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Abstract

Background: Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection
methods using blood samples. Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach
because PFAAs link all organ systems and have important roles in metabolism. Furthermore, PFAA profiles are known to be
influenced by specific diseases, including cancers. Therefore, the purpose of the present study was to determine the
characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection.

Methods and Findings: Plasma samples were collected from approximately 200 patients from multiple institutes, each
diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer. Patients were
compared to gender- and age- matched controls also used in this study. The PFAA levels were measured using high-performance
liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). Univariate analysis revealed significant
differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even
those with asymptomatic early-stage disease. Furthermore, multivariate analysis clearly discriminated the cancer patients from
the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC .0.75 for each cancer), regardless
of cancer stage. Because this study was designed as case-control study, further investigations, including model construction and
validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling.

Conclusions: These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and
understanding disease pathogenesis. PFAA profiles can also be used to determine various disease diagnoses from a single
blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when
compared to existing screening methods.
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Introduction

Several minimally-invasive, easy-to-use cancer diagnostic meth-

ods using peripheral blood or urine samples have recently been

developed to ease the physical burden on patients and to reduce

the costs and time involved [1,2,3,4,5,6,7,8]. Rapid advances have

been made in cancer diagnosis and prognosis methods based on

metabolome analysis [3,9,10,11,12,13,14], which frequently

involves the use of multivariate analysis techniques, such as

computer-aided, machine-learning systems for data mining.

Although metabolome analysis is a promising approach in

screening for diseases such as cancer, some practical limitations

remain. These include the necessity to measure a huge number of

metabolites [15,16,17], data-redundancy problems, including the

false-discovery rate (FDR) and overfitting, and cost constraints.

One approach to overcoming these problems is ‘‘focused

metabolomics’’, which limits the objects of the analysis to those

that play roles in general metabolism and share physical

similarities.

Amino acids are among the most suitable candidates for focused

metabolomics as they are either ingested or synthesized endoge-

nously and play essential physiological roles both as basic

metabolites and metabolic regulators. To measure amino acids,

plasma free amino acids (PFAAs), which abundantly circulate as a

medium linking all organ systems, would be the most favorable

target because their profiles have been known to be influenced by

metabolic variations in specific organ systems induced by specific

diseases [18,19,20,21]. Additionally, plasma samples can be

collected easily from patients.

Several investigators have also reported changes in PFAA

profiles in cancer patients [22,23,24,25,26,27,28]. However,

despite evidence of a relationship between PFAA profiles and

some types of cancer, few studies have explored the use of PFAA

profiles for diagnosis because, although PFAA profiles differ

significantly between patients, the differences in individual amino

acids do not always provide sufficient discrimination abilities by

themselves [24,29,30]. To address this issue, we previously

constructed and tested a diagnostic index based on PFAA

concentrations, known as the ‘‘AminoIndex technology’’

[29,30,31,32,33], to compress multidimensional information from

PFAA profiles into single dimension and maximize the differences

between patients and controls (Figure 1). We obtained preliminary

data on the efficacy of the ‘‘AminoIndex technology’’ for the early

detection of colorectal, breast, and lung cancers in approximately

150 samples from a single medical institute [29,30].

Moreover, technologies have recently been developed to

analyze amino acids with high accuracy. For example, we

developed a method to measure PFAA profiles using high-

performance liquid chromatography (HPLC)–electrospray ioniza-

tion (ESI)–mass spectrometry (MS) [34,35,36].

The present study aimed to determine the possibility of PFAA

profiling for cancer diagnosis using a large number of samples

from multiple medical institutes. We measured the PFAA profiles

of approximately 200 cancer patients from three different institutes

each with one of the following five types of cancer: lung, gastric,

colorectal (CRC), breast, or prostate cancer. Patients were

compared to five times sizes of gender- and age-matched controls

also used in this study. We then compared the alterations in the

Figure 1. Concept of the generation of ‘‘AminoIndex technology’’. At the top of the diagram, PFAA concentrations are measured for each
subject. In the middle, target variables and univariate analysis of PFAA profiles are represented. At the bottom, an estimation of the classifier with
optimized discriminating power using multivariate analysis is presented.
doi:10.1371/journal.pone.0024143.g001
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PFAA profiles between the cancer patients and the controls using

univariate and multivariate analyses. As a result, significant

alterations in PFAA profiles were observed in cancer patients in

comparison to control subjects. We demonstrated two types of

alterations in PFAA profiles in cancer patients: some differences

reflected the metabolic changes common to many cancers, while

others were specific to each type of cancer. We also found that

both common and cancer type-specific alterations in PFAA

profiles were observed even in the patients with early stage

cancer. Furthermore, using a large number of samples allowed us

to verify the robustness of PFAA profiling for the early detection of

various cancers.

Materials and Methods

Ethics
The study was conducted in accordance with the Declaration of

Helsinki, and the protocol was approved by the ethics committees

of the Kanagawa Cancer Center, the Osaka Medical Center for

Cancer and Cardiovascular Diseases, the Okayama University

Hospital, the Yokohama City University Medical Center, the

Gunma Prefectural Cancer Center, the Shizuoka Prefectural

Cancer Center, the Chiba Prefectural Cancer Center, the

Yokohama Municipal Citizen’s Hospital, the Yokohama Minami

Kyosai Hospital, the Kanagawa Health Service Association, the

Kameda Medical Center Makuhari, and the Mitsui Memorial

Hospital. All subjects gave their written informed consent for

inclusion before they participated in the study. All data were

analyzed anonymously throughout the study.

Subjects
Data from Japanese patients with lung cancer (LC), gastric

cancer (GC), colorectal cancer (CRC), breast cancer (BC), and

prostate cancer (PC) were analyzed in this study. The patients had

been histologically diagnosed with primary cancer at various

Japanese medical institutes between 2006 and 2009. The LC

patients were recruited from the Osaka Medical Center for Cancer

and Cardiovascular Diseases, the Chiba Prefectural Cancer

Center, the Kanagawa Cancer Center, and the Gunma Prefec-

tural Cancer Center. The GC patients were recruited from the

Okayama University Hospital, the Gunma Prefectural Cancer

Center, and the Shizuoka Prefectural Cancer Center. The CRC

patients were recruited from the Kanagawa Cancer Center, the

Shizuoka Prefectural Cancer Center, and the Gunma Prefectural

Cancer Center. The BC patients were recruited from the

Yokohama City University Medical Center, the Kanagawa

Cancer Center, and the Gunma Prefectural Cancer Center. The

PC patients were recruited from the Kanagawa Cancer Center,

the Yokohama Municipal Citizen’s Hospital, the Yokohama

Minami Kyosai Hospital, and the Gunma Prefectural Cancer

Center. Control subjects with no apparent cancer were chosen

from among those undergoing comprehensive medical examina-

tions at three different Japanese medical institutes (the Center for

Multiphasic Health Testing and Services of the Mitsui Memorial

Hospital, the Kameda Medical Center Makuhari, and the

Kanagawa Health Service Association) between 2008 and 2009.

Colonic polyp patients were recruited from among those

undergoing endoscopic polypectomy at the Kameda Medical

Center Makuhari between 2006 and 2008.

For the purposes of data analysis, the patients were assigned to

five groups based on their primary cancer diagnoses (,140–200

patients per group), and five age- and gender-matched control

groups were also established (Table 1). Data sets for all of the

cancer patients and controls, as well as all cancer patients stratified

by gender, were also analyzed.

PFAA measurement
Blood samples were collected from the controls and the patients

prior to any medical treatment. Blood samples (5 ml) were

collected from forearm veins after overnight fasting in tubes

containing ethylenediaminetetraacetic acid (EDTA; Termo, To-

kyo, Japan) and were immediately placed on ice. Plasma was

prepared by centrifugation at 3,000 rpm at 4uC for 15 min and

then stored at 280uC until analysis. After the plasma collection, all

samples were stored and processed at the Institute for Innovation

of the Ajinomoto Co., Inc. (Kawasaki, Japan). To reduce any bias

Table 1. Demographic and clinical characteristics of subjects.

Data set LC GC CRC BC PC

Patients Controls Patients Controls Patients Controls Patients Controls Patients Controls

Size Total 200 996 199 985 199 995 196 976 134 666

M/F 125/75 635/371 126/73 626/359 114/85 570/425 0/196 0/976 134/0 666/0

Age Mean 65.0a 63.2 64.8a 62.9 63.7 62.4 55.3 54.5 69.4c 65.8

(SD) (10.0) (9.2) (10.8) (9.7) (9.5) (9.5) (12.6) (11.1) (6.7) (6.1)

BMI Mean 22.5 22.9 22.7 22.8 23.0 22.8 22.4 22.0 23.4 23.4

(SD) (3.8) (3.0) (3.2) (3.0) (3.7) (3.0) (3.4) (3.5) (2.7) (2.5)

Stage 0 - - 8 26 - -

I(A) 29 120 63 75 0

II(B) 16 29 48 73 95

III(C) 54 26 59 13 19

IV(D) 28 24 19 0 15

Uncharacterized 1 0 2 9 5

ap,0.05,
cp,0.001.
For LC, GC, CRC, and BC, cancer stages were determined according to the International Union Against Cancer TNM Classification of Malignant Tumors, 6th edition [38],
and for PC, cancer stages were determined according to Jewett staging system [39].
doi:10.1371/journal.pone.0024143.t001
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introduced prior to analysis, samples were analyzed in random

order. The plasma samples were deproteinized using acetonitrile

at a final concentration of 80% before measurement. The amino-

acid concentrations in the plasma were measured by HPLC–ESI–

MS, followed by precolumn derivatization. The analytical

methods used were as described previously [34,35,36].

Among the 20 genetically-encoded amino acids, glutamate

(Glu), aspartate (Asp), and cysteine (Cys) were excluded from the

analysis because they are unstable in blood. Citrulline (Cit) and

ornithine (Orn) were measured instead because they are relatively

abundant in blood and are known to play important roles in

metabolism. The following 19 amino acids and related molecules

were therefore measured and analyzed: alanine (Ala), arginine

(Arg), asparagine (Asn), Cit, glutamine (Gln), glycine (Gly),

histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys),

methionine (Met), Orn, phenylalanine (Phe), proline (Pro), serine

(Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), and valine

(Val).

Two metrics were made for each of the 19 amino acids

including the absolute concentration of each amino acid, which

directly reflected its availability and consumption, and the ratios

associated with the specific metabolic status in each organ. The

concentrations of the amino acids in the plasma were expressed in

mM, and the ratios of the amino acid concentrations were

expressed by the follow equation:

X2i,j~
Xi,jX

k

Xi,k

where X2i,j is ratio of the amino-acid concentration of the j-th

amino acid of i-th subject, and Xi,j is the plasma concentration

(mM) of the j-th amino acid of i-th subject.

Statistical analysis
Two types of metric were used for each data set for analysis

using either the amino-acid concentration or the ratio as

explanatory variables.

Mean and SD. The mean amino-acid concentrations 6

standard deviations (SDs) were calculated to determine

summarized PFAA profiles for both patients and controls.

Mann-Whitney U-test. The Mann-Whitney U-test was used

to assess significant differences of the plasma amino-acid

concentrations between the patients and the controls.

ROC analysis. Receiver-operator characteristic (ROC) curve

analyses were performed to determine the abilities of uni- and

multi-variate analyses to discriminate between patients and

controls. The patient labels were fixed as positive class labels.

Therefore, an area under the ROC curve (AUC of ROC) value of

,0.5 indicated that the amino acid level was lower in the patients

than the controls, whereas an AUC of ROC value of .0.5

indicated that it was higher. The 95% confidence interval (95%

CI) of AUC of ROC for the discrimination of patients based on

amino acid concentrations and ratios was also estimated as

described by Hanley and McNeil [37].

Two-way analysis of variance (ANOVA). The two-way

ANOVA was used to evaluate the effects of gender, age, and

smoking status as potential confounding factors. The presence of

cancer and gender were assumed to be independent factors, age

was treated as a continuous predictor rather than a categorical

predictor, and the interaction term between the presence of cancer

and smoking status was analyzed.

Two-class linear discrimination analysis (LDA). Linear

discrimination analysis (LDA) with stepwise variable selection was

performed to distinguish patients with each type of cancer from

the control subjects, in which both the maximum and the

minimum p-values for a term to be added or removed were set at

0.001.

Multi-class LDA for discrimination. LDA with stepwise

variable selection was also performed to distinguish patients with a

specific cancer from the complete data set containing all cancer

patients stratified by gender (four kinds of cancer patients in each

data set). Because the size of each group was smaller than that of

two-class LDA, the maximum p-value for a term to be added was

set at 0.05 and the minimum p-value for a term to be removed was

set at 0.10. The Mahalanobis distance was used as a metric of

classification. The accuracy was defined as the ratio of the

correctly discriminated patients to the total number of patients

with each cancer instead of AUC of ROC because ROC analysis

could be applied only for two-class discrimination.

Leave one out cross—validation (LOOCV). LOOCV was

performed to correct potential over-optimization for obtained

LDA models. Briefly, one sample was omitted from the study data

set, and the LDA model was calculated for the remaining samples

to estimate coefficients for each amino acid. The function values

for the left-out sample were calculated based on the model. This

process was repeated until every sample in the study data set had

been left out once.

Conditional logistic-regression (c-logistic) analysis. C-

logistic analysis was also performed to verify the effects of age and

gender, potential confounding factors, on the discriminatory

abilities of obtained LDA models to differentiate patients with

each type of cancer from the controls.

Subgroup analysis. To assess the effects of cancer stage,

each data set was divided into a sub-data set according to disease

stage and including corresponding controls, and analyzed using

the ROC analysis in each data set.

Software
MATLAB (The Mathworks, Natick, MA) was used for the

calculations of mean and SD, the Mann-Whitney U-test, ROC

analysis, two-way ANOVA, LDAs, and LOOCV. GraphPad

Prism (GraphPad Software, La Jolla, CA) was also used for the

ROC curve analysis. LogXact (Cytel, Cambridge, MA) was used

for the c-logistic analysis.

Results

Characteristics of subjects
Table 1 summarizes the characteristics of the subjects in this

study. The data sets comprised 200 LC patients and 996 controls,

199 GC patients and 985 controls, 199 CRC patients and 995

controls, 198 BC patients and 976 controls, and 134 PC patients

and 666 controls (Table 1). The sample size for each cancer type

was greater than those in previous reports [25] and provided

sufficient statistical power to test the robustness of the PFAA

profiles for cancer diagnosis.

There were no significant differences in body mass index (BMI)

among the data sets (Table 1). Weight loss due to malnutrition was

therefore not expected to influence the results. Although

significant differences in average age were observed among the

data sets (LC, p,0.05; GC, p,0.05; and PC, p,0.001), the effects

appeared to be relatively minor because the absolute values of

these differences were small (Table 1).

For LC, GC, CRC, and BC, disease stages were determined

according to the Sixth Edition of the International Union Against

Cancer (UICC) Tumor–Node–Metastasis (TNM) Classification of

Malignant Tumors [38]. For PC, the stage was determined
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according to the Jewett staging system [39]. For all types of cancer,

a large proportion of the patients had early-stage disease. The

fractions of patients at each stage according to type of cancer were

as follows: ,50% stage I, ,10% stage II, ,25% stage III, and

,15% stage IV for LC; ,60% stage I, ,15% stage II, ,13%

stage III, and ,12% stage IV for GC; ,35% stages 0 and I,

,25% stage II, ,30% stage IV, and ,10% stage IV for CRC;

,5% stage 0, ,25% stage I, ,25% stage II, and ,7% stage III

for BC; and ,75% stage B, ,13% stage C, and ,12% stage D for

PC (Table 1).

The patients with each type of cancer could be further

subdivided based on histological type (for LC, GC, CRC, and

BC) or Gleason score (for PC), as is summarized in Table S1. The

characteristics of 34 colonic polyp patients as well as the smoking

status of patients are also summarized in Table S1.

Shared PFAA profiles among cancers
Univariate analysis was used to compare the PFAA profiles of

the cancer patients and controls. The differences in the

significance levels of each amino acid between the patients and

the controls are shown in Figure 2A. The results of the ROC

analysis are depicted in Figure 2B because the levels of significance

depend on sample size. The concentrations and ratios of each

amino acid profile for both patients and controls are shown in

Tables S2. And the AUCs of ROC and their CIs of each amino

acid are shown in Table S3 (concentration) and Table S4 (ratio),

respectively.

Two-way ANOVA was used to evaluate the potential

confounding effects of gender, age, and smoking status. Correcting

for these factors did not greatly affect the significance levels of each

amino acid, suggesting that their effects on the PFAA profiles were

minor (Table S5).

The plasma concentrations of Gln, Trp, and His were

significantly decreased in all of the cancers except PC, and none

of the amino acids showed increased concentrations across all

types of cancer (p,0.05). The ratios of Trp and His were

significantly decreased, while those of Pro and Orn were

increased, in all cancers (p,0.05) (Figure 2).

To further examine the shared traits among cancer patients, the

PFAA profiles were compared using a pooled data set including all

cancer patients and controls. Notably, the amino acids that were

affected by this type of analysis had significant differences in both

concentration and ratio: 11 amino acids (Asn, Gln, Cit, Val, Met,

Leu, Tyr, Phe, His, Trp, and Arg) showed decreases, while four

amino acids (Ser, Pro, Gly, and Orn) exhibited increases (Figure 2).

Changes in Gln, Trp, His, Pro, and Orn were detected in the

analysis for all types of cancer. Alterations in these amino acids

might therefore reflect characteristic changes in metabolism that

are common to all cancers.

Specific PFAA profiles for each cancer
In addition to the changes that were common to all of the

cancers, we detected alterations in PFAA profiles that were specific

to each disease type (Figure 2). Overall, the concentrations of most

amino acids were decreased in GC and CRC patients, whereas no

clear trends in amino acid concentrations were observed in the

other groups (Figure 2). Furthermore, some of the amino acids

showed opposite trends in different types of cancer. For example,

the concentrations of Thr were decreased in GC and CRC

patients, but increased in BC patients (Figure 2). These variations

in the PFAA profiles might reflect specific characteristics of each

cancer, in contrast to the limited set of amino acids that are

responsible for the metabolic changes shared by all cancers.

Changes in PFAA profiles in early-stage cancers
Although alterations in the PFAA profiles of cachexic patients

with advanced cancer have been well documented, few reports

have considered early-stage patients. However, a large fraction of

the cancer patients in the current data set were in the early stages

of disease (Table 1). The differences in PFAA profiles according to

disease stage were therefore examined for each cancer (Figure 3,

Figure S1, Table S3, Table S4).

Notably, alterations in the PFAA profiles were detected in all

patients, including those in the early stages of disease, in the

current study. All amino-acid concentrations and ratios were

drastically decreased in early stage disease patients, regardless of

the subsequent progression. In particular, significant decreases of

each amino acid concentration were observed in GC and CRC

patients (Figure 3A), and changes in each ratio were notable in all

of the cancer patients (Figure 3B).

Early-stage cancer patients are generally asymptomatic. More-

over, most of the subjects in the present study did not show

significant weight loss (a symptom typical of cachectic patients)

(Table 1), anorexia, or decreases in serum albumin concentrations

(data not shown). The changes in the PFAA profiles in cancer

patients therefore appeared to be independent of any effects

caused by poor nutrition resulting from tumor progression.

Discriminating cancer patients and controls by PFAA
profiles

The results of the univariate analyses suggested that cancer

patients and controls could be discriminated using multivariate

analysis. By assuming that the presence of cancer and the

concentrations or ratios of the PFAA profiles were objective and

explanatory variables, respectively, LDA was able to distinguish

cancer patients from the corresponding controls with variable

selection. The results of variable selection are indicated in Table 2

(concentration) and Table S6 (ratio), respectively.

The discrimination abilities for each cancer patient were

evaluated using the AUC of ROC of the discriminate score and

were found to be .0.75 in all cases (Table 3 and Table S7). In

concrete analysis, AUCs for the discrimination of patients based

on the amino acid concentrations and ratios, respectively, were

also estimated as follows: 0.802 (95% CI: 0.766,0.838) and 0.802

(95% CI: 0.767,0.837) for LC; 0.849 (95% CI: 0.816,0.882) and

0.816 (95% CI: 0.780,0.852) for GC; 0.874 (95% CI:

0.842,0.906) and 0.881 (95% CI: 0.851,0.910) for CRC;

0.778 (95% CI: 0.741,0.815) and 0.778 (95% CI:

0.741,0.815) for BC; and 0.783 (95% CI: 0.740,0.826) and

0.779 (95% CI: 0.740,0.819) for PC (Table 3 and Table S7). The

discriminate analysis was therefore able to adequately distinguish

between different types of patient cancer.

Variable selection was also performed for each cancer patient.

Eight amino acids were selected in more than two of the five kinds

of cancers: Gln, Ala, Val, Ile, His, Trp, Orn, and Lys for the

concentrations (Table 2A); and Ser, Gln, Val, Met, His, Trp, Lys,

and Arg for the ratios (Table S6). Four of the amino acids (Gln,

Val, His, and Trp) among each set were selected for both

explanatory variables (Table 2 and Table S6). These amino acids

were similar to those associated with all types of cancer as

indicated by the univariate analysis (Gln, Trp, His, Pro, and Orn).

On the other hand, some amino acids incorporated into the LDA

model were not identified as significant amino acids by the univariate

analysis. For example, the Val concentration did not show a

significant alteration in the univariate analysis (Figure 2A), but it was

incorporated into the LDA model (Table 2). Because plasma

concentrations of each amino acid are metabolically connected to

each other, there might be a potential correlation that cannot be
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detected by the univariate analysis alone. Indeed, Spearman’s partial

correlation coefficient between Val and cancer (or not) was 20.127

(p,0.001), while the correlation coefficient between these two factors

was 0.035 (not significant). Therefore, this suggested that the obtained

LDA model reflected the metabolic network of PFAAs, which were

not apparent thorough univariate analysis.

Because the obtained results may have been over-optimized,

LOOCV was carried out to generate an unbiased analysis. This

produced AUCs similar to those obtained for LDA, suggesting that

there was no obvious over-optimization in the obtained LDA

models (Table 3 and Table S7).

Subgroup analyses of divided data sets according to cancer stage,

including corresponding controls, were then performed to assess the

ability of PFAA profiles to distinguish between stages of cancer for

each type of disease. In any stage of each cancer, the AUC of ROC

was found to be higher than 0.75, suggesting that the obtained LDA

models would thus be expected to be effective in detecting early as

well as advanced stage cancers (Table 3 and Table S7).

The discrimination abilities for all cancer patients were also

evaluated. The AUCs of ROC for both concentrations and ratios

were 0.796 (95% CI: 0.779,0.814) and 0.785 (95% CI:

0.767,0.803), respectively (Table 3 and Table S7). Notably, most

of the 19 amino acids were statistically selected for these

discriminations: 16 for the concentrations and 12 for the ratios.

Even using a rough classification, regardless of the type of cancer,

it was possible to discriminate between patients and controls with

high accuracy, and the overall contributions of numerous amino

acids might reflect the large-scale characteristic changes associated

with cancer metabolism.

A c-logistic analysis using matching factors (gender and age) was

performed for each data set to evaluate and correct for potential

confounding factors. Note that we used the combinations of amino

acids obtained from the LDA models as explanatory variables.

Although the c-logistic analysis was performed using all of the

significant variables identified by the univariate analysis, the amino

acids identified in the LDA were utilized to correct for potential

confounding factors more adequately (data not shown). Both the

levels of significance (Table 2 and Table S6) and the discrimina-

tion abilities (Table 3 and Table S7) were not significantly altered

by correcting for the potentially confounding factors, suggesting

that these results were independent of gender and age effects.

To evaluate patients with non-neoplastic diseases, the PFAA

profiles of colonic polyp patients were substituted into the LDA

model for CRC. Most of the colonic polyp patients (31/34, 91.2%)

were classified into the control group for the concentrations and

ratios of both models, suggesting that the obtained models could

discriminate CRC patients specifically.

Discrimination between cancer types by PFAA profiles
In addition to differentiating between patients with each type of

cancer and the controls, discrimination among patients within

each cancer group was also performed by separating all the cancer

patients into each disease subtype according to gender. This was

done because the results of the present analyses identified changes

in PFAA profiles that were common to all types of cancer as well as

those specific to individual cancers.

The accuracies of all discriminant analyses using amino acid

concentrations as explanatory variables were close to or better than

50% both in male patients (Table 4) and female patients (Table 5)

data set. The discrimination accuracy among cancer patients was

less than that between patients and controls. Six amino acids (Gly,

Cit, Val, Tyr, Trp, and Arg) were commonly selected in these

analyses, regardless of gender (data not shown). An additional six

amino acids (Gln, Met, Leu, His, Orn, and Lys) were selected in the

male patient data set, and four (Thr, Ser, Ile, and Phe) were selected

in the female patient data set (data not shown). Five of the 16 amino

acids listed above were selected in the discrimination between

patients and controls, while the remainder might have been

responsible for the characteristic features of each cancer.

The accuracies were similar between the analyses using ratios as

explanatory variables and those using concentrations both in male

patients (Table S8) and female patients (Table S9). Seven amino

acids (Gln, Cit, Val, Tyr, Trp, Lys, and Arg) were commonly

selected regardless of gender in these analyses (data not shown). An

additional four amino acids (Ala, Met, Leu, and His) were selected

in the male patient data set, and four (Thr, Ser, Ile, Orn) were

selected in the female patient data set (data not shown). Five amino

acids (Cit, Val, Tyr, Trp, and Arg) from each set were selected for

both explanatory variables, suggesting that the changes to the

respective PFAAs were specific to certain types of cancer.

LOOCV was also carried out and resulted in similar accuracies

for the discrimination analyses, suggesting that there was no

obvious over-optimization in the obtained models (Table 4,

Table 5, Table S8 and Table S9).

Discussion

The present study demonstrated the use of PFAA profiling as a

focused metabolomics approach for the early detection of patients

with any of five types of cancer. Combining novel analytical

techniques and both univariate and multivariate statistical

analyses, previously unknown aspects of amino acid metabolism

in humans have been revealed. The sample size in the present

study was considerably larger than those reported previously

[25,29,30], and provided sufficient statistical power to test the

robustness of PFAA profiling for cancer diagnosis. We also

demonstrated the possibility of detecting cancers, both specifically

and broadly, using multivariate analysis to compress the PFAA

profile data, even for patients with early stage cancer.

In the previous studies, the alterations in PFAA profiles in cancer

patients sometimes seem inconsistent[22,23,24,25,26,27,28,29,30],

and some discrepancies existed between our current study and those

reported in the literature [25]. This discrepancy may be due not

only to sample size and the varying predominance of early stage

cancers but also to some other factors such as amino acid

measurement methods. On the other hand, alterations in the PFAA

profiles in our present study were consistent with the results of our

previous studies, in which samples were collected from a single

medical institute [29,30]. Furthermore, there are also many

similarities between our results and those of previous studies. For

example, decreases in His and Gln levels, which have been observed

broadly in previous reports, and increases in Pro and Ala levels in

BC are consistent with our findings [25].

Figure 2. PFAA profiles of cancer patients. The results of the Mann-Whitney U-test (A) and receiver-operator characteristic (ROC) curve analysis
(B) are indicated. A. Colored cells indicate that the concentration or ratio is increased in cancer patients at p,0.001 (red), p,0.01 (orange), and
p,0.05 (pink), and decreased in cancer patients at p,0.001 (blue), p,0.01(sky blue), and p,0.05 (light blue), respectively. B. Axes show the AUC of
ROC for each amino acid to discriminate patients from controls. Concentrations and ratios of each cancer patient and the pooled data set are
indicated, respectively. Black bold lines indicate the point where the AUC of ROC = 0.5.
doi:10.1371/journal.pone.0024143.g002
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Cancer is expected to become the leading cause of death

worldwide within a few years. Therefore, it is crucial that methods

for the prevention, early detection, and treatment of cancers

should be implemented to reduce mortality. Various screening

methods have been established for the cancers included in our

study. However, the high specificity of these methods means that

subjects must undergo each screening examination separately,

which can be expensive and time consuming. These examinations

can also impose a physical and/or mental burden upon subjects,

which can lead to avoidance. By contrast, the method described in

the present study involves a relatively simple plasma assay and

imposes a low physical burden on subjects. This method could also

be used as versatile health assessment as other diseases in which

PFAA profiles can be altered, such as diabetes[18], hepatic

failure[19], and renal failure[21], can also be evaluated.

It should be noted that the models derived from this case-control

study could not be used directly to make further observations or

predictions, despite providing a preliminary demonstration of the

potentially high value of this method for cancer discrimination.

Further investigations, including model construction and validation

using cohorts with larger sample sizes, are in progress to clarify the

clinical utility of this approach. Moreover, the possibility of

continuous PFAA profiling as a means to determine prognosis after

surgery or chemotherapy is also being investigated.

Our investigation demonstrated two types of alterations in PFAA

profiles of cancer patients: those in a limited set of amino acids

reflecting metabolic changes common to many cancers; and those in

a larger group of amino acids representing metabolic characteristics

specific to each cancer. Alterations in PFAA profiles were observed

even in patients with early-stage cancer, most of whom had no

apparent symptoms. This strongly suggested that the alterations in

PFAA profiles identified in the current study were independent of

the effects of poor nutrition caused by tumor progression.

Many previous reports have shown that metabolism, including that

of amino acids, is notably altered in cancer cells [3,13,40] and that

changes in PFAA profiles can also occur [22,24,25,26,27,28,29,30],

especially in cachexic patients with advanced cancer [23,25]. Among

whole metabolites, amino acids have been frequently identified as

having associations with cancer in other studies [10,13,41,42,43].

The current study demonstrated that mechanisms other than

malnutrition can drive the changes in PFAA profiles.

Besides cancer-dependent malnutrition, significant decreases in

PFAA concentrations and various indicators of nutritional status

such as BMI and serum albumin levels are observed in cancer-

independent cachexia [44,45,46]. In the present study, no

apparent decreases in those indicators were observed, strongly

suggesting that alterations in PFAA were also independent of

nutritional status mediated by factors not related to cancer.

Figure 3. PFAA profiles of early- and advanced-stage cancer patients. The axes show the AUC of ROC for each amino acid for discriminating
patients from controls. A. Comparison of concentrations of cancer patients and controls. B. Comparison of ratios of cancer patients and controls. Scale
as described for Figure 2. For LC, GC, CRC, and BC, cancer stages were determined according to the International Union Against Cancer TNM
Classification of Malignant Tumors, 6th edition [38], and for PC, cancer stages were determined according to Jewett staging system [39].
doi:10.1371/journal.pone.0024143.g003

Table 2. Variables incorporated into LDA and c-logistic models using concentrations as explanatory variables.

Amino acid LC GC CRC BC PC Pooled

LDA C-logit LDA C-logit LDA C-logit LDA C-logit LDA C-logit LDA C-logit

Thr +++ +++ +++ +++

Ser +++ +++ +++ +++ +++ +++

Asn

Gln 222 222 222 222 222 222 222 222

Pro +++ +++ +++ +++

Gly +++ ++

Ala +++ +++ +++ +++ +++ +++ +++ +++

Cit 222 222 222 2 222

Val 222 2 222 22 222 222 222 222 222 222

Met 222 222

Ile +++ +++ +++ + +++ +++ +++ ++ +++ +++

Leu +++ +++ +++ ++

Tyr 222 222 222 22

Phe +++ +++ +++ +++

His 222 222 222 222 222 222 222 222

Trp 222 222 222 222 222 22 222 222 222 222 222 222

Orn +++ +++ +++ +++ +++ +++ +++ +++

Lys +++ +++ +++ +++ +++ +++ +++ +++

Arg 222 222 222 222 222 222

+, ++, +++: positive coefficients in the model.
2, 22, 222: negative coefficients in the model.
+,2: p,0.05, ++,22: p,0.01, +++,222: p,0.001.
doi:10.1371/journal.pone.0024143.t002
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Nevertheless, it remains unclear how the metabolic changes

occurring in cancer patients affect the PFAA profile of the whole

body, even in patients with early-stage tumors. To clarify the

relationship between carcinogenesis and changes in PFAA profiles,

we are further investigating the contribution of local effects caused

by cancer cell metabolism and the systemic responses of the

immune system against tumors or factors released by cancer cells.

Changes in metabolism can be detected in cancer cells even in

early-stage patients. Hirayama et al. reported no significant

correlation between the levels of cancer cell metabolites, including

several amino acids, and the tumor stage [13]. The metabolism of

Trp is of particular interest because it was identified as one of the

most important amino acids in relation to cancer progression in

our study. Overexpression of indoleamine-2,3- dioxygenase (IDO),

the first enzyme in the kynurenine Trp metabolism pathway in

humans, has been reported in cancer cells [47]. IDO is induced in

many different tumors and has been suggested to play a role in

cancer-mediated evasion of the immune system [47,48,49,50].

Arg, Orn, Cit, and Pro are known to be closely related to

immune function. For example, Qiu et al. reported an association

between the urea cycle and metabolic alterations in CRC patients

and found no correlation between the metabolite profile and

cancer progression [43]. Cancer cells also release factors that can

alter general physical conditions. For example, the transcriptional

regulatory molecule high-mobility group B1 (HMGB1) was

recently shown to regulate cancer-cell tumorigenesis, expansion,

and invasion [51,52,53].

Further elucidation of these mechanisms might allow for the

development of both static and dynamic models of carcinogenesis

through system analysis [31]. Recently, computer-aided studies

have been reported that integrate hierarchical ‘omics’ datasets for

the systemic understanding of metabolic phenotypes to reconstruct

the regulatory network from physiological data by means of system

analysis. System analysis of cancer patients based on whole body

amino acid metabolism could reveal information concerning the

nature of a disease and help to establish strategies for its

prevention, early detection, prognosis, monitoring, and treatment.

In contrast to many similar efforts to detect biomarkers of

disease as single specific molecules (DNA, microRNA, proteins,

peptides, or metabolites) in peripheral blood, our approach was to

focus on the metabolic status, which is indicative of multivariate

function, using non-specific metabolites. Therefore, we believe

that our method is superior to those used in other studies, both in

versatility and efficiency, because only one amino acid measure-

ment can be applied for detection of various disease states (i.e.,

renal failure, hepatic failure, and nutritional status).

Table 3. Discrimination performance of LDA and c-logistic models using concentrations as explanatory variables.

Model Subjects LC GC CRC BC PC Pooled

LDA All AUC 0.802 0.849 0.874 0.778 0.783 0.796

CI (0.766,0.836) (0.816,0.882) (0.842,0.906) (0.741,0.815) (0.740,0.826) (0.779,0.814)

LOOCV AUC 0.792 0.845 0.868 0.769 0.767 0.793

Stage 0 patients AUC - - 0.903 0.813

CI (0.807,1.00) (0.726,0.900)

Stage I patients AUC 0.752 0.859 0.859 0.754

CI (0.698,0.805) (0.820,0.898) (0.800,0.918) (0.692,0.817)

Stage II(B) patients AUC 0.870 0.829 0.921 0.786 0.764

CI (0.772,0.969) (0.726,0.933) (0.877,0.954) (0.727,0.847) (0.710,0.819)

Stage III(C) patients AUC 0.844 0.834 0.817 0.755 0.777

CI (0.780,0.908) (0.748,0.920) (0.743,0.892) (0.621,0.889) (0.669,0.885)

Stage IV(D) patients AUC 0.901 0.843 0.950 - 0.873

CI (0.837,0.966) (0.734,0.951) (0.895,1.00) (0.771,0.974)

C-logit All AUC 0.806 0.850 0.876 0.776 0.786 0.798

CI (0.771,0.841) (0.816,0.883) (0.845,0.907) (0.739,0.812) (0.743,0.829) (0.780,0.815)

doi:10.1371/journal.pone.0024143.t003

Table 4. Multiclass discriminant analyses of male cancer patients using concentrations as explanatory variables.

Patients with:

LC GC CRC PC

Discriminated as: LC 72(69) 19(22) 12(13) 26(26)

GC 18(19) 58(52) 16(17) 25(25)

CRC 13(14) 25(28) 71(69) 16(17)

PC 22(23) 24(24) 15(15) 67(66)

Total 125 126 114 134

Accuracy 57.6%(55.2%) 46.0%(41.3%) 62.3%(60.5%) 50.0%(49.3%)

The numbers in the blanket indicate the results of LOOCV.
doi:10.1371/journal.pone.0024143.t004
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Supporting Information

Figure S1 PFAA profiles of cancer patients stratified by
progression stage. The axes show the AUC of ROC for each

amino acid for discriminating patients from controls. A. Comparison

of concentrations of cancer patients and controls. B. Comparison of

ratios of cancer patients and controls. Scale as described for Figure 2.

For LC, GC, CRC, and BC, cancer stages were determined according

to the International Union Against Cancer TNM Classification of

Malignant Tumors, 6th edition [38], and for PC, cancer stages were

determined according to Jewett staging system [39].

(TIF)

Table S1 Detailed demographic and clinical character-
istics of subjects. a: p,0.05, c: p,0.001 *: For LC, GC, CRC,

and BC, cancer stages were determined according to the

International Union Against Cancer TNM Classification of

Malignant Tumors, 6th edition [38], and for PC, cancer stages

were determined according to Jewett staging system [39].

(XLS)

Table S2 PFAA profiles of cancer patients and controls.
(XLS)

Table S3 AUCs of ROC of each amino acid concentra-
tion for discrimination for cancer patients from con-
trols.
(XLS)

Table S4 AUCs of ROC of each amino acid ratio for
discrimination for cancer patients from controls. AUCs

were calculated using all patients and controls, and patiens and

matched controls stratified by cancer stage.

(XLS)

Table S5 Significance values for PFAA profiles for each
data set by two-way ANOVA for the effects of cancer
existence and other parameters. Column headings indicate

Mann-Whitney U-test of cancer existence (None), two-way

ANOVA for the effects of cancer existence and gender (Gender),

cancer existence and age (Age), and cancer existence and smoking

status (Smoking).

(XLS)

Table S6 Variables incorporated into LDA and c-
logistic models using ratios as explanatory variables.
+, ++, +++: positive coefficients in the model 2, 22, 222:

negative coefficients in the model +,2: p,0.05, ++,22: p,0.01,

+++,222: p,0.001.

(XLS)

Table S7 Discrimination performance of LDA and
c-logistic models using ratios as explanatory variables.

(XLS)

Table S8 Multiclass discriminant analyses of male
cancer patients using ratios as explanatory variables.
The numbers in the blanket indicate the results of LOOCV.

(XLS)

Table S9 Multiclass discriminant analyses of female
cancer patients using ratios as explanatory variables.
The numbers in the blanket indicate the results of LOOCV.

(XLS)

Acknowledgments

We thank Mr. Takashi Yamamoto and Ms. Naoko Kageyama for the

amino acid analysis, Dr. Takashi Daimon for help with the statistical

analysis, and Ms. Mariko Takasu and Ms. Tomoko Kasakura for help with

data acquisition. We also thank all members of the medical staffs of the

Osaka Medical Center for Cancer and Cardiovascular Diseases, the Chiba

Prefectural Cancer Center, the Kanagawa Cancer Center, the Okayama

University Hospital, the Shizuoka Prefectural Cancer Center, the Gunma

Prefectural Cancer Center, Yokohama City University Medical Center, the

Yokohama Municipal Citizen’s Hospital, the Yokohama Minami Kyosai

Hospital, the Center for Multiphasic Health Testing and Services of the

Mitsui Memorial Hospital, the Kameda Medical Center Makuhari, and

the Kanagawa Health Service Association for help with sample collection.

Author Contributions

Conceived and designed the experiments: YM HY MY NO. Performed the

experiments: MH AG MA TI T. Miura NS EB HK FI MM II AC FO HM

OT T. Mitsushima MY NO. Analyzed the data: YM AI KH. Contributed

reagents/materials/analysis tools: HM. Wrote the paper: YM AI KH.

References

1. Couzin J (2009) Biomarkers. Metabolite in urine may point to high-risk prostate

cancer. Science 323: 865.

2. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, et al. (2008) Detection of micro-

RNA expression in human peripheral blood microvesicles. PLoS One 3: e3694.

3. Kim Y, Koo I, Jung BH, Chung BC, Lee D (2010) Multivariate classification of urine

metabolome profiles for breast cancer diagnosis. BMC Bioinformatics 11 Suppl 2: S4.

4. Nevedomskaya E, Ramautar R, Derks R, Westbroek I, Zondag G, et al. (2010)

CE-MS for metabolic profiling of volume-limited urine samples: application to

accelerated aging TTD mice. J Proteome Res 9: 4869–4874.

5. Pasikanti KK, Esuvaranathan K, Ho PC, Mahendran R, Kamaraj R, et al.

(2010) Noninvasive urinary metabonomic diagnosis of human bladder cancer.

J Proteome Res 9: 2988–2995.

Table 5. Multiclass discriminant analyses of female cancer patients using concentrations as explanatory variables.

Patients with:

LC GC CRC BC

Discriminated as: LC 41(37) 4(6) 8(11) 43(44)

GC 13(14) 40(38) 15(16) 30(30)

CRC 6(8) 13(13) 52(47) 17(17)

BC 15(16) 16(16) 10(11) 106(105)

Total 75 73 85 196

Accuracy 54.7%(49.3%) 54.8%(52.1%) 61.2%(55.2%) 54.1(53.6%)

The numbers in the blanket indicate the results of LOOCV.
doi:10.1371/journal.pone.0024143.t005

Plasma Amino Acid Profiles of Cancer Patients

PLoS ONE | www.plosone.org 11 September 2011 | Volume 6 | Issue 9 | e24143



6. Tiziani S, Lopes V, Gunther UL (2009) Early stage diagnosis of oral cancer

using 1H NMR-based metabolomics. Neoplasia 11: 269–276, 264p following
269.

7. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H (2011) Screening for

circulating nucleic acids and caspase activity in the peripheral blood as potential
diagnostic tools in lung cancer. Mol Oncol 5: 281–291.

8. Roth C, Rack B, Muller V, Janni W, Pantel K, et al. (2010) Circulating
microRNAs as blood-based markers for patients with primary and metastatic

breast cancer. Breast Cancer Res 12: R90.

9. Abate-Shen C, Shen MM (2009) Diagnostics: The prostate-cancer metabolome.
Nature 457: 799–800.

10. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GA, Owusu-Sarfo K, et al.
(2010) Early detection of recurrent breast cancer using metabolite profiling.

Cancer Res 70: 8309–8318.
11. Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IK, et al. (2010) Opening up the

‘‘Black Box’’: metabolic phenotyping and metabolome-wide association studies

in epidemiology. J Clin Epidemiol 63: 970–979.
12. Chadeau-Hyam M, Ebbels TM, Brown IJ, Chan Q, Stamler J, et al. (2010)

Metabolic profiling and the metabolome-wide association study: significance
level for biomarker identification. J Proteome Res 9: 4620–4627.

13. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, et al. (2009)

Quantitative metabolome profiling of colon and stomach cancer microenviron-
ment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res

69: 4918–4925.
14. Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, et al. (2010) Urine

metabolite analysis offers potential early diagnosis of ovarian and breast cancers.
Clin Cancer Res 16: 5835–5841.

15. Blaise BJ, Shintu L, Elena B, Emsley L, Dumas ME, et al. (2009) Statistical

recoupling prior to significance testing in nuclear magnetic resonance based
metabonomics. Anal Chem 81: 6242–6251.

16. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, et al. (2006) Mass
spectrometry-based metabolic profiling reveals different metabolite patterns in

invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 66:

10795–10804.
17. Rubtsov DV, Waterman C, Currie RA, Waterfield C, Salazar JD, et al. (2010)

Application of a Bayesian deconvolution approach for high-resolution (1)H
NMR spectra to assessing the metabolic effects of acute phenobarbital exposure

in liver tissue. Anal Chem 82: 4479–4485.
18. Felig P, Marliss E, Ohman JL, Cahill CF, Jr. (1970) Plasma amino acid levels in

diabetic ketoacidosis. Diabetes 19: 727–728.

19. Fischer JE, Rosen HM, Ebeid AM, James JH, Keane JM, et al. (1976) The effect
of normalization of plasma amino acids on hepatic encephalopathy in man.

Surgery 80: 77–91.
20. Holm E, Sedlaczek O, Grips E (1999) Amino acid metabolism in liver disease.

Curr Opin Clin Nutr Metab Care 2: 47–53.

21. Hong SY, Yang DH, Chang SK (1998) The relationship between plasma
homocysteine and amino acid concentrations in patients with end-stage renal

disease. J Ren Nutr 8: 34–39.
22. Cascino A, Muscaritoli M, Cangiano C, Conversano L, Laviano A, et al. (1995)

Plasma amino acid imbalance in patients with lung and breast cancer.
Anticancer Res 15: 507–510.

23. Heber D, Byerly LO, Chlebowski RT (1985) Metabolic abnormalities in the

cancer patient. Cancer 55: 225–229.
24. Kubota A, Meguid MM, Hitch DC (1992) Amino acid profiles correlate

diagnostically with organ site in three kinds of malignant tumors. Cancer 69:
2343–2348.

25. Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ (2005) Plasma free amino acid

profile in cancer patients. Semin Cancer Biol 15: 267–276.
26. Norton JA, Gorschboth CM, Wesley RA, Burt ME, Brennan MF (1985) Fasting

plasma amino acid levels in cancer patients. Cancer 56: 1181–1186.
27. Proenza AM, Oliver J, Palou A, Roca P (2003) Breast and lung cancer are

associated with a decrease in blood cell amino acid content. J Nutr Biochem 14:

133–138.
28. Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF, et al.

(2005) Plasma arginine concentrations are reduced in cancer patients: evidence
for arginine deficiency? Am J Clin Nutr 81: 1142–1146.

29. Maeda J, Higashiyama M, Imaizumi A, Nakayama T, Yamamoto H, et al.
(2010) Possibility of multivariate function composed of plasma amino acid

profiles as a novel screening index for non-small cell lung cancer: a case control

study. BMC Cancer 10: 690.

30. Okamoto N, Miyagi Y, Chiba A, Akaike M, Shiozawa M, et al. (2009)

Diagnostic modeling with differences in plasma amino acid profiles between
non-cachectic colorectal/breast cancer patients and healthy individuals.

Int J Med Med Sci 1: 1–8.

31. Kimura T, Noguchi Y, Shikata N, Takahashi M (2009) Plasma amino acid
analysis for diagnosis and amino acid-based metabolic networks. Curr Opin Clin

Nutr Metab Care 12: 49–53.
32. Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, et al. (2006)

Network analysis of plasma and tissue amino acids and the generation of an

amino index for potential diagnostic use. Am J Clin Nutr 83: 513S–519S.
33. Zhang Q, Takahashi M, Noguchi Y, Sugimoto T, Kimura T, et al. (2006)

Plasma amino acid profiles applied for diagnosis of advanced liver fibrosis in
patients with chronic hepatitis C infection. Hepatol Res 34: 170–177.

34. Shimbo K, Kubo S, Harada Y, Oonuki T, Yokokura T, et al. (2009) Automated
precolumn derivatization system for analyzing physiological amino acids by

liquid chromatography/mass spectrometry. Biomed Chromatogr 24: 683–691.

35. Shimbo K, Oonuki T, Yahashi A, Hirayama K, Miyano H (2009) Precolumn
derivatization reagents for high-speed analysis of amines and amino acids in

biological fluid using liquid chromatography/electrospray ionization tandem
mass spectrometry. Rapid Commun Mass Spectrom 23: 1483–1492.

36. Shimbo K, Yahashi A, Hirayama K, Nakazawa M, Miyano H (2009)

Multifunctional and highly sensitive precolumn reagents for amino acids in
liquid chromatography/tandem mass spectrometry. Anal Chem 81: 5172–5179.

37. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143: 29–36.

38. Sobin L, Wittekind C, eds. TNM Classification of Malignant Tumours, Sixth
Edition. New York: Wiley-Liss.

39. Jewett HJ (1975) The present status of radical prostatectomy for stages A and B

prostatic cancer. Urol Clin North Am 2: 105–124.
40. Borgan E, Sitter B, Lingjaerde OC, Johnsen H, Lundgren S, et al. (2010)

Merging transcriptomics and metabolomics - advances in breast cancer profiling.
BMC Cancer 10: 628.

41. Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, et al. (2010)

Metabolic profiling of human lung cancer tissue by 1H high resolution magic
angle spinning (HRMAS) NMR spectroscopy. J Proteome Res 9: 319–332.

42. Urayama S, Zou W, Brooks K, Tolstikov V (2010) Comprehensive mass
spectrometry based metabolic profiling of blood plasma reveals potent

discriminatory classifiers of pancreatic cancer. Rapid Commun Mass Spectrom
24: 613–620.

43. Qiu Y, Cai G, Su M, Chen T, Zheng X, et al. (2009) Serum metabolite profiling

of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.
J Proteome Res 8: 4844–4850.

44. Bossola M, Tazza L, Luciani G (2009) Mechanisms and treatment of anorexia in
end-stage renal disease patients on hemodialysis. J Ren Nutr 19: 2–9.

45. Morrison WL, Gibson JN, Rennie MJ (1988) Skeletal muscle and whole body

protein turnover in cardiac cachexia: influence of branched-chain amino acid
administration. Eur J Clin Invest 18: 648–654.

46. Polge A, Bancel E, Bellet H, Strubel D, Poirey S, et al. (1997) Plasma amino acid
concentrations in elderly patients with protein energy malnutrition. Age Ageing

26: 457–462.
47. Lob S, Konigsrainer A, Zieker D, Brucher BL, Rammensee HG, et al. (2009)

IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl

tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 58:
153–157.

48. Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P (2009) Inhibitors
of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the

trees? Nat Rev Cancer 9: 445–452.

49. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC
(2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target

of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med
11: 312–319.

50. Zamanakou M, Germenis AE, Karanikas V (2007) Tumor immune escape

mediated by indoleamine 2,3-dioxygenase. Immunol Lett 111: 69–75.
51. Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, et al. (2009) Serum high

mobility group box-1 (HMGB1) is closely associated with the clinical and
pathologic features of gastric cancer. J Transl Med 7: 38.

52. Lotze MT, DeMarco RA (2003) Dealing with death: HMGB1 as a novel target
for cancer therapy. Curr Opin Investig Drugs 4: 1405–1409.

53. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and

RAGE in inflammation and cancer. Annu Rev Immunol 28: 367–388.

Plasma Amino Acid Profiles of Cancer Patients

PLoS ONE | www.plosone.org 12 September 2011 | Volume 6 | Issue 9 | e24143


