks in the third position, i is an integer

representing the chromatin location of the nucleosome marked

with H, and q is the mark at the second position of nucleosome i. A

Turing-mappable CC configuration maps in a one-to-one

mapping to the Turing configuration (T ,i,q)TM . The mapping is

one-to-one because the T vectors are isomorphic, the position i is

identical, and q is isomorphic.

Note that while CC’s in general are non-deterministic, a

deterministic Turing machine maps to a deterministic CC: if there

is only one applicable Turing rule for a given configuration, then

that translates to exactly one applicable rule in the CC.

Construction of a CC that implements any Turing
machine

The chromatin computer implementing the Turing machine is

specified as follows:

1. M~CCC|QCC|fHg. QCC is a set of marks having a one-to-

one mapping to the Turing machine states, augmented by B,

the blank mark. CCC is a set of marks having a one-to-one

mapping to the Turing machine tape symbols. H is the mark

representing the location of the read/write head.

2. B represents absence of any chromatin mark; it is used to

represent the blank symbol on the Turing tape as well as the

absence of the read/write head in Position 1 or the absence of a

state specification at Position 2. B is an element of CCC and of

QCC , and therefore of M.

3. The transition function R : M9
�?M9

{, is constructed from the

Turing machine’s transition function. M9
� is the 9-dimensional

space where each dimension is the set M�~M|f�g. Actually,

in our mapping from Turing configuration to CC configura-

tion, the domain of R is (fB,H,�g|QCC�|CCC�)
3, where the

* indicates the option of using a wildcard, as before. The

symbol that the Turing rule declares should be written is

translated to a mark at the third position of the middle

nucleosome. The read/write head movement is translated to

moving the H mark to the adjacent nucleosome. The change of

state becomes erasing the state mark from the middle

nucleosome and writing the new state mark at the adjacent

nucleosome. In other words,

a. Each ‘‘move left’’ Turing machine rule fq1,x1g?fq2,x2,Lg is

mapped to the CC rule

BB* Hq1x1 BB*?Hq2- BBx2 ---

b. Each ‘‘move right’’ Turing machine rule fq1,x1g?fq2,x2,Rg
is mapped to the CC rule

BB* Hq1x1 BB*?--- BBx2 Hq2-

Proof that the chromatin computer implements the
Turing machine

We show by induction that at each step of the CC computation,

the configuration of the chromatin tape is Turing-mappable and is

isomorphic to the state of the Turing tape after the same number

of Turing machine steps, and that the CC will halt if and when the

Turing machine halts.

The base case is the isomorphism between the initial

configurations of the machines. (T ,i,q)TM maps to (T ,i,q)CC ,

and as shown above, this mapping is isomorphic (reversible).

For the induction, we assume that after n steps, the chromatin

configuration is isomorphic to the Turing configuration after n
steps. Now we need to show that after the (nz1)th step, the

configurations remain isomorphic. Assume that the Turing rule

that applies at this step is fq1,x1g?fq2,x2,Lg. The corresponding

CC rule would be BB* Hq1x1 BB*?Hq2- BBx2 ---. To show
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isomorphism, we need to show that the tape symbols, read/write

head position and state map 1-to-1 to the corresponding

chromatin marks.

The only symbol to change on the Turing tape is the symbol in

the cell at the read/write head (position i in the chromatin tape),

which is changed from x1 to x2. In the chromatin, the only 3rd-

position mark to change is the one having the ith nucleosome

marked with H at the first position. This changes from x1 to x2.

Because the vector of third-position marks changes in the same

way and at the same position as the Turing tape, these

configuration elements are isomorphic.

The read/write head position moves from i to i{1, as specified

by the L in the Turing rule. By the corresponding CC rule, the H

in the chromatin at nucleosome i is changed to B, and the B at

nucleosome i{1 is changed to H. Thus the configuration element

corresponding to the read/write head position is isomorphic.

The Turing machine state changes from q1 to q2. The mark q1

at position 2 of chromosome i is changed to a blank, and the blank

at position 2 of chromosome i{1 is changed to q2. Thus by

applying the CC rule to the starting configuration (T ,i,q1)CC we

end up with the Turing-mappable CC configuration

(T ,i{1,q2)CC , which maps back to the TM configuration

(T ,i{1,q2)TM , exactly the configuration obtained by applying

the TM rule to the starting TM configuration. Thus we have

shown that the chromatin and Turing configurations are

isomorphic at step nz1, and by induction to all steps of the

computation.

Finally, we show that the CC halts when the TM halts. The TM

halts when a TM rule is applicable that moves the TM to a state in

F . After applying this rule, there is no further TM rule in D that

can apply because D is defined to exclude any rule from matching

a state in the final set F . Therefore, no analogous rule in R would

have a mark mapping from that final state on the left hand side,

and so no CC rule would apply, and the CC would also halt.

Supporting Information

Text S1 Additional notes; examples of biological read/
write complexes; a lower bound on the size of the human
chromatin computer; chromatin computer solution to
the Hamiltonian Path Problem; perl script to simulate
chromatin computer.

(PDF)
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