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Abstract

Our large brain, long life span and high fertility are key elements of human evolutionary success and are often thought to
have evolved in interplay with tool use, carnivory and hunting. However, the specific impact of carnivory on human
evolution, life history and development remains controversial. Here we show in quantitative terms that dietary profile is a
key factor influencing time to weaning across a wide taxonomic range of mammals, including humans. In a model
encompassing a total of 67 species and genera from 12 mammalian orders, adult brain mass and two dichotomous variables
reflecting species differences regarding limb biomechanics and dietary profile, accounted for 75.5%, 10.3% and 3.4% of
variance in time to weaning, respectively, together capturing 89.2% of total variance. Crucially, carnivory predicted the time
point of early weaning in humans with remarkable precision, yielding a prediction error of less than 5% with a sample of
forty-six human natural fertility societies as reference. Hence, carnivory appears to provide both a necessary and sufficient
explanation as to why humans wean so much earlier than the great apes. While early weaning is regarded as essentially
differentiating the genus Homo from the great apes, its timing seems to be determined by the same limited set of factors in
humans as in mammals in general, despite some 90 million years of evolution. Our analysis emphasizes the high degree of
similarity of relative time scales in mammalian development and life history across 67 genera from 12 mammalian orders
and shows that the impact of carnivory on time to weaning in humans is quantifiable, and critical. Since early weaning yields
shorter interbirth intervals and higher rates of reproduction, with profound effects on population dynamics, our findings
highlight the emergence of carnivory as a process fundamentally determining human evolution.
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Introduction

The evolutionary, ecological, social, behavioral and cognitive

implications of the relatively high level of carnivory in humans

compared to other extant primates [1] have been the subject of

vigorous debates in a variety of research fields over the past fifty

years [2], [3], [4], [5], [6], [7], [8], [9], [10]. In an evolutionary

context, a ‘significant’ amount of carnivory has been suggested to

correspond to a shift from 10% to 20% of food from meat [4]. In

extant primate species, this shift corresponds to the difference

between chimpanzees, with on average around 5% of their diet

being meat [1], and tropical populations of hunter-gatherers living

in environments similar to those of the African Pliocene, with

estimated carnivorous diet of between 20% and 50% [4].

A crucial obstacle to reaching a consensus regarding the impact

of carnivory on human development, life history and evolution is

that its effects have been difficult to evaluate in quantitative terms

[4], [5]. A case in point is the relatively short duration of lactation

and suckling in humans in relation to other milestones in our life

history [8], [11], [12], [13], [14] and as compared to the great

apes [5], [15]. To date, factors that may have determined the

timing of weaning in humans are poorly understood, resulting in a

wide scatter of attempted predictions of ‘natural’ weaning age in

humans from other life history variables [8], [11], [12], [13], [14].

However, as emphasized by syntheses of large numbers of studies,

most of these predictions suggest a substantially later weaning age

than practiced by modern humans, not only in the industrial world

[16], but also in human natural fertility societies (the latter

displaying an average of ca. 27 months [5]).

The early human weaning has implications not only for

offspring development [5], but also for interbirth intervals [5],

[17], [18] and thereby for the reproductive rate of the female,

which in turn influences population dynamics and fitness of the

species [19]. According to a longstanding hypothesis, the human

weaning pattern was derived specifically from an ancestral

hominid pattern [15] and is due to the introduction of meat into

the diet of early hominins some 2.6-2.0 million years ago [4].

However, this hypothesis has not been possible to test since no

model has been available for making a quantitative prediction of
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the consequences for time to weaning if a large brained primate

species were to increase its intake of meat [4] (Text S1).

Relative time scales of early development appear to be very

similar across mammals [20], [21], [22], [23] and lactation is a

defining feature of Mammalia, common to all species of this class

[24]. We therefore suggest that a potential key to understanding

the timing of human weaning is to interpret it in a broad

phylogenetic context by using a comparative analysis that includes

not only hominids and other primates, but also species and traits

representing other mammalian orders. The importance of a broad

comparative perspective was emphasized by a recent radical

reappraisal of another fundamental milestone in early human

development – the timing of walking onset [23]. Our approach is

quantitative and focused on the ontogenetic level of analysis [25],

[26], in search for proximate causes for the timing of weaning

(Text S2).

In accordance with principles previously emphasized in the

literature [11], [27], we developed a parsimonious, straight

forward and biologically readily interpretable model. The model

was based on sixty-seven species representing a wide taxonomic

range of mammals and collected from twelve different orders

(Fig. 1; Table S1). To avoid sample bias by overrepresentation of

single lineages no more than one species was included from any

given genus. Thus the 67 species in the sample represent 67

genera. A phylogenetic analysis and an independent contrasts

analysis were performed to investigate if evolutionary dependence

between the 67 species influenced the statistical analyses. The

sample was carefully balanced for various species characteristics as

outlined in Materials and Methods (Fig. S1). In line with previous

literature, we employed adult brain mass [11], [28], [29], [30] and

adult female body mass [11], [31], [32] as fundamental continuous

independent variables that could potentially serve as predictors of

time to weaning. Adult brain mass reflects the time during which

the brain has developed during ontogenesis since mammalian

brains develop at similar rates [33]. Therefore, if interspecies

variation in weaning depends on brain mass, the duration of

suckling may be assumed to reflect primarily the developmental

time course and the needs of the offspring. If, on the other hand,

interspecies variation in weaning depends on adult female body

mass, it would primarily reflect the metabolic limitations of the

lactating female [31]. The dependent variable was expressed either

as time to weaning postnatal or post conception. Although the

former measure is more conventional [5], [11], [31], [34], the

latter appears biologically more relevant as it represents both the

total developmental time of the offspring and the total time

invested by the female.

Next, we categorized all species in our sample with respect to

differences in limb biomechanics, dividing them into two groups –

those that can assume a plantigrade standing position of the

hindlimb and those that cannot (Table S1). Although it is currently

not known exactly how limb biomechanics may influence the time

course of motor development (Text S3), this dichotomous variable

nevertheless accounts for a statistically significant amount of

variance in the timing of walking onset, causing a grade shift [35]

in the data set. In specific, species in the ‘plantigrade’ category

systematically start walking later than those in the ‘non-

plantigrade’ category [23]. Since walking onset is a fundamental

developmental milestone, we wanted to explore in this study

whether differences in limb biomechanics may also be associated

with a systematic shift of other developmental events – such as

weaning – along the ontogenetic time axis [23]. As an anatomical

feature, the plantigrade standing position has a wide phylogenetic

distribution and encompasses in the present sample all fourteen

Primates and all fourteen Rodentia, as well as five of fourteen

Figure 1. Phylogenetic relatedness and evolutionary diver-
gence times of species in the present sample. Chronogram based
on phylogenetic analysis complemented with phylogenomic data of
the species in the present sample (N = 67) (Tables S1, S2, S3; see also
Materials and Methods). The branch points indicate when in phylogeny
different species diverged from each other and a time scale in Ma
(Million years ago) is shown at the bottom.
doi:10.1371/journal.pone.0032452.g001
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Carnivora and the five single species representing Macroscelidea,

Scandentia, Erinaceomorpha, Cingulata and Tubulidentata

(Fig. 1, Table S1). All other species, including digitigrade,

unguligrade and those that have either rudimentary or lack

external hindlimbs, were here categorized as ‘non-plantigrade’.

Finally, to allow a direct evaluation of the importance of dietary

profile on the timing of weaning, we distinguished between

carnivorous, omnivorous and herbivorous species [1], [24],

defining ‘significant’ carnivory among primate species according

to Foley’s shift from 10% to 20% of food from meat [4], as

described above. All data were obtained from the literature [5],

[11], [24], [28], [36], [37], [38]. For clarity, the steps of the

exploratory analysis underlying the final model are illustrated

below.

Results

Data on time to weaning, female body mass, adult brain mass,

limb biomechanics and dietary profile from 67 species, represent-

ing 67 genera and 12 mammalian orders were included in the

analyses. The N-numbers for the different categories with respect

to limb biomechanics and dietary profile are presented in the

relevant figures. For the majority of the species, the phylogenetic

(Fig. 1) and independent contrast (Fig. S3) analyses were based on

complete mitochondrial genome data (3680 amino acid sites).

First, the two possible continuous independent variables were

compared with respect to their relationship to the timing of

weaning. Brain mass accounted for a substantially larger amount

of variance in time to weaning than did body mass (Fig. 2) and the

amount of variance accounted for was substantially larger when

time to weaning was measured post conception rather than

postnatal (Fig. S2). The partial correlation between brain mass and

time to weaning was highly significant even when body mass was

controlled for (original r(67) = .87, p,.0001, rpartial = .69, p,.0001)

and the influence of phylogenetic relatedness between the species

on the correlation between brain mass and time to weaning post

conception was minor (Materials and Methods; Fig. S3; Tables S1,

S2). Since the contribution of phylogeny to the variance in the

data was low, raw data were used throughout the subsequent

analysis below.

Second, time to weaning as a function of brain mass was

compared between the two categories of species with regard to

limb biomechanics – species that can assume a plantigrade

standing position of the hindlimb (lower extremity in humans), that

is, stand on the full length of their hind foot including tarsal and

metatarsal bones, and species that cannot. This categorization,

which is associated with a systematic difference in the relative

timing of walking onset [23], revealed a distinct grade shift in time

to weaning, by a value of approximately 0.25 along the Y-axis

(Fig. 3). Third, with the purpose to illustrate differences in time to

weaning between species with a carnivorous, omnivorous or

herbivorous diet, independently of limb biomechanics, species in

the two categories of limb biomechanics were plotted on separate

Y-axes and the two axes were shifted in relation to each other by a

value of 0.25 (Fig. 4), thus preserving the original data. Analysis

showed that carnivores systematically wean earlier than omnivores

and herbivores. As omnivores and herbivores did not differ with

regard to weaning time, they were subsequently pooled in a ‘non-

carnivore’ group.

Fourth, the time to weaning predicted for a generic carnivore

and non-carnivore with a brain mass equal to that of humans was

compared to the actual time to weaning in a global sample of 46

human natural fertility societies [5] (Fig. 5). The sample fit the

Figure 2. Brain mass is a better fundamental predictor of time
to weaning than is female body mass. The continuous indepen-
dent variables ‘female body mass’ and ‘adult brain mass’ were
evaluated as potential predictors of time to weaning. Time to weaning
(in days post conception; PC) was plotted as a function of female body
mass (Body Mass, in grams) and adult brain mass (Brain Mass, in grams),
in left and right panels, respectively. Note the log-log scales. Sample is
as in Fig. 1 and Table S1 (N = 67). Double circle: humans (this value
represents the mean value for 46 natural fertility societies; see Fig. 5 [5]).
Solid line: Model II linear regression (reduced major axis) on all species.
R2- and p-values are given in the diagrams. R2-values indicate amount
of variance accounted for by the respective model. Adult brain mass
accounted for a larger amount of variance in time to weaning,
demonstrating that this parameter is a better predictor of time to
weaning than is female body mass.
doi:10.1371/journal.pone.0032452.g002

Figure 3. Limb biomechanics is a predictor of time to weaning.
Time to weaning was plotted as a function of the continuous variable
adult brain mass, log (Brain Mass), and the grouping variable ‘limb
biomechanics’ (see main text and Materials and methods for definition;
Table S1). Filled symbols and solid regression line represent species that
can assume a plantigrade standing of the hindlimb (N = 38); open
symbols and dashed regression line represent ‘non-plantigrade’ species,
in the present sample including digitigrade and unguligrade species
and those that have either rudimentary or completely lack external
hindlimbs (N = 29). Double circle: humans. The grade shift between the
two groups was highly significant. R2- and p-values for the multiple
regression model are given in the diagram. The difference between this
R2-value and the R2-value in Fig. 2 corresponds to the additional
amount of variance accounted for by the grouping variable ‘limb
biomechanics’.
doi:10.1371/journal.pone.0032452.g003

Impact of Carnivory on Weaning in Humans
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prediction based on the species in the carnivore group with regard

to both mean value and distribution (left panel), but did not fit the

prediction based on non-carnivores (right panel), thereby lending

support to the hypothesis that carnivory may be a fundamental

determinant of the early human weaning.

The final mixed factorial model – based on analysis of variance

with covariance, ANCOVA – confirmed the highly significant

main effects of ‘brain mass’ as continuous variable (F(1, 66) =

461.29, p,.0001, partial g2 = .88), ‘limb biomechanics’

(F(1, 66) = 42.27, p,.0001, partial g2 = .41) and ‘dietary profile’

(F(1, 66) = 20.41, p,.0001, partial g2 = .25) as grouping variables,

on ‘time to weaning’. The three independent variables together

accounted for 89% of variance in ‘time to weaning’ (adjR2 = 0.89).

The model equation was:

log(Wean)~1:503z0:499 � log (BrM)

{0:261 � LBz0:231 �DP{0:083 � LB �DP

where ‘Wean’ is time to weaning in days post conception, ‘BrM’ is

brain mass in grams, ‘LB’ = 1 for species that cannot assume a

plantigrade standing position, and ‘DP’ = 1 for non-carnivorous

species. Stepwise regression analysis determined the independent

contributions of the three independent variables to 75.5%, 10.3%

and 3.4% of variance explained respectively, in a highly significant

model (F(3, 66) = 177.12, p,.0001). Remarkably, the prediction for

time to weaning in humans yielded by the model when based on

all other sixty-six species (leaving humans out), was 1162 days post

conception (ca 2 years and 5 months after birth). This is to be

compared to the mean value of the forty six-human natural

fertility societies illustrated in Fig. 5, which is 1129 days post

conception (ca 2 years and 4 months after birth; with a range of 12

to 49 months). The prediction error of time to weaning in humans

was thus less than 5%.

Discussion

The model developed here involves twelve orders of mammals

and allows for the first time a quantitative assessment of the

possible effects of dietary profile on time to weaning in humans

and sixty-six other species. As demonstrated by analysis of

independent contrasts, the phylogenetic relatedness between the

species in our sample had only minor effects on the significance of

the results. Our findings indicate that dietary profile has had a

profound evolutionary effect on weaning in mammals and that, if

carnivory is taken into consideration, time to weaning is

quantitatively predictable with remarkable precision in humans,

despite our unique developmental features such as ‘secondary

altriciality’ [35].

The remarkable precision of this prediction suggests that

carnivory per se may provide not only a necessary but also a

sufficient explanation for the difference between humans and the

great apes with respect to the timing of weaning. Factors

influencing diet quality, such as cooking [39], or behavioural

and social factors influencing food abundance, such as alloparental

or allomaternal help [40], may certainly have played important

roles for aspects of human development and evolution in general

or for human lactation practice and weaning patterns in particular

[8]. However, in view of the high degree of similarity in relative

time to weaning between humans and species that eat unprocessed

Figure 4. Dietary profile is a predictor of time to weaning. To
illustrate the importance of the grouping variable ‘dietary profile’
independently of the grouping variable ‘limb biomechanics’, the grade
shift shown in Fig. 3, of about 0.25 units along the Y-axis, has been
compensated for by a shift between the left (filled circles; species that
can assume plantigrade hindlimb position) and right (open circles; ‘non-
plantigrade’ species, which cannot assume plantigrade hindlimb
position) Y-axes. In this way, original data rather than values corrected
for residual variance can be shown for both groups. Carnivorous,
omnivorous and herbivorous species are shown red (N = 17), blue
(N = 23) and green (N = 27), respectively. Double circle: humans. Solid
lines: Model II linear regression (reduced major axis) on all species
within in each dietary category (independently of limb biomechanics)
are shown in matching colors. R2- and p-values from the multiple
regression analysis described in main text are given in the diagrams. For
full model equation see main text. The difference between this R2-value
and the R2-value in Fig. 3 corresponds to the additional amount of
variance accounted for by the grouping variable ‘dietary profile’.
doi:10.1371/journal.pone.0032452.g004

Figure 5. Time to weaning in humans is quantitatively
predictable from a carnivorous diet. Predictions of time to
weaning in humans based exclusively on species with a carnivorous
(left panel, red) or a non-carnivorous diets (right panel, blue-green)
were compared to a global sample of human natural fertility societies,
shown as open circles (N = 46). Note that human Brain Mass is equal for
all individual data points, but a scattered plot was used in order for the
reader to be able to distinguish different data points with identical time
to weaning. Solid colored lines: regression lines illustrating predicted
mean values for time to weaning in carnivorous (red) and non-
carnivorous (blue-green) species (omnivores and herbivores were
pooled; cf. Fig. 4); dashed lines: 90% prediction lines. Long black
horizontal line: mean value of time to weaning of the 46 human natural
fertility societies; short black lines: +/21SD [5]. See main text for
prediction of time to weaning in humans based on the full model.
doi:10.1371/journal.pone.0032452.g005
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meat and do not usually have helpers in parenting (Felidae,

Mustelidae, Procyonidae, Ursidae; [40], as shown in the present

analysis (cf. Table S1), it appears that neither human-specific food

processing practices nor various forms of cooperative breeding

have had a major influence on lactation duration per se in humans

as a species. On the other hand, the importance of the different

potential sources of variance in time to weaning, as outlined above,

may be reflected in the large range of lactation durations across

human societies and cultures [5], [16].

The impact of carnivory on time to weaning in humans and

mammals in general demonstrated by our model supports the

hypothesis that meat-eating even at levels below fully specialized

carnivory may have had a major evolutionary effect on

mammalian development and life history [4]. With respect to

time to weaning specifically, our findings appear to confirm, on

two accounts, the notion of a threshold effect of carnivory,

postulated to correspond to a dietary shift from 10% to 20% of

food from meat [1], [4]. First, we found no difference between

herbivores and omnivores. Second, despite the moderate meat

consumption of Homo sapiens [1], humans fit the prediction of time

to weaning based on fully specialized carnivores although humans

differ from these species with respect to gut anatomy, milk

composition and suckling behaviour and are more similar to the

great apes in these respects [2].

To relate to an ongoing debate in the field, brain mass, and by

association brain development [33], was a better predictor of time

to weaning than was body mass, suggesting that the timing of

weaning reflects the developmental needs of the offspring rather

than the metabolic limitations of the female. This is in contrast to

previous studies of life history variation in primates, which have

either indicated that brain mass and body mass serve equally well

as predictors of time to weaning [11] or emphasized the

importance of body mass [31] (Text S4; Fig. S4). On the other

hand, our findings are compatible with the notion that brain mass

accounts for a large amount of variance in mammalian life history

in general [28], [29], [30] and in walking onset in particular [23].

Since weaning is a developmental milestone that follows walking

onset and has, just like walking onset, immediate consequences for

offspring independence, it is not surprising that the timing of the

two appears to be determined by the same fundamental factors

(Fig. S5).

In addition, the increased physical distance between mother and

offspring after walking onset could potentially affect physiological

mechanisms that sustain lactation. This may hypothetically further

contribute to why species with a plantigrade standing position of

the hindlimb, associated with a later walking onset [23],

systematically wean later compared to ‘non-plantigrade’ species.

However, the functional meaning of the two categories of limb

biomechanics and the importance of walking onset as such should

be interpreted with caution in the present context. It should also be

noted that, in an analysis of walking onset across a wide range of

mammals [23], time to walking onset post conception correspond-

ed to gestation time for twelve out of the twenty-four species in the

data base, since these species start walking soon after birth. These

twelve species encompassed a few ‘plantigrade’ species and the

unguligrade species in the sample, which constitute a subset of the

‘non-plantigrade’ category. By contrast, for the other twelve of the

twenty-four species in the data base, the time from birth to walking

onset was relatively long compared to gestation time, therefore

constituting a substantial proportion (mean 39%, range 26–57%)

of the total time to walking onset post conception [23]. These

twelve species encompassed most ‘plantigrade’ species, including

humans, and a small number of digitigrade species, which

constitute a subset of the ‘non-plantigrade’ category.

In conclusion, our findings emphasize the high degree of

similarity of relative time scales in development and life history of a

wide phylogenetic range of mammals. Time to weaning appears to

be determined by a limited set of factors across mammals in

general, despite some 90 million years of evolution, and humans

are no exception. Our findings underscore, in line with previous

suggestions [35], that broad comparative models of human

development and life history may be preferable or even necessary

when evaluating the significance of features displayed by only one

or a few species. Our model indicates that carnivory has a specific

and quantifiable impact on human development and life history

and, crucially, explains why Homo weans so much earlier than the

great apes. Such an effect would have been impossible to evaluate

in a model or data synthesis restricted to hominids or primates,

which is an important reason why the ‘natural’ age of weaning in

humans suggested by our model differs from that suggested by

previous accounts [16].

The critical link between time to weaning and dietary profile

adds to the general notion that the evolution of the hominids - and

that of Homo in particular - was associated with a change towards

higher-quality diet. Specifically, it has been proposed that with a

given metabolic rate a large brain could have evolved only if

another metabolically expensive tissue, such as the gut, would be

reduced in size. But to maintain an energy intake sustaining that

metabolic rate despite a reduced gut size, food quality must have

been improved [41], for example by increased meat consumption.

Our model suggests that the contribution of carnivory in this

evolutionary context was to shorten the duration of lactation and

suckling despite the overall prolongation of development associ-

ated with increased adult brain mass [14]. The resulting decreased

interbirth intervals and increased rates of reproduction must have

affected population dynamics profoundly. Our findings highlight

therefore the emergence of carnivory as a process fundamentally

determining human life history and evolution.

Materials and Methods

To ensure a wide taxonomic range and taxonomic indepen-

dence between individual species, the sample was drawn from 37

families representing 12 mammalian orders (Table S1; [24]),

encompassing one species from any given genus, in order to avoid

a sample bias by overrepresentation of single lineages. Thus, the

67 species in the sample represent 67 genera. The effect of

phylogenetic relatedness between species on the statistical

significance of the findings was minor and is accounted for as

detailed below. The information was to a large extent taken from

three previously well-established databases. The first provided data

on brain mass [28], the second provided data on female body mass

[37] and the third provided data on gestation time and weaning

[36]. In six cases where the original database contained more than

one species per genus [28], mean values for the genus were

calculated for the continuous variables used in the analysis (Table

S1). Brain mass data for primates were obtained from a different

database, focused exclusively on this order [11].

The sample was approximately balanced with respect to (a) the

four orders representing large (.200) numbers of species:

Rodentia, Carnivora, Primates, and Artiodactyla, in addition to

a series of single representatives of orders with relatively few (,20)

species, referred to as ‘Others’ below (Table S1, Fig. S1); (b)

species that can (N = 38) and those that cannot (N = 29) assume a

plantigrade stance with their hindlimb (lower extremity in

humans), reflecting differences in limb biomechanics [24]. This

distinction accounts for a statistically significant grade shift in the

timing of walking onset [23] and may therefore also be associated

Impact of Carnivory on Weaning in Humans
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with a systematic shift of other developmental milestones along the

ontogenetic time axis; (c) carnivorous (N = 17), omnivorous

(N = 23) and herbivorous (N = 27) species [24].

There was substantial variance in body mass and brain mass

within orders and substantial overlap between orders (except

Rodentia), with a particularly close match between Carnivora and

Primates with respect to brain mass (Fig. S1). To match the brain

mass of the largest herbivore (Loxodonta africana) and to widen the

overall range of brain mass in the sample, two particularly large

brained carnivorous species (of the Cetacea) were included [38].

When tested, their exclusion from the analysis was inconsequential

for the overall results.

The phylogenetic relationships among the 67 species were

reconstructed from 3680 amino acid (aa) sites of sequence data

from 12 H-strand encoded protein coding genes of mitochondrial

(mt) genome and the cytochrome b gene sequences for a few

species (see Table S2 for details). The sequences were aligned and

the program ProtTest version 1.3 [42] suggested mtMAM+4C+I

model of sequence evolution [43], [44] for the ML analyses. Some

branches were constrained in accordance with mitogenomic and

phylogenomic analyses of 3 Mbp of sequence data [45], [46] for

avoiding an erroneous tree topology due to reconstruction

artefacts from short sequences. An un-rooted maximum likelihood

(ML) tree and branch lengths and divergence times were

reconstructed with the TreeFinder (TF) program package [47].

The tree was oriented according to phylogenomic analyses [45] for

divergence time estimates and depicting the tree. The phylogenetic

position of the beaver (Castor fiber), European Polecat (Mustela

putorius), and the long-tailed chinchilla (Chinchilla lanigera) needed to

be constrained, probably because these species were only

represented by cytochrome b data (380 aa). Divergence time

estimates were based on 11 calibration points (see Table S3), [48]

and the log-NPRS method as implemented in TF [47].

The possible dependence of the findings from the brain mass

and weaning-time parameters on evolutionary relatedness [49]

was determined by an independent contrast analysis implemented

in the Mesquite program package [50] and the PDAP:PDTREE

module [51] using the topology, branch lengths, log brain mass

and log weaning time post conception as parameters. The

independent contrast analysis did not suggest dependency of the

brain mass and weaning time characters with the animals’

evolutionary history (Fig. S3).

Supporting Information

Text S1 Predicting the effect of carnivory on time to
weaning. A clarification of why it is not obvious that carnivory

would yield earlier weaning rather than later.

(DOC)

Text S2 The functional and the evolutionary biologists’
perspective. Drawing attention to two complementary views on

causes for the timing of weaning: proximate and ultimate.

(DOC)

Text S3 The plantigrade and the non-plantigrade limb.
Presenting a hypothesis how limb biomechanics may affect the

developmental time to walking onset.

(DOC)

Text S4 Measuring developmental time as postnatal vs.
post conception in primates. A brief account of why the

importance of measuring developmental time from conception

may be obscured when analysis is restricted to primates.

(DOC)

Figure S1 Sample characteristics per mammalian or-
der. Scatter plots showing distributions of female body mass

(Body Mass), left, and adult brain mass (Brain Mass), right, in the

present sample (Table S1), broken down into different orders.

‘Others’ refers to a collection of individual species belonging to

orders with relatively small numbers of species. Horizontal lines

indicate mean values (long) and +/21SD (short). For clarity,

symbols alternate between orders.

(PDF)

Figure S2 Counting time from birth. The continuous

independent variables female body mass, log (Body Mass), in left

panel, and adult brain mass, log (Brain Mass), in right panel, as

predictors of time to weaning, log (Time to Wean), when expressed

in days postnatal (PN). g: grams. Sample as in Table S1; double

circle: humans. Solid lines: Model II linear regression (reduced

major axis) on all species (N = 67); R2- and p-values given in

diagram should be compared to those in Fig. 2, which shows the

corresponding data set, but with time to weaning expressed in days

post conception.

(PDF)

Figure S3 Effects of phylogenetic relatedness. The

influence of phylogenetic relatedness on the statistical significance

of the findings illustrated in Fig. 2 (right panel) was evaluated.

Number of contrasts: 66. Solid line: Model II linear regression

(reduced major axis). The Pearson correlation coefficient was 0.79

(F(1, 64) = 103.9, p,.0001), showing that the effects of phylogenetic

relatedness were minor.

(PDF)

Figure S4 Separate analysis of the primates in the
present sample. The continuous independent variables female

body mass, log (Body Mass), in left panel, and adult brain mass, log

(Brain Mass), in right panel, as predictors of time to weaning log

(Time to Wean) in the primates of the present sample (N = 14,

Table S1). Time to weaning expressed in days post conception

(PC) in upper diagrams (compare to Fig. 2) and as days postnatal

(PN) in lower diagrams (compare to Fig. S2). g: grams. Double

circle: humans. Solid lines: Model II linear regression (reduced

major axis) on all fourteen species; R2- and p-values given in

diagrams.

(PDF)

Figure S5 Ratio of time to walking/time to weaning.
Walking onset is determined mainly by adult brain mass [23]. If

weaning were determined by adult female body mass, the ratio

between walking onset (Walk) and time to weaning (Wean) would

vary as a function of the ratio between adult brain mass (Brain

Mass) and female body mass (Body Mass). This is, however, not

the case. Humans display one of the highest values of Brain mass/

Body mass ratio in a wide taxonomic range of ground walking

mammals [23], but have a Walk/Wean ratio that is close to the

mean for these mammals. Left panel: log (Walk/Wean) plotted as

a function of log (Brain Mass/Body Mass), (N = 23). Double circle:

humans. Solid line: Model II linear regression (reduced major axis)

on all species; R2- and p-values given in diagram. Right panel:

Aligned dot plot showing mean and +/21SD for log (Walk/

Wean) in the sample in left panel. Dotted line indicates the value

for humans to facilitate comparison between diagrams.

(PDF)

Table S1 Sample of species and data used for analysis.
BrM: Adult brain mass, grams; BoM: Adult female body mass,

grams; Gest: Gestation time, days; Wean: Time to weaning, days

postnatal; LB: Limb biomechanics; pl: can assume plantigrade

standing position of the hindlimb; n-pl: non-plantigrade – cannot
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assume plantigrade standing position of the hindlimb, including

digitigrade, unguligrade and species that have either rudimentary

or lack external hindlimbs. DP: Dietary profile; C: Carnivore; O:

Omnivore; H: Herbivore. Three species in the sample have

delayed implantation during pregnancy. For these, as for all other

species, the value in the column ‘Gest’ represents total time from

conception to birth. Of the species that can assume a plantigrade

standing position of the hindlimb, only few actually walk with

plantigrade posture. Most ‘plantigrade’ species walk and run with

digitigrade posture in which the heel does not contact, or apply

force to, the substrate. Elephants are listed ‘non-plantigrade’

because their heel is supported above the ground by a large

connective tissue pad. During walking force transmission through

this pad makes elephants mechanically plantigrade.

(DOC)

Table S2 Accession numbers and scientific names of
species included in the analysis. Order as in the tree in Fig. 1.

mt: mitochondrial genome, cyt b: cytochrome oxidase b gene

sequence.

(DOC)

Table S3 Calibration points use for the construction of
the tree in Fig. 1. *The split denotes the branch where the

species-pair shares a last common ancestor. **For the TF

algorithm one calibration points needs to be fixed. The fixed date

was taken from: Hallström BM and Janke A. (2010) Mammalian

evolution may not be strictly bifurcating. Mol Biol Evol 27:2804–

2816; see also Materials and Methods.

(DOC)
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