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Abstract

Evolutionary game dynamics in finite populations assumes that all mutations are equally likely, i.e., if there are n strategies a
single mutation can result in any strategy with probability 1=n. However, in biological systems it seems natural that not all
mutations can arise from a given state. Certain mutations may be far away, or even be unreachable given the current
composition of an evolving population. These distances between strategies (or genotypes) define a topology of mutations
that so far has been neglected in evolutionary game theory. In this paper we re-evaluate classic results in the evolution of
cooperation departing from the assumption of uniform mutations. We examine two cases: the evolution of reciprocal
strategies in a repeated prisoner’s dilemma, and the evolution of altruistic punishment in a public goods game. In both
cases, alternative but reasonable mutation kernels shift known results in the direction of less cooperation. We therefore
show that assuming uniform mutations has a substantial impact on the fate of an evolving population. Our results call for a
reassessment of the ‘‘model-less’’ approach to mutations in evolutionary dynamics.

Citation: Garcı́a J, Traulsen A (2012) The Structure of Mutations and the Evolution of Cooperation. PLoS ONE 7(4): e35287. doi:10.1371/journal.pone.0035287

Editor: Attila Szolnoki, Hungarian Academy of Sciences, Hungary

Received January 30, 2012; Accepted March 14, 2012; Published April 26, 2012

Copyright: � 2012 Garcı́a, Traulsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: garcia@evolbio.mpg.de

Introduction

Evolutionary game dynamics can be used to study the evolution

of phenotypes. It usually considers the fate of a population of

strategies playing a game, subject to selection and mutation. In this

framework one of the most studied formalisms is the Moran

process, it allows for studying the interplay between selection and

mutation under demographic noise. The Moran process considers

a finite population of constant size. At every time step one strategy

is chosen for reproduction in proportion to its performance in the

current population. A copy of this strategy is added to the

population after removing a random strategy. With a small

probability, the strategy that is copied changes its type to any of

the other available strategies. This process results in an ergodic

Markov chain. The effect of selection and mutation can be

assessed by inspecting the average composition of the population

in the long run.

The Moran process is often studied in the limit of small

mutation probability [1,2]. A number of key results have been

derived in such a setting, particularly in the literature that

concerns the evolution of cooperation [3–10]. In these studies,

mutations are usually assumed to be uniform, such that any

strategy can mutate to any other with the same probability [11].

Non-uniform mutations arise when these probabilities vary, and

not all states are reachable from a given population, or certain

states are easier to reach than others. Considering such

asymmetries can dramatically change the outcome of evolution

[12]. In this paper, we study how and illustrate it with a few

examples. We find that even if mutations are rare, the structure of

how mutations arise from the different types matters.

Evolutionary processes have been traditionally given two

possible interpretations. In cultural evolution, the process of

selection is taken to represent a situation in which successful

strategies spread by imitation. Here, mutations are generally

interpreted as mistakes in the process of imitating others, or

intended exploration undertaken by individuals [13]. The idea of

non-uniform mutations means in this interpretation, that individ-

uals may be more prone to explore strategies that are less costly to

implement, strategies that imply less risky outcomes, or strategies

that are similar to their previous strategies. Another interpretation

is genetic. Here it would seem natural that not all mutations can

arise from a given state. Certain mutations may be far away, as a

consequence of the complexity of mutation processes and the

(mostly unknown) intricacies of how genes code for different

phenotypes. For our study, we do not need to specify in detail

whether cultural or phenotypic evolution is considered.

Some previous studies have already considered non-uniform

mutation rates. The idea of local mutations is central in adaptive

dynamics, but here the literature is strictly concerned with infinite

populations and continuous strategies in metric spaces [14,15].

Also for evolutionary games in infinite and finite populations with

discrete strategies, general results have been obtained [16–19].

Fudenberg et al. [20] provide a general analysis for 2|2 games in

finite populations under arbitrarily small mutations and non-weak

selection. Imhof and Nowak explore the idea of local mutations in

the continuous strategy space of reactive strategies for direct

reciprocity [21]. Bergin and Lipman [12] argue that mutations

should be specifically modeled, any refinement effect coming from

the uniqueness of a stationary distribution is due to the specific

assumptions made about mutations. Binmore and Samuelson [22]

analyze the effect of different mutation rates in a non-generic

game called the resource game. Their analysis is focused on

deterministic dynamics in infinite populations where the rest
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points are clustered. Also in a deterministic setting, Willensdorfer

and Nowak [23] inspect the effect of (different) mutation rates in

average population fitness. None of these studies goes further into

specifying how the different rates of mutation could vary. Here we

introduce a direct comparison between different mutation kernels

in the same game.

We analyze mutation structures in two examples dealing with

the evolution of cooperation. We restrict ourselves to mutation

structures that are non-frequency dependent and do not vary with

time. Our examples resemble the concept of a ‘‘protein space’’, as

envisioned by Maynard Smith [24,25]. Here, phenotypes

(strategies) live in a hypercube and each mutation step represents

a local change in an underlying chain of amino-acids, represented

by strings made up of a finite number of bases. We show that

known results are already drastically called into question when

considering mutation structures beyond the standard case of

uniform mutation rates.

Results

Mutations matter, even when they are rare
Consider the simple case of competition between two strategies

A and B. To study non-uniform mutations, we introduce two

mutation rates: mAB is the probability that an A type mutates into a

B type, and mBA is the probability that a B type turns into an A
type.

The evolutionary dynamics is considerably simplified for small

mutation rates. If mutations are small enough [2], mutants arise

whenever the population has fixated on a strategy, and the

dynamics can be completely characterized by studying a Markov

chain between monomorphic states [3,11]. This transition matrix

is

1{mABrAB mABrAB

mBArBA 1{mBArBA

� �
ð1Þ

where rAB is the fixation probability of a single mutant B in a

population of N{1 A’s, and rBA is the fixation probability of

single mutant A in a populations of N{1 B’s. The long-term

dynamics of the system is described by the stationary distribution

1

1z
mABrAB

mBArBA

,
1

1z
mBArBA

mABrAB

0
B@

1
CA ð2Þ

This implies that A is more abundant than B in the long run when

mBA

mAB

rBA

rAB

w1 ð3Þ

Let us further specify what
rBA

rAB

looks like. Consider a game with

payoff matrix

A B

A

B

a b

c d

 !
: ð4Þ

The expected payoffs when there are j A players in the population

are

pA(j)~a
j{1

N{1
zb

N{j

N{1
ð5Þ

pB(j)~c
j

N{1
zd

N{j{1

N{1
: ð6Þ

Following [26], we map payoff to fitness using an exponential

function

fA(j)~ exp wpA(j)½ � ð7Þ

fB(j)~ exp wpB(j)½ � ð8Þ

where w§0 is the intensity of selection. For a standard Moran

process without mutations the fixation ratio is

rAB

rBA

~ exp {w
N

2
azb{c{dð Þ{azd

� �� �

& exp {w
N

2
azb{c{dð Þ

� � ð9Þ

where the approximation is valid for large N [27]. With equation

(3), A is more abundant than B in the long run, when

2 ln
mBA

mAB

v(azb{c{d)Nw ð10Þ

For mBA~mAB we obtain the usual risk-dominance condition

[28]. But equation 10 implies that it is always possible to choose a

ratio of mutation probabilities, such that any disadvantage in the

game can be reversed by asymmetries in mutations. These

asymmetries only have an effect when selection is not infinitely

strong, wv?. Note that w and N enter linearly, but
mBA

mAB

features

in a logarithmic fashion.

These results hold for any finite intensity of selection and small

(positive) mutations. Even for small mutation rates, the specific

model of how mutations arise can dramatically change the fate of

an evolving population, as shown previously in [20].

Usually, the mutation rate is one single parameter. In larger

systems, studying non-uniform mutation rates requires us to

specify how likely it is that any given strategy i will mutate into any

other possible strategy j. Hence, mutation rates can be defined by

a stochastic matrix K~½mij � such that position i,j specifies what the

probability is to mutate from strategy i into strategy j. We call such

matrix a mutation kernel. Each row of this matrix is normalized

such that
P

j mij~1. Accordingly, completely specifying the

mutation structure requires s(s{1) numbers for a strategy set of

size s.

Let us now look at how such kernels may be specified for

particular examples, and how known results do change when

departing from uniform mutations.

Direct reciprocity: the repeated prisoner’s dilemma
We start by studying the evolution of direct reciprocity [29]. In

the one-shot prisoner’s dilemma defection is the only stable

outcome of the game. Cooperation can be stable, however, if the

game is repeated and the possibility of retaliation exists. This

mechanism is usually referred to as direct reciprocity. As opposed

Mutation Kernels Affect Evolutionary Game Dynamics
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to the dichotomous choice in the one shot version, repetition opens

many possibilities. We focus on deterministic strategies with a

finite – albeit uncertain – horizon. A strategy for a repeated game

specifies which action to play, given the history of the game so far.

In a repeated game, for any two strategies A and B the payoff of A

when it faces B will be computed as

PAB~ 1{dð Þ
X?
i~0

dipi
AB, ð11Þ

where d is the continuation probability, and pi
AB is the pay-off in

the i-th round of the game. For convenience we have normalized

the pay-off of the repeated game multiplying by 1{d.

The one shot game we are interested in is a prisoner’s dilemma

with the pay-off matrix (
R S

T P
), with TwRwPwS and

Rw

TzP

2
. The literature on the repeated prisoner’s dilemma is

extensive [8,21,30–34]. For instance, Imhof et al. [8], study a

subset of 3 strategies: always cooperate (ALLC), tit-for-tat (TFT)

and always defect (ALLD). Strategies ALLC and ALLD stand for

unconditional cooperation and defection respectively; TFT

cooperates in the first move, and then copies what the opponent

did in the last round. Computing the payoff for this set of

strategies, according to equation (11), yields matrix

R R S

R R S 1{dð ÞzPd

T T 1{dð ÞzPd P

0
BBB@

1
CCCA ð12Þ

A finite population will spend most of the time in the

cooperative strategy TFT, provided a sufficiently large continua-

tion probability [8]. Even though studying this subset of strategies

is insightful, it can be argued that it is a biased subset: in neutrality,

cooperative behaviour is overrepresented because
2

3
’s of the time

are spent in strategies that are completely cooperative. Moreover,

within this subset, it is difficult to come up with mutation kernels

that differ from the uniform one without being completely

arbitrary.

The complete set of strategies for the repeated prisoner’s

dilemma is infinite. Therefore, studying a particular dynamics

implies some restriction in the strategy set. In this section we study

the 8 strategies described in Table 1. This is the deterministic

subset of the strategies considered in [35]; it contains all possible

deterministic strategies that consider the opponent’s last move.

Therefore, a strategy is completely determined by three pieces of

information. The first item determines the action to take on the

first move. The second item is what to do if the opponent

cooperated, and the third one dictates what to do upon the other

defecting. As we will see, this way of conceiving the strategies will

further provide a straightforward alternative mutation structure.

The derivation of the pay-off matrix for all the strategies in

Table 1 is given in Section A of the Supporting Information Text

S1. We compute the abundance in the long run, as described in

the Methods section. That is, we study a Moran process with

exponential fitness mapping in the limit of rare mutations. The

validity of the theoretical prediction here depends on an

appropriate choice of population size (N) and continuation

probability (d), that guarantees that mutations are sufficiently

slower than fixation events. In order to comply with such

requirement we restrict ourselves to large values of d, see Section

B of the Supporting Information Text S1.
Uniform mutations. For the uniform mutation structure, a

mutation occurs with probability m, and all other strategies have

the same chance to be the result of one mutation step. The strategy

chosen for reproduction does not undergo mutation with

probability 1{m. The mutation kernel is thus an 8|8 matrix

with 1{m’s in the diagonal elements, and m
7

elsewhere. All

strategies are reachable from each other via mutations. Panel A in

Figure 1 shows the results with the standard assumption for

population size n~50. Strategy TFT is by far the winning strategy

in a large region of the parameter space. This is consistent with the

findings in [8]. Unconditional defection is the most popular

strategy only for very strong selection.
Bitwise mutation. We now assume that strategies are

represented by the binary code, as described in Table 1. The

digit 0 stands for cooperation, and the digit 1 stands for defection.

The first digit codes for the initial action, the second digit

determines what to do upon cooperation and the third digit

determines what to do upon defection. This binary representation

is common in disciplines like evolutionary computation [36].

Possible mutations are those between any two strategies that differ

in one bit. Thus, the associated mutation kernel is given by

Kf ~

1{m
m

3

m

3
0

m

3
0 0 0

m

3
1{m 0

m

3
0

m

3
0 0

m

3
0 1{m

m

3
0 0

m

3
0

0
m

3

m

3
1{m 0 0 0

m

3
m

3
0 0 0 1{m

m

3

m

3
0

0
m

3
0 0

m

3
1{m 0

m

3

0 0
m

3
0

m

3
0 1{m

m

3

0 0 0
m

3
0

m

3

m

3
1{m

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

ð13Þ

Any strategy in this kernel has only three neighbors, thus the

mutation matrix is sparse. The structure of selection and mutation

is depicted in Figure 2.

The results are shown in Panel B of Figure 1. Compared to the

case of uniform mutations, the region of the parameter space

where TFT is the most popular strategy has been sharply reduced.

In particular, ALLD is able to beat TFT at a much lower intensity

of selection. In this case, we see that a reasonable mutation kernel

substantially reduces cooperation in the long run. This is

illustrated in Figure 3. Our results are consistent with the findings

of [21], where local mutation reduces the abundance of

cooperative strategies. The main difference with that study is that

we study a finite strategy set in a game that is not indefinitely

repeated, and that our notion of locality naturally stems from the

binary representation of strategies.

The results of the bitwise kernel are of course invariant to

changing the meaning of each position (e.g., the last bit, instead of

the first, determines what to do in the first round), or changing the

meaning of each bit (e.g., cooperation is coded by 1 instead of 0).

Neighborhoods are preserved under any scheme that codes the

strategies in a binary fashion.

Note that arbitrary kernels can produce results that differ in

more radical ways from the standard result with uniform

mutations. For instance, changing the labels by swapping strategies

STFT{1 and NALLD in Figure 2, will cause SALLC to be the most

popular strategy under strong selection. With such a choice,

ð13Þ
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SALLC turns out to be the only strategy that dominates all its

neighbors. The appealing feature of the bitwise kernel is that it

naturally stems from considering a binary representation of the

strategies. As depicted in Figure 3, the idea that direct reciprocity

leads to high levels of cooperation rests on one particular choice of

mutation kernel.

Optional public good games with punishment
We now turn to cooperation without repetition. The evolution

of strategies in the optional public goods game has been studied

extensively since proposed by Fowler [37]. The model considers

four types: cooperators, who invest a given endowment in a joint

enterprise; defectors, who do not invest in the public good but

benefit from it; punishers, who cooperate and in addition punish

those who do not cooperate; and loners, who get a fixed payoff

abstaining from the game. The model has been refined in a series

of papers [3,7,38–40]. The main result for finite populations is that

the system spends a considerable amount of time in cooperative

states. The threat of punishment opens the door for cooperation,

which is stabilized by the option of abstaining. Even though loners

do not have a large share in the stationary distribution, their

presence is essential to maintaining cooperation [3].

Here, we will follow the version of the game presented in [7].

There is a well-mixed finite population of size N. At every time

step, individuals get into groups of size n. Within these groups they

have the option to play a public goods game. Those who

participate can decide wether to invest or not in a joint enterprise,

at a cost c. The total sum of the pot is multiplied by a factor of r,

and divided equally between those who took part in the game.

Loners, i.e., individuals that abstain, get a fixed payoff s. After this

interaction, each contributor can impose a fine b upon each

defector, assuming a cost c for each fine. The expected payoff

follows [7]. As in previous sections, we will inspect abundance in

stationarity for a Moran process with exponential mapping in the

limit of rare mutations.

Uniform mutations. For uniform mutations the systems

spends most of the time in a population completely made up of

cooperators that punish defectors. This can be seen in Figure 4

(panel A), where we show the abundance in stationarity, as a

function of the intensity of selection. Clearly, selection leads to the

prevalence of altruistic punishers.

Analytical results greatly simplify in the limit of strong selection

(i.e., w??), where all the fixation probabilities reduce to 1 , 0,

1=N or 1=2 [7]. In this limit the stationary distribution is given by

(xC ,xD,xL,xP)~
1

8zN
(2,2,2,2zN) ð14Þ

Figure 4 (panel B) shows the stationary distribution, as well as

the relative speed of transitions between homogeneous states in the

limit of strong selection. Punishers are vulnerable to invasion via

neutral drift by cooperators, which in turn are susceptible to

invasion of defectors. But loners offer a way out of defection and

back into cooperators or punishers. Thus, via freedom to coercion

[3]. On average, in the long run, altruistic punishers are most

abundant, and cooperation is sustained.

Slower transitions towards sociality. We can depart from

the standard assumption of uniform mutations, for instance,

Table 1. Strategy set in the repeated prisoner’s dilemma with one round memory.

Strategy Behavior Binary code

0 ALLC Always cooperate 000

1 TFT Tit for tat 001

2 TFT{1 Cooperate on the first move 010

then reverse the opponent’s last move

3 NALLD Cooperate once and then always defect 011

4 SALLC Defect once and then always cooperate 100

5 STFT Defect once and then copy the opponent’s last move 101

6 STFT{1 Defect once and then reverse the opponent’s last move 110

7 ALLD Always defect 111

For the uniform mutation kernel, it is convenient to number the strategies with integers, for the bitwise kernel binary numbers are more convenient.
doi:10.1371/journal.pone.0035287.t001

Figure 1. Repeated prisoner’s dilemma: Average abundance in
stationarity. Panel A shows uniform mutations, and Panel B shows the
results for the bitwise kernel. Continuous lines represent the theoretical
approximation. Dots represent simulation results averaged over 500
repetitions of 2|108 generations each, and a mutation probability
m~10{3 . Plus signs represent a larger mutation probability, m~10{2 . In
this case of larger m, which is harder to address analytically, the
mutation kernel also affects the average abundance. Values for the
game are R~3:0, S~0:0, T~4:0, P~1:0. The continuation probability
is d~0:99, and population size is n~50.
doi:10.1371/journal.pone.0035287.g001
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assuming that mutations from loners towards the other strategies

are rarer by a factor a[½0,1�. This mutation kernel is given by

matrix Kc.

Kc~

1{m
m

3

m

3

m

3
m

3
1{m

m

3

m

3
am

3

am

3
1{am

am

3
m

3

m

3

m

3
1{m

0
BBBBBBBB@

1
CCCCCCCCA

ð15Þ

We can provide a straightforward interpretation for this

mutational structure, biologically as well as from a cultural

perspective. Biologically, mutations towards strategies that do

actually play the game (C,D,P) could be rarer, since the demands

of social living may require a number of specific mutations to

accumulate before individuals can cope with such demands. On

the other hand, in cultural terms, the factor a could be thought of

as a measure of risk aversion. Given that playing the game is risky,

agents are more hesitant to jump into strategies that carry such

risk. A low a value would mean that loners are less prone to jump

into the game.

In the limit of strong selection the calculations are again greatly

simplified. The stationary distribution is given by:

(xC ,xD,xL,xP)~
1

Naz2z6a
2a,2a,2,2azNað Þ ð16Þ

Thus, in the limit of strong selection, playing the game is more

popular than abstaining whenever 6azNaw2.

Figure 5 shows in panel A, the abundance in stationarity as a

function of the intensity of selection. The value of a is 1=50. In

panel B, we show the transitions and the stationary distribution

using this kernel in the limit of w??. For N??, social

individuals will be more popular for any a. But population size

introduces a limit in which risk averse individuals refrain from

playing the game. The reason is that transitions out of the asocial

state can be considerably slower.

Accordingly, we show that in finite populations some risk

aversion may deter cooperation, as most individuals prefer not to

play the game. This is radically different from what happens in the

case of uniform mutations, where strong selection always leads to

total predominance of altruistic punishers. Other mutation

structures are of course possible, but once again, it is difficult

not to be completely arbitrary. In the next section we inspect a

bitwise mutation kernel for this game.

Bitwise-like mutations in a larger strategy set. A larger

strategy set for the optional public good games with punishment

has been recently studied by Rand and Nowak [6]. In this study,

individuals can contribute to the public good game (C), play

avoiding contribution (D) or abstain from playing (L). In addition,

they can decide wether to punish or not each of the other types. A

strategy is then a 4-tuple ½a1,a2,a3,a4�, where a1~D,C or L, and

a2,a3,a4~P or N. Element a1 codes for contribution or

Figure 2. Repeated prisoner’s dilemma: structure of selection and mutation for bitwise mutation. Arrows indicate the direction of
selection, and dashed lines indicate neutral paths. Blue strategies are completely cooperative and red strategies are completely uncooperative when
paired with themselves. The kernel structure shuts down paths that would normally be available with the standard assumption that all mutation
paths are possible.
doi:10.1371/journal.pone.0035287.g002

Figure 3. Repeated prisoner’s dilemma: Fraction of time spent
on fully cooperative states in the stationary distribution.
R~3:0, S~0:0, T~4:0, P~1:0. The continuation probability is
d~0:99, population size is N~50, and mutation probability is
m~10{3 . Continuous lines are theoretical approximations for small
mutation rates and dots represent simulation results.
doi:10.1371/journal.pone.0035287.g003
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abstention, a2 determines whether to punish or not cooperators, a3

determines whether to punish or not defectors, and a4 determines

whether to punish or not loners. The strategy set composed of

3|2|2|2~24 strategies. This strategy set provides the

possibility of antisocial punishment, that is, non-cooperators that

punish cooperators.

The game has the same parameters and structure as the game

considered above; the only difference comes in the specification of

payoffs for each one of the 24 strategies. The formulas are given in

detail in the appendix of [6]. We perform the same type of

analysis, that is, we inspect the stationary distribution that comes

from a Moran process with exponential mapping, in the limit of

rare mutations.

We compare the uniform mutation structure, where all

strategies can be reached from each other with the same weight,

with a bitwise-like kernel that has the following structure. Each

strategies is a chain of four positions. The first position has base 3:

D stands for defection, C stands for cooperation, and L stands for

loner. The second, third and fourth positions are binary. P in the

second position means punish cooperators, whereas N means do

not punish cooperators. The third position takes care of punishing

defectors, and the fourth position codes for punishing loners. In

the bitwise-like kernel, mutations can only take you to a strategy

that differs in one position. This means that each strategy has 5
neighbors as opposed to 23 in the uniform case.

Figure 4. Optional public goods game with uniform mutations. Panel A shows abundance in stationarity as a function of the intensity of
selection. Continuous lines represent the theoretical approximation. Dots represent simulation results averaged over 500 repetitions of 2|108

generations each, and a mutation probability m~10{4 . Plus signs represent a larger mutation probability, m~10{3 . N~100, n~5, r~3, c~0:3,
b~s~c~1. Panel B shows transitions (Nw) between monomorphic states and abundance as a function of population size in the limit of strong
selection (w??).
doi:10.1371/journal.pone.0035287.g004

Figure 5. Optional public goods game with non-uniform mutations. Panel A shows abundance in stationarity as a function of the intensity of

selection (N~100, n~5, r~3, c~0:3, b~s~c~1) using kernel Kc with a~
1

50
. Continuous lines represent the theoretical approximation. Dots and

plus signs represent simulation results. Panel B shows transitions (Nw) between monomorphic states and abundance as a function of population size,
using kernel Kc, in the limit of strong selection (w??).
doi:10.1371/journal.pone.0035287.g005

Mutation Kernels Affect Evolutionary Game Dynamics
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For example, defectors who do not punish (D-NNN) can only

mutate into defectors that punish loners (D-NNP), defectors that

punish other defectors (D-NPN), defectors that punish coopera-

tors (D-PNN), cooperators that do not punish (C-NNN) and

loners that do not punish (L-NNN). Each one of these events

happens with probability
m

5
, and there is no mutation with

probability 1{m.

Figure 6 shows the results of the analysis for both kernels. For

the sake of clarity we exclude self-punishing strategies, whose

frequency in stationarity is very low. Following [6], let us focus

on what happens for intensity of selection equal to 1 (solid vertical

black line). For uniform mutations it is clear that no strategy is

overwhelmingly prevalent. All strategies are below
1

4
. The three

most popular strategies are: C-NPN, L-PNN, and D-NNP. The

system spends more than 60% of the time on these three

strategies. The most popular strategy corresponds to altruistic

punishers, followed by loners that punish defectors, and defectors

that punish loners. It is striking that antisocial punishment is

associated mostly to asocial individuals who abstain from playing

the game.

Introducing the bitwise-like mutation structure we also find

that no strategy is overwhelmingly prevalent. In particular, the

stationary distribution has more variation and other strategies

become abundant. The most popular strategies are now altruistic

punishers, loners that punish cooperators, and individuals that

refrain from taking any action whatsoever. It is noteworthy that

introducing this kernel considerably favors the autarkic option

of individuals that abstain from the game, and forgo any

punishment.

Discussion

We have formalized a Moran process with non-uniform

mutations. We show that mutation structure plays an important

role, even if mutations are assumed to be small. In three examples

we have come up with specific reasonable kernels that overturn

known results. Our mutation kernels are akin to Maynard-Smiths’s

concept of protein spaces, where phenotypes are connected by unit

mutational steps [24,25].

We first study the evolution of direct reciprocity in a set of 8
strategies. Representing strategies as strings of bits, we introduce a

new mutation structure that reduces significantly the amount of

cooperation to be expected in the long run.

Next we turn to a model of cooperation without repetition. We

study the evolution of altruistic punishment in optional public

good games. Assuming a reasonable kernel with a clear biological

and behavioural interpretation leads to the possibility of abstention

being more successful than playing the game. A specific condition

is specifically worked out for the case of strong selection. Finally,

we study optional public good games with punishment in a much

larger strategy space. The structure of the space also lends itself to

an interpretation that makes it easy to come up with a reasonable

mutation kernel. This kernel changes the results in a significant

manner, particularly showing that allowing for so many strategies

can actually result in no play being a very successful alternative.

Even though we have focused our analysis on systems in the

limit of small mutation rates and without population structure,

there is no reason to suspect that the effects we have highlighted

will not be salient as well in systems with larger mutation rates [7],

or with spatial structure [41–46].

Figure 6. Optional public goods game with bitwise-like mutations. Abundance in stationarity as a function of the intensity of selection
(N~100, n~5, r~3, c~0:3, b~s~c~1). Panel A shows results for uniform mutation structure. Panel B shows results for bitwise-like mutations. The
reference intensity of selection (w~1) is marked with a vertical black line.
doi:10.1371/journal.pone.0035287.g006
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Our results call into question the ‘‘model-less’’ approach to

mutations in evolutionary dynamics, where given a strategy set, all

mutations are available an equally likely. Even in the limit of rare

mutations, the mutation structure can make a substantial

difference on what gets selected. It is important to observe that

all models that follow the methodology studied here, rest on a

specific assumption of mutation structure [12]. It is therefore

important, not to just consider what the strategy space is, but also

if there are natural ways to infer a specific topology or

interpretation of the set of strategies in relation to mutations.

Methods

The evolutionary dynamics is studied based on the Moran

process [47]. We consider a finite population of constant size N. At

every time step, one strategy is chosen for reproduction in

proportion to its performance in the current population. A copy of

this strategy is added to the population after removing a random

strategy. With a small probability, the strategy that is copied

changes its type to any of the other available strategies. If the

strategy selected for reproduction is i, its mutation probability to a

strategy j is given by kij . The probability of mutations are

summarized in a normalized stochastic matrix K~ kij

� �
, here

called mutation kernel. The process results in an ergodic Markov

chain [1]. Fitness values are obtained by mapping fitness using an

exponential function fi~ewpi , where pi is the payoff of the game

being considered; and w is the intensity of selection.

We asses the effect of selection and mutation by inspecting the

average composition of the population in the long run. The

stationary distribution can be computed exactly, if mutations are

sufficiently small [1,2]. We have compared the theoretical

predictions to Monte Carlo simulations (symbols in the Figures).

The stationary distribution is estimated by averaging the result of a

sufficient number of runs. Each run is composed of a number of

generations, starting in a random population. The average

composition of the population is computed during a window at

the end of each run.
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