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Abstract

Background: Except during a 1-year period when BCG vaccine was not routinely administered, annual coverage of infants
with Bacillus Calmette-Guérin (BCG) in Kazakhstan since 2002 has exceeded 95%. BCG preparations from different sources
(Japan, Serbia, and Russia) or none were used exclusively in comparable 7-month time-frames, September through March, in
4 successive years beginning in 2002. Our objective was to assess relative effectiveness of BCG immunization.

Methods/Findings: We compared outcomes of birth cohorts from the 4 time-frames retrospectively. Three cohorts received
vaccine from one of three manufacturers exclusively, and one cohort was not vaccinated. Cohorts were followed for 3 years
for notifications of clinical TB and of culture-confirmed TB, and for 21 months for TB meningitis notifications. Prevention
effectiveness based on relative risk of TB incidence was calculated for each vaccinated cohort compared to the non-
vaccinated cohort. Although there were differences in prevention effectiveness observed among the three BCG vaccines,
all were protective. The Japanese vaccine (currently used in Kazakhstan), the Serbian vaccine, and the Russian vaccine
respectively were 69%, 43%, and 22% effective with respect to clinical TB notifications, and 92%, 82%, and 51% effective
with respect to culture confirmed TB. All three vaccines were .70% effective with respect to TB meningitis.

Limitations: Potential limitations included considerations that 1) the methodology used was retrospective, 2) multiple risk
factors could have varied between cohorts and affected prevention effectiveness measures, 3) most cases were clinically
diagnosed, and TB culture-positive case numbers and TB meningitis case numbers were sparse, and 4) small variations in
reported population TB burden could have affected relative risk of exposure for cohorts.

Conclusions/Significance: All three BCG vaccines evaluated were protective against TB, and prevention effectiveness varied
by manufacturer. When setting national immunization policy, consideration should be given to prevention effectiveness of
BCG preparations.
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Introduction

Background
Since 1921, Bacillus Calmette-Guérin (BCG) vaccine has been

given to infants to reduce the risk of tuberculosis (TB) disease, and

disseminated TB [1]. Generally, prospective randomized trials of

BCG have been used to evaluate efficacy of BCG, and

retrospective case-control studies of BCG have been used to

compare effectiveness of different BCG vaccine strains. Although

measures of BCG prevention effectiveness/efficacy have not been

consistent [2], when BCG immunization of newborns was

stopped in Sweden, a circumstance that provided a non-

vaccinated comparison group, a six-fold increase in TB

notifications was observed in infants [3]. In a prospective

randomized control trial in Britain in which over 50,000 older

children were allocated to no vaccination or one of two vaccine

groups, comparable prevention efficacy of 81% to 84% was

found among those vaccinated with BCG (Mycobacterium bovis) or

with vole bacillus (Mycobacterium microti), respectively, when data

were compared over a 20-year period [4]. However, in another

randomized control trial in India in which over 100,000

uninfected subjects with a normal chest radiograph were

allocated to placebo or one of four vaccine groups, no difference

was observed in TB incidence among cohorts immunized with a
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placebo, a low-dose or high-dose Danish BCG strain, or a low-

dose or high-dose French BCG strain [5]. In an extensive review

in 1983 of eight prospective BCG trials (in the majority of which

positive prevention efficacy with BCG was found), the two trials

that rated highly in all examined aspects of methodological and

statistical quality reported prevention efficacy for TB of 76% or

more [6]. In a later meta-analysis of 14 prospective trials,

prevention efficacy for TB for BCG recipients was 51% (95%

confidence interval [CI], 30% to 66%) [1]. In the same meta-

analysis, seven trials reporting TB deaths showed prevention

efficacy of BCG vaccine of 71% (95% CI, 47% to 84%), and five

trials reporting on meningitis showed prevention efficacy of BCG

vaccine of 64% (95% CI, 30% to 82%) [1]. Differences in relative

prevention effectiveness between BCG preparations have been

described in two case-control studies with different vaccines, but

these studies have lacked non-vaccinated comparison groups for

estimating absolute effectiveness [7,8].

From the mid-1960s until 2003, BCG vaccine produced in

Russia was administered routinely at birth to all infants in

Kazakhstan. Since 2001, in years when there has been a BCG

immunization program in place for the full 12 months, reported

BCG coverage of infants in Kazakhstan has ranged from 95% in

2001, to 99% in 2002, 2003, 2006, and 2007 [9]; since 1997, the

published World Health Organization estimates of BCG

coverage have been consistent with the official reported BCG

coverage rates for Kazakhstan [9]. Although administration

mode data are not gathered routinely, the standard practice in

Kazakhstan is intradermal delivery of this vaccine. Beginning in

March 2003, the Government of Kazakhstan gradually changed

its BCG vaccine procurement source from its Russian source,–

Microgen, the Federal State Scientific-Industrial Company for

Immunobiological Medicines, an enterprise of the Ministry of

Health (MOH) of the Russian Federation, to a Serbian source,–

Torlak Institute of Immunology and Virology, a global producer

of vaccines and biopharmaceuticals in Belgrade. The change in

source was associated with 1,282 reports of adverse post-

vaccination events in newborns in 2003; of these, 1,260 (98%)

were reports of lymphadenitis. A subsequent investigation yielded

reported cases of lymphadenitis in 1.5% (26/1,747) of children

vaccinated with the Serbian BCG compared to 0.02% (1/4,217)

of children vaccinated with the Russian BCG (RR = 62.6 (95%

CI: 8.5–462.1); p,0.001) (Kazakhstan MOH, unpublished data).

As a result, the Kazakhstan MOH issued a decree in February

2004 suspending use of the Serbian BCG vaccine. The Russian

BCG continued to be administered to fewer than 5% of

newborns, but after reports of adverse events in 54 children

given the Russian BCG between May and July 2004, the MOH

completely suspended the use of BCG vaccine on July 30, 2004.

From August 2004 to March 2005, the BCG vaccination

program in Kazakhstan was mostly disbanded (Figure 1). As a

consequence, the reported BCG coverage of infants in Kazakh-

stan decreased to 65% in 204 and 69% in 2005 [9]. However, in

mid-March 2005, infant vaccination with BCG resumed, with

vaccine produced by Japan BCG Laboratory (Tokyo), and use of

this vaccine has continued into 2011. For the cohort that was not

vaccinated with BCG in 2004–2005, there was no national

‘‘catch-up’’ vaccination campaign. Nevertheless, some oblasts

provided immunization for free for non-vaccinated children in

response to parental request; however, these measures were not

systematic.

Objective
Because assessing differences in relative effectiveness of

different BCG vaccines would be of value in allocating resources

in resource-constrained countries where TB is highly endemic,

the objective of this study was to assess whether there were

differences in the relative prevention effectiveness of BCG

vaccines produced by three different manufacturers and admin-

istered from 2002 through 2006 in the context an intradermal

BCG vaccination program in which there were no major

identifiable changes other than the addition or subtraction of

specific BCG vaccines.

Figure 1. Cohorts of vaccinated and non-vaccinated children in Kazakhstan, 2002–2006.
doi:10.1371/journal.pone.0032567.g001
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Methods

Overall
We used vaccination, TB notifications, and laboratory data for

four different cohorts of children. Three cohorts had received one

of the three BCG preparations intradermally, and one cohort had

received no BCG. Each cohort was followed over comparable

time-frames in successive years using three different TB reporting

models. The first model included clinically-defined, radiologically-

confirmed cases, the second was restricted to laboratory-confirmed

cases, and the third was restricted to reported cases of TB

meningitis. Because it was possible for a given case to be in more

than one model, there was overlap between the models.

Populations Studied and Ethics Approval
National TB data were obtained from aggregated surveillance

statistics published annually by the Kazakhstan National Tuber-

culosis Center [10], and as such, this activity was determined to be

program evaluation and not human subjects research. General

population estimates, and estimates of the number of children in

successive cohorts were obtained from publications of the

Republic of Kazakhstan National Statistics Agency [11]. All

personal information was removed from national TB surveillance

data before analysis. In addition, human subjects review and

ethical approval for these analyses were obtained from the U.S.

Centers for Disease Control and Prevention (CDC), which

determined that this project was program evaluation and not

human subjects research.

Data Sources and Overall TB Rates
The Kazakhstan MOH has included surveillance strengthening

as an important component of its directly observed therapy, short-

course (DOTS) program implementation. As a joint public health

program development effort, national case-based, disease-specific

electronic surveillance was first implemented in 1998 by the

MOH, with the support of CDC and the U.S. Agency for

International Development (USAID), to collect and analyze data

necessary to monitor and evaluate key TB program activities.

Development and adaption of Kazakhstan’s TB Electronic

Surveillance and Case Management (ESCM) system have

included development of electronic software in compliance with

WHO requirements for national case-based surveillance. The

ESCM system was evaluated jointly by the MOH and CDC in

2003 and 2006, and comparisons of completeness of reporting of

the electronic and paper-based surveillance systems favored the

electronic system, supporting discontinuation of traditional paper-

based surveillance and continuation of the ESCM.

In this study, published aggregated/unlinked data were used

from the ESCM system from 2002–2009, and included notifica-

tions of 300,098 TB cases. The following variables were used in

the analysis: date of birth, date of case notification, radiological

confirmed TB disease, TB meningitis, culture of sputum or gastric

aspirate, and laboratory confirmation of TB (culture positivity).

Data collection was performed by the Government of Kazakhstan.

CDC and the International Vaccine Institute participated

collaboratively with the Government of Kazakhstan in study

design, analysis, interpretation of data, and decision to submit the

work for publication.

Study Design
This study was a retrospective comparison of outcomes of four

different birth cohorts. For the period 2002–2006, outcomes of

three cohorts of BCG-vaccinated children (September 2002–

March 2003, September 2003–March 2004, September 2005–

March 2006) and one cohort of non-vaccinated children

(September 2004–March 2005) were analyzed. Births and

inclusion in each new cohort began on September 1 of a given

year and ended on March 31 of the subsequent year (Figure 1).

The cohorts and follow-up periods are described in Table 1. We

estimated the number of births for the 7-month cohorts as: [(the

number of live births in each year of the study412)64]+[(number

of live births in the following year412)63]; thus, a 4-month

estimate of the number of live births from September through

December in any given year was added to a 3-month estimate of

the number of live births from January through March in the

subsequent year. The 7-month inclusion period for each cohort

was succeeded immediately by a 29-month follow-up period

during which time the cohort was followed, yielding a total

potential cohort inclusion and follow-up time of 3 years. The

respective cohorts were followed for the full 3 years for TB

incidence, both for notification of clinical or culture-positive cases,

and for 21 months for notifications of TB meningitis. Hence, the

numbers of clinical cases and the numbers of culture-positive cases

for the different cohorts during the follow-up periods included all

cases diagnosed in a cohort between the first day of the cohort

inclusion period and a final day 3 years later, and for TB

meningitis, the cases diagnosed in a cohort between the first day of

the cohort inclusion period and a day 21 months later.

Laboratory-confirmed data were based on TB culture results

routinely reported to the ESCM system by TB hospital

laboratories. Because these were strictly surveillance data, no

attempt was made to standardize the reports among oblasts for

scientific analyses, for variation because of equipment limitation,

or for variations in training levels of laboratory personnel. Because

of diagnostic challenges and difficulties inherent in sputum

collection in the pediatric population, we also examined TB

notification data for older children and adults (persons aged 15–44

years and 45+) for the years 2002–2007 to determine if reported

incidence rates changed in this population, in the event that factors

other than changes in BCG vaccine type could account for any

changes in incidence observed in the four birth cohorts.

Because there was no national ‘‘catch-up’’ immunization

campaign for the non-vaccinated cohort, data regarding the

numbers of children in this cohort who were subsequently

vaccinated with BCG were not systematically gathered and were

not available for analysis.

Analysis
To assess BCG effectiveness for each vaccinated cohort, we

calculated relative risk (RR) for each of three models as the ratio of

p1 (the risk of having developed TB [a notification] or the risk of

having developed culture-confirmed TB or the risk of having

developed TB meningitis) to p2 (the risk observed in the non-

vaccinated cohort). The confidence interval (CI) for RR was

calculated taking the natural logarithm of the estimate of RR as

loge(RR)~loge(p1=p2)~log e(an2=cn1),

where ‘‘a’’ was the estimated number of TB cases in a given

vaccinated cohort, ‘‘n1’’ was the number of births in the

vaccinated cohort, ‘‘c’’ was the number of cases in the non-

vaccinated cohort, and ‘‘n2’’ was the number of births in the non-

vaccinated cohort. The standard error (SE) of the natural

logarithm of RR was estimated as

SE½loge(RR)�~ ffip ½(b=an1)z(d=cn2)�
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where ‘‘b’’ was the number of non-cases in the vaccinated cohort

and ‘‘d’’ was the number of non-cases in the non-vaccinated

cohort [12].

The 95% CI for loge (RR) was computed as loge

(RR) = 61.96 SE, and the 95% CI for RR was obtained by

taking anti-logarithms. Finally, BCG prevention effectiveness

was calculated as (12RR)6100. Prevention effectiveness was

calculated for each of the three models: clinical TB, laboratory-

confirmed TB, and TB meningitis. The lower boundary for the

95% CI for prevention effectiveness was calculated as the upper

limit of the 95% CI of the RR, and the upper boundary for the

95% CI for prevention effectiveness was calculated as the lower

limit of the 95% CI of RR. All p-values were calculated as two-

tailed.

Kazakhstan has 16 administrative territories: two cities and 14

oblasts (provinces). To determine if there were regional variations

in prevention effectiveness, high TB prevalence oblasts ($4.02/

1,000; range: 4.03–4.34) were compared collectively with low TB

prevalence oblasts (#2.99/1,000; range: 1.69–2.95) with respect to

RR and prevention effectiveness of the three BCG vaccines for the

entire 3-year follow-up period in the four different cohorts. High

prevalence oblasts included Atyrauskaya, Kyzylordinskaya, Man-

gistauskaya, West Kazakhstan, and Zhambylskaya oblasts; low

prevalence oblasts included Almatinskaya, East Kazakhstan,

North Kazakhstan, and South Kazakhstan oblasts.

Because of concerns that variations in TB incidence observed

between the cohorts may reflect surveillance or TB incidence

phenomena across the general population, TB notification data for

older children and adults were examined for each of the years

2002–2007.

Results

The number of newborns in each cohort ranged from 138,059

to 168,664 in the four respective 7-month periods examined

(Table 1).

Cohort A (the non-vaccinated group) served as the comparison

group for cohorts B, C, and D (Russian, Serbian, and Japanese

vaccines, respectively). Prevention effectiveness based on clinical

TB case notifications was 69% for the Japanese BCG, 43% for

Serbian BCG, and 22% for Russian BCG (Table 2).

Of the 784 patients in the four cohorts who had specimens

cultured for TB, 20 (2.5%) had positive cultures (Table 3).

Estimates of prevention effectiveness levels based on laboratory-

confirmed TB cases were 92% for the Japanese BCG, 82% for

Serbian BCG, and 51% for Russian BCG.

BCG prevention effectiveness based on numbers of TB

meningitis case notifications for each vaccinated cohort ranged

from 71% to 89% (Table 4). Each vaccine had statistically

significant prevention effectiveness for TB meningitis when

compared with the outcomes of the non-vaccinated cohort.

The moving average (2-month) analysis of incidence rate based

on clinical case notifications in the cohorts demonstrated a rapid

increase in TB incidence during first year of life among non-

vaccinated children (Figure 2). The vaccinated cohorts had no

comparable increase. Relative to each vaccinated cohort, there

was an increased TB risk among the non-vaccinated cohort. The

three vaccines differed significantly in prevention effectiveness.

Survivor curve person-year (life table) analyses for TB

prevention among the BCG vaccinated and non-vaccinated

cohorts demonstrated significant prevention effectiveness for all

three vaccines with respect to developing disease resulting in TB

case notification (Figure 3). The cumulative percentage of cohort

members without TB during the first 1,000 days of follow-up

among non-vaccinated children was 0.9964%, but among the

cohort vaccinated with the Japanese vaccine, the percentage of

cohort members without TB during the first 1,000 days of the

follow-up period was 0.9996%, i.e., the vaccinated cohort had 32

more disease-free person-years per 10,000 person-years than the

non-vaccinated cohort had.

The prevention effectiveness hierarchy of manufacturers with

respect to clinical TB remained the same for the three vaccines

Table 1. Birth cohorts, BCG vaccine used, inclusive months of cohort entry, and length of follow-up, Kazakhstan, 2002–2008.

Cohort (vaccine used) and number of
newborns in cohort Inclusive months of cohort entry (births) Inclusive months of follow-up period

A (no BCG vaccine) n = 160,970 Sep 2004–Mar 2005 Sep 2004–Aug 2007

B (‘‘Microgen’’, Russia) n = 138,059 Sep 2002–Mar 2003 Sep 2002–Aug 2005

C (‘‘Torlak’’, Serbia) n = 150,938 Sep 2003–Mar 2004 Sep 2003–Aug 2006

D (‘‘BCG laboratory’’, Japan) n = 168,664 Sep 2005–Mar 2006 Sep 2005–Aug 2008

doi:10.1371/journal.pone.0032567.t001

Table 2. BCG vaccine prevention effectiveness for clinically defined, radiologically confirmed TB cases, Kazakhstan, 2002–2008.

Cohort (BCG
product) BCG Vaccinated Non-vaccinated (Cohort A) RR{ 95% CI{ for RR PE{ (%) p-value

# births
#
cases

Risk per
1000* # births

#
cases

Risk per
1000*

B Russian 138,059 207 1.50 160,970 310 1.93 0.78 0.65 0.93 22 0.005

C Serbian 150,938 165 1.09 160,970 310 1.93 0.57 0.47 0.69 43 ,0.001

D Japanese 168,664 102 0.60 160,970 310 1.93 0.31 0.25 0.39 69 ,0.001

*Risk calculated for the entire follow-up period (3 years).
{RR, relative risk; CI, confidence interval; PE, prevention effectiveness.
doi:10.1371/journal.pone.0032567.t002
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when high TB prevalence oblasts were compared collectively to

low TB prevalence oblasts (Table 5).

TB notification data for older children and adults showed little

variation across the years examined. For persons aged 15–44

years, the numbers of cases reported for the first time for the years

2002–2007 were respectively 27,054; 30,230; 30,003; 30,202;

28,452; and 27,024. For persons aged 45+ years, the numbers of

cases reported for the first time for the years 2002–2007 were

respectively 9,194; 10,646; 10,841; 11,451; 10,972; and 10,475.

Discussion

The study data demonstrate positive but differing prevention

effectiveness for clinical TB (22%, 43%, 69%) in Kazakhstan for

BCG vaccines from three producers, comparing outcomes of three

vaccinated cohorts of infants with those of a non-vaccinated

cohort; during the time-frames studied, modification of BCG

sources and a 7-month suspension of BCG administration were

the only externally imposed variations in an otherwise unmodified

national TB prevention program. The prevention effectiveness

hierarchy of manufacturers for clinical TB was the same whether

one were evaluating areas of high- or low-TB prevalence. All three

BCG vaccines were also protective but with differing effectiveness

observed for culture-confirmed TB and for TB meningitis.

Published case-control studies have yielded widely disparate

measures of protection from different BCG vaccines, ranging from

no reduction [13] to an 83% reduction [14] in TB incidence. In

1994, George Comstock proposed using a controlled methodology

to measure relative vaccine efficacy changes in geographic areas in

which the BCG vaccine had been recently changed [15], noting

that ‘‘…countries that have a need for vaccination and that

vaccinate at birth could be recruited to use their own vaccine in

even years and a different vaccine in odd years without making

any other changes in their vaccination programs. Merely

accumulating reported cases and deaths among persons born in

these even and odd years would reflect effects of the vaccines.’’

The use of three different BCG vaccines within a relatively short

period of time and the interruption of a BCG vaccination program

yielded non-vaccinated and vaccinated cohorts that provided a

unique opportunity to evaluate the effectiveness of BCG vaccines

in a model that resembled the one proposed by Comstock: the

experience of three different infant cohorts, each vaccinated with a

different BCG product, could be compared with that of a non-

vaccinated cohort; very large numbers included in each cohort

(range: 138,059–168,664) provided adequate sample sizes for

statistical analysis; the retrospective approach to identifying study

cohorts avoided the ethical quandary of using a vaccine strategy in

infants that did not include BCG; the vaccinated populations

studied were newborns and relatively mycobacteria-naı̈ve, in

comparison to older children or adults who may have acquired

mycobacterial immunity and whose inclusion might have reduced

the observed BCG effectiveness [16]; and the control (non-

vaccinated) cohort was drawn from the same population from

which the comparison (vaccinated) cohorts came.

Potential limitations of this study need to be considered. First,

the methodology used was a retrospective cohort study, but the

best method for determining the protective effect of a vaccine

would be a prospective, randomized, double-blind, placebo-

controlled trial; such studies are rarely performed because of their

difficulty and expense, and the intent of this study was to make a

relatively inexpensive effort to analyze previously gathered data to

shed light on the prevention effectiveness of each vaccine

preparation. In addition, a prospective trial that employed a

vaccine strategy arm that did not include BCG could potentially

be considered unethical, because BCG confers protection against

meningeal and disseminated TB disease in childhood [1,17,18].

Second, to interpret the measured effectiveness of BCG vaccine in

a program as a reflection of vaccine efficacy, one would have to

Table 3. BCG vaccine prevention effectiveness for culture positive TB cases, Kazakhstan, 2002–2008.

Cohort (BCG
product) BCG Vaccinated Non-vaccinated (Cohort A) RR{ 95% CI{ for RR PE{ (%) p-value

# births # cases Risk per 1000* # births # cases Risk per 1000*

B Russian 138,059 5 0.04 160,970 12 0.07 0.49 0.17 1.38 51 0.166

C Serbian 150,938 2 0.01 160,970 12 0.07 0.18 0.04 0.79 82 0.011

D Japanese 168,664 1 0.01 160,970 12 0.07 0.08 0.01 0.61 92 0.002

*Risk calculated for the entire follow-up period (3 years).
{RR, relative risk; CI, confidence interval; PE, prevention effectiveness.
doi:10.1371/journal.pone.0032567.t003

Table 4. BCG vaccine prevention effectiveness for TB meningitis cases, Kazakhstan, 2002–2008.

Cohort (BCG
product) BCG Vaccinated Non-vaccinated (Cohort A) RR{ 95% CI{ for RR

PE{
(%) p-value

# births # cases Risk per 1000* # births # cases Risk per 1000*

B Russian 138,059 2 0.01 160,970 10 0.06 0.23 0.05 1.05 77 0.040

C Serbian 150,938 1 0.01 160,970 10 0.06 0.11 0.01 0.86 89 0.009

D Japanese 168,664 3 0.02 160,970 10 0.06 0.29 0.08 1.05 71 0.043

*Risk calculated for the follow-up period specifically used for meningitis cases (21 months).
{RR, relative risk; CI, confidence interval; PE, prevention effectiveness.
doi:10.1371/journal.pone.0032567.t004
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assume that each cohort of vaccinated and non-vaccinated

children was similar with respect to potential risk factors for TB

exposure and infection. Although our comparison cohorts were

consistent in time and place, risk factors that could have varied

and affected the measures of prevention effectiveness observed

between cohorts included accuracy of diagnosis, exposure to

environmental mycobacteria, vaccine virulence, and transmissi-

bility of locally endemic TB strains, household exposure risk, and

population genetics. Indeed, studies using the same BCG strain in

different countries have yielded varying levels of protection [19].

Although there was no reason to assume that exposure to

circulating non-tuberculosis mycobacterium strains, transmissibil-

ity of locally endemic TB strains, diagnostic methods, or

population genetics and immunity would have appreciably varied

between the cohorts chosen, there were small but progressive year-

to-year decreases in population burden of TB disease that could

Figure 2. Moving average (2-month) TB notification rate of different birth cohorts born in September–March, by type of BCG
administered, Kazakhstan, 2002–2008.
doi:10.1371/journal.pone.0032567.g002

Figure 3. Survivor curve person-year analyses for reported incidence of active TB among different BCG vaccinated and non-
vaccinated birth cohorts, Kazakhstan, 2002–2008.
doi:10.1371/journal.pone.0032567.g003
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have had concomitant minor effects on the potential risk of

household exposure (and hence risk of primary infection, as

opposed to reactivated disease) for those cohorts. Third, most

cases were clinically diagnosed; this is commonly the case in

children, but pediatric clinical diagnoses are more subjective and

subject to more variation. Data for culture positive cases were

analyzed separately, but the numbers of culture-positive cases

were sparse and the CIs for prevention effectiveness for culture-

positive disease were wide. Similarly, when data for TB

meningitis cases were analyzed, the numbers of TB meningitis

cases were also sparse and the CIs for prevention effectiveness for

TB meningitis were wide. Fourth, small variations were noted in

TB notification data that could have reflected differences in

relative risk of exposure of the cohorts. Fifth, in a differential

diagnosis in the absence of laboratory confirmation, clinicians

may be influenced away from a TB diagnosis because of their

expectations of BCG effectiveness and their knowledge of a

child’s vaccination status, which would contribute to overesti-

mates of prevention effectiveness. However, clinicians were

unlikely to know which BCG a child received; thus, expectations

of BCG effectiveness would not have had an effect on the

differences in prevention effectiveness observed between the

vaccines. Sixth, because the non-vaccinated cohort was the

comparison group for each of the vaccinated cohorts, lack of

availability of data regarding any catch-up vaccination that

occurred in the non-vaccinated cohort would systematically bias

the data that were used in this analysis toward minimizing the

true prevention effectiveness of each of the vaccines in equal

measure.

Historically, demand for BCG led the Institute Pasteur to

distribute the original strain to the world before protocol standards

for culture were established [20]. Reduced efficacy has subse-

quently been reported for strains that have had greater numbers of

serial passages, and genetic differences have been noted between

strains that may explain the differences in reported prevention

effectiveness [21,22]. Indeed, in a recent randomized trial of three

different commonly used BCG vaccine strains, significant

differences were noted in the immune responses (numbers of

mycobacterium-specific polyfunctional and cytotoxic T cells, and

concentrations of Th1 cytokines) induced by the different vaccine

strains in newborns [23]; this work provides a potential

immunologic basis for the differences in prevention effectiveness

of the BCG vaccines observed in our morbidity data.

Evaluation of the effectiveness of BCG programs is important,

especially in developing countries, and identification of strains that

offer superior protection would have worldwide applicability,

especially for developing and transitional economies. Other

approaches outlined for improving existing BCG vaccination

strategies include modifying strains to express Mycobacterium

tuberculosis antigens with greater immunogenicity, and using

prime-boost strategies (supplemental to BCG administration) with

supplemental inoculation with viral vectors encoding M. tuberculosis

antigens or protein subunits [24,25]. In countries in which TB

incidence is very high, small increments BCG prevention

effectiveness could potentially prevent large numbers of TB cases

and their attendant high death rate, especially in children.

Conclusions
Three different BCG vaccine preparations were evaluated using

data gathered retrospectively and were found to be effective in

preventing TB disease. TB prevention effectiveness of BCGs varies

by manufacturer. The prevention effectiveness hierarchy of

manufacturers for clinical TB was the same whether one were

evaluating areas of high- or low-TB prevalence. Ascertaining the

relative effectiveness/efficacy of BCG vaccines from different

producers may have implications when setting national and global

policy, as use of strains that offer superior protection may be more

cost-effective.
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Table 5. Relative risk and TB prevention effectiveness of BCG vaccines in different birth cohorts in areas of low (#2.99/1,000) and
high ($4.02/1,000) reported TB incidence, Kazakhstan, 2002–2008.

Reported TB
incidence1

Cohort (BCG
product) BCG Vaccinated Non-vaccinated (Cohort A) RR{ 95% CI for RR{

PE{
(%)

# births # cases Risk per 1000* # births # cases Risk per 1000*

Low (#2.99/1000) B Russian 68,209 61 0.89 80,489 92 1.14 0.78 0.57 1.08 22

C Serbian 75,333 48 0.64 80,489 92 1.14 0.56 0.39 0.79 44

D Japanese 84,245 34 0.40 80,489 92 1.14 0.35 0.24 0.52 65

High ($4.02/1000) B Russian 26,670 74 2.77 31,711 112 3.53 0.79 0.59 1.05 21

C Serbian 29,472 65 2.21 31,711 112 3.53 0.62 0.46 0.85 38

D Japanese 33,397 35 1.05 31,711 112 3.53 0.30 0.20 0.43 70

*Risk calculated for the entire follow-up period (3 years).
{RR, relative risk; CI, confidence interval; PE, prevention effectiveness.
1High reported TB incidence - five oblasts: Atyrauskaya, Kyzylordinskaya, Mangistauskaya, West Kazakhstan, and Zhambylskaya. Low reported TB incidence - four
oblasts: Almatinskaya, East Kazakhstan, North Kazakhstan, and South Kazakhstan.
doi:10.1371/journal.pone.0032567.t005
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