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Abstract

Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information.
Using this tool in the evaluation of competing claims often requires comparing different models’ relative performance in
predicting eye movements. However, studies use a wide variety of performance measures with markedly different
properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for
a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable
properties. However the area under the ROC curve (a classification measure) and the KL-divergence (a distance measure of
probability distributions) combine many desirable properties and allow a meaningful comparison of critical model
performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and
demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context
of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-
independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible
to give a reference frame to judge the predictive power of a model of fixation selection . We provide open-source python
code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for
models that predict averages of subject populations. Departing from this we show that incorporating subject-specific
viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the
required information that allow a well-founded judgment of the quality of any model of fixation selection and should
therefore be reported when a new model is introduced.
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Introduction

A magnificent skill of our brain is its ability to automatically direct

our senses towards relevant parts of our environment. In humans,

the visual capacity has by a large margin the highest bandwidth,

making directing our eyes towards salient events the most important

method of selecting information. We sample the visual input by

making targeted movements (saccades) to specific locations in the

visual field, resting our gaze on these locations for a few hundred

milliseconds (fixations). Controlling the sequence of saccades and

fixation locations thereby determines what parts of our visual

environment reach our visual cortex, and contingently conscious

awareness. Understanding this process of information selection via

eye movements is a key part of understanding our mental life.

A common approach to investigate this process has been to use

computational models that predict eye movements to gain insights

on how the brain solves the problem of determining where in a

scene to fixate [1–7]. The similarity of empirical eye-tracking data

and model predictions is then used as an indication of how well the

model captures essential properties of the fixation selection process.

For this chain of reasoning, i.e. for drawing inferences about the

workings of the brain, it is highly relevant how the quality of a model

of fixation selection is measured. Furthermore, if different models

are to be compared and judged, there needs to be an agreed upon

metric to make this comparison possible. Of equal importance for

model comparisons is the data set that is being used as ground truth.

Different data sets might be more or less difficult to predict, which

confounds a potential model comparison across different studies. In

this article, we investigate metrics for evaluating models of fixation

selection, and methods to quantify how well models of fixation

selection can score on a specific data set. This leads to a framework

for evaluating and comparing models.

Before we can discuss how measures and data set influence the

evaluation, we have to be clear about what models of fixation

selection actually predict. Even though the ultimate goal of the

model may be to predict fixation locations, the actual mechanism of

fixation selection is usually not addressed in detail. Instead the focus

is on computing a topographic representation of how strongly

different parts of the image will attract fixations. Classically, each

region in an image is assigned a so-called salience value based on

low-level image properties (e.g. luminance, contrast, color) [1–7].

The topographic representation of the salience values for all image

regions is known as the salience map. Some models furthermore

incorporate image-independent components, like the fact that

observers tend to make more fixations in the center of a screen

than in the periphery regardless of the presented image, known as a
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spatial (or central) bias [7–10]. Other forms of higher level

information that have been used in models of fixation selection are

task-dependent viewing strategies, information about face-locations

and search-target similiarity [11–14]. However, even in those models

the important output is a map of fixation probabilities. Thus, in

accordance with the focus on this approach in the modeling

literature, we restrict our analysis to the evaluation of models that

generate a salience map. Since the empirical data that these salience

maps have to be evaluated against are not maps themselves, but

come in the form of discrete observations of fixation locations, it is

not obvious a priori how to judge the quality of such a model.

In the first part of this article, we therefore review different

commonly used evaluation measures. We define properties that are

desirable for evaluation measures and provide evidence that many

commonly used measures lack at least some of these properties.

Because no single measure has all of the desirable properties, we

argue that reporting both the Area Under the receiver-operating-

characteristic Curve (AUC) for discriminating fixated from non-

fixated locations, and the Kullback-Leibler divergence (KL diver-

gence) between predicted fixation probability densities and measured

fixation probability densities, gives the most complete picture of a

model’s capabilities and facilitates comparison of different models.

In the second part of this work, we turn to properties of fixation

distributions and examine what impact they have on model

evaluation and comparison. Our aim is to formalize the notion of

how difficult a data set is to predict, which will facilitate comparisons

between models that are evaluated on different datasets . We use the

image- and subject-independent distribution of fixation locations

(spatial bias) to establish a lower bound for the performance of

attention models that predict fixation locations. The predictive

power of every useful model should surpass this bound, because it

quantifies how large evaluation scores can become without

knowledge of the image or subject to be predicted . Complementary

to this, we use the consistency of selected fixation locations across

different subjects (inter-subject consistency) as an upper bound for

model performance, following [3,12,13,15–17]. The reliability of

these bounds depends on how well they can be estimated from the

data being modeled. We therefore provide a detailed investigation

of the spatial bias as well as inter-subject consistency, and their

dependence on the size of the available data set. This establishes a

reference frame that allows judging whether improvements in

model performance are informative of the underlying mechanism

and facilitates model comparison.

Finally, we examine the conditions under which the proposed

upper bound holds by turning to a top-down factor that has so far

been neglected in the literature. We show that incorporating

subject idiosyncrasies improves the prediction quality over the

upper bound set by inter-subject consistency. This should be

interpreted as a note of caution when using our proposed bounds,

but does not call into question their validity in the more general

and typical case of modeling the viewing behavior of a

heterogeneous group of subjects.

Results

Measures of model performance
In this section, we review commonly used measures for the

evaluation of models of fixation selection. Our aim is to

investigate, on a theoretical basis, what the advantages and

disadvantages of different measures are and to identify the most

appropriate measure for model evaluation. To reach this aim, we

choose a four step approach. First, we establish a list of desirable

properties for evaluation measures. Second, we identify commonly

used measures in the literature and describe how they compare

model predictions to eye-movement data. Third, we assess how the

measures fare with regard to the desirable properties. Justified by

this, we recommend the use of the AUC. Finally, we elucidate the

effect of pooling over subjects and conclude that in some

circumstances, KL-divergence is a more appropriate measure.

Desirable Properties for evaluation measures. Eva-

luation scores of a model of fixation selection will at some point

be used to compare it to other models. Such comparisons are not

only difficult because different data sets are being used, but also

because the interpretation of evaluation measures can be difficult.

Informed by our own modeling work and by teaching experience,

where several points repeatedly obstructed the comparison of

different models, we define two properties that help to interpret

evaluation scores:

N Few parameters: The value of an evaluation measure ideally

does not depend on arbitrary parameters, as this can make the

comparison of models difficult. If parameters are needed,

meaningful default values or a way of determining the

parameters are desirable.

N Intuitive scale: A good measure should have a scale that allows

intuitive judgment of the quality of the prediction. Specifically,

a deviation from optimal performance should be recognizable

without reference to an external gold standard.

Models of fixation selection are usually evaluated against eye-

tracking data, which is typically very sparse in relation to the size

of the image that is being viewed. It is therefore desirable for an

evaluation measure to give robust estimates based on low amounts

of data:

N Low data demand: During a typical experiment, subjects can

usually make only a relatively small number of saccades on a

stimulus. Thus, an ideal measure should allow for a reliable

estimate of the quality of a prediction from very few data

points.

N Robustness: A measure should not be dominated by single

extreme or unlikely values. Consider, for example, that the

prediction of a fixation probability distribution consists of

potentially several million data points. The result of the

prediction of a single data point should not have a large impact

on the overall evaluation. A measure should also be able to

deal with the kinds of distributions typically occurring in eye-

tracking data. A fixation density map (see sec:mam: sec:fdm) is

usually not normally distributed but, due to its sparseness,

dominated by the presence of many very unlikely events.

The properties presented here aim at ensuring that an

evaluation measure is suitable to deal with eye-tracking data and

to ensure that an evaluation score can be meaningfully interpreted.

The list is not necessarily exhaustive, but we argue that any

exhaustive list would have to contain these properties.

Existing measures. To identify commonly used measures,

we sought articles that present or compare salience models which

operate on static images of natural scenes. We used the Google

Scholar bibliographic database (scholar.google.com) to search for

articles that were published after the year 2000 and contain the

words ‘‘eye’’, ‘‘movement’’, ‘‘model’’, ‘‘salience’’, ‘‘comparison’’,

‘‘fixation’’, ‘‘predicting’’ and ‘‘natural’’ somewhere in the text.

This list of key-words was selected because omitting any one of

them disproportionately increases the number of results unrelated

to models of human eye movements. The search was performed

on June 28, 2011. We manually checked the first 200 articles for

evaluations of salience models on static natural scenes. In the

Measures and Limits of Fixation Selection Models
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resulting 25 articles [1–8,10–27] eight different measures are used

to compare eye-tracking data to predictions of fixation locations.

We sort the seven different measures into three groups, based on

the comparison they perform. The three measures in the first group ,

chance-adjusted salience, normalized scan-path salience and the

ratio of medians, compare the central tendency of predicted salience

values at fixated locations with salience values at non-fixated

locations. The second group, comprising 80th percentile, AUC and

the naı̈ve Bayes classifier, treats the salience map as the basis for a

binary classification of locations as either fixated or non-fixated and

evaluates the classification performance. The third group includes

the KL-divergence and the Pearson product moment correlation

coefficient. For these measures, the model output is interpreted as a

fixation probability density, and the difference between this and a

density estimated from actual fixation data is computed.

N Chance-adjusted salience (Sa) [5] is the difference between the

mean salience value of fixated locations on an image and the

mean salience value of the viewed image. Thereby, if values

are larger than 0, salience values at fixated locations are above

average.

N Normalized scan-path salience (NSS) [6] is the mean of the salience

values at fixation locations on a salience map with zero mean

and unit standard deviation.

N The ratio of medians [27] compares the salience values at fixated

locations to the salience at random control points. The salience

value of a location is determined by finding the maximum of

the salience map in a circular area of radius 5.6 degree around

that location. The median salience at fixated locations and the

median salience of a set of random control points on the same

image are computed for each image. The ratio of both

medians is used as evaluation measure.

N The 80th percentile measure [14] reports the fraction of fixations

that fall into the image area that is covered by the top 20% of

salience values. It therefore reports the true positive rate of a

classifier that uses the 80th percentile of the salience

distribution as a threshold. The selected area covers, by

definition, 20% of the image, which is therefore the expected

value for a random prediction.

N The area under the receiver-operating-characteristics curve (AUC) [10]

describes the quality of a classification process. Here, the

classification is based on the salience values at fixated and non-

fixated image locations. All locations with a salience value

above a threshold are classified as fixated. The AUC is the area

under the curve that plots the true positive rate against the

false alarm rate for all possible thresholds (the receiver

operating characteristic). As the threshold is continuously

lowered from infinity the number of hits and false alarms are

both increasing. When the salience map is useful, the hits will

increase faster than the false alarms. With still lowering

threshold the latter will catch up and the fraction of hits and

false alarms both reach 1 (100%). The AUC gives an estimate

of this trade-off. An area of 1 indicates perfect classification,

100% hits with no false alarms. An area of 0.5 is chance

performance. See [28] for an introduction to ROC analysis.

N The percent correct of a naı̈ve Bayes classifier [8] that distinguishes

between salience values at fixated and non-fixated locations

can be used as a model evaluation measure. The classifier is

trained by estimating the probability distributions P(SjF) and

P(SjF ) , where S refers to the salience value of a point and F

signals if the point was fixated or not, on a subset of the data.

Unseen data points are classified as fixated based on their

salience if P(F jS)wP(F jS). The percent correct score is

computed in a cross-validation scheme such that all data points

are classified as part of the test set once.

N The Kullback-Leibler divergence (DKL) [2,29] is a measure of the

difference between two probability distributions. In the

discrete case it is given by:

DKL(PjjQ)~
X

i

P(i)log
P(i)

Q(i)

� �

In the case of salience map evaluations, P denotes the true fixation

probability distribution and Q refers to the model’s salience map

that is a 2D probability density function. For every image location

the true fixation probability is divided by the model fixation

probability and the logarithm of this ratio is weighted with the true

fixation probability of the location. Therefore, locations that have a

high fixation probability are emphasized in the DKL values. The

DKL is a non-symmetric measure (DKL(PjjQ)~DKL(QjjP) does

not hold for all P and Q). This is irrelevant for model evaluation,

but becomes relevant when it is not clear what the true probability

is, e.g. for evaluating inter-subject variability. In this case, a

symmetric extension of DKL can be obtained by DKL

(PjjQ)zDKL(QjjP).

N The Pearson product-moment correlation coefficient (correlation) [13,25]

is a measure of the linear dependence between two variables.

The correlation coefficient between two samples is given by:

r~

Pn
i~1 (Xi{ �XX )(Yi{ �YY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 (Xi{ �XX )2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 (Yi{ �YY )2
q

where X and Y are the two variables, and �XX and �YY are the

sample means. Evaluating models of fixation prediction with this

measure requires a little conceptional gymnastics. If the values in

a prediction map are interpreted as observations of variable X ,

and the values in the empirical fixation probability distribution at

the same pixel locations are interpreted as observations of

variable Y with the same index, the correlation coefficient

between prediction and ground truth can easily be computed.

The Pearson product moment correlation coefficient is bounded

between {1 for predictions that are the inverse of the ground

truth (ground truth multiplied with a negative number, plus or

minus any number), and 1 for perfect predictions. A value of 0
indicates that there is no linear relation between the prediction

and the empirical fixation density.

Evaluation of measures with respect to the described

properties. Having proposed a list of desirable properties and

introduced a number of different measures, we can now examine

how these measures cope with the requirements and what aspect of

the prediction they evaluate. For an overview, please see Table 1.

N Few parameters: There are three measures that do not have

parameters: Sa, NSS and AUC. The ratio of medians is

dependent on the radius that is used for selecting a salience

value for a fixation. Although there may be reasons for

choosing one value over another, this parameter is essentially

arbitrary. The percentile chosen for the 80th percentile

measure is completely arbitrary; it might as well be the 82nd

percentile. For the naı̈ve Bayes classifier , the correlation and

the KL-divergence, it is necessary to estimate probability

distributions, which in the simplest case depends on the

binning used. The naı̈ve Bayes classifier furthermore requires

the specification of the number of cross-validation runs.

Measures and Limits of Fixation Selection Models
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N Intuitive scale: Sa does not have an intuitive scale since the mean

and range of a salience map are arbitrary and both influence

the scale. The ratio of medians method is also not intuitive as it

is not obvious how the resulting scores are to be interpreted.

What does it mean that salience at fixated locations is 1.3 times

higher than at random locations? What would it mean if it

were 1.4 times higher instead? The interpretation of KL-

divergence scores is also difficult for similar reasons. NSS has a

rather intuitive scale because it uses the standard deviation of

the salience map as its unit. All three classifying measures (80th

percentile, AUC, naı̈ve-Bayes) are bounded, which should

make their score easy to interpret by comparing the model

score to the theoretical maximum. However, when using eye-

tracking data, the categorization of points into the classes

‘fixated’ and ‘non-fixated’ is non-trivial. Strictly speaking, there

are no non-fixated points: If we just record data long enough,

there is no principle reason why a specific point on the screen

cannot be fixated. Thus, any method for selecting non-fixated

and fixated points will produce overlapping sets, which cannot

be perfectly separated. In turn, no classifier can reach its

theoretical maximum score in this task. In sec:mam:

sec:theoretical_auc we show how to approximate the actual

theoretical maximum score of the AUC, given a set of

fixations. Despite these considerations, the meaning of

classification performance (80th percentile, naı̈ve Bayes) is

straightforward. The meaning of the AUC is not as intuitive

but also allows to quickly assess the quality of a model. The

interpretation of correlation scores is rather intuitive: scores

are bounded from both sides and can be interpreted as the

linear dependence between prediction and ground truth.

However, interpretation of a specific correlation value

becomes less trivial if the actual dependence structure is not

linear. In that case, which is typical for fixation data, the

measure can be misleading when interpreted as if the condition

of linearity was fulfilled.

N Low data demand: The three methods that require probability

density functions, KL-divergence , correlation and naı̈ve Bayes

classifier, require a lot of data to form accurate estimates of the

necessary probability distributions. In contrast, all other

methods use only the fixated locations as positive instances

and can in principle be computed on very few data points.

N Robustness: Sa uses the mean to summarize information about

salience values at fixation locations. Since the mean is not

robust against outliers, neither is Sa. NSS also uses the mean,

but first normalizes the salience map to zero mean and unit

standard deviation. Thus, extreme outliers will have a weaker

effect than for Sa, but still influence the result. The ratio of

medians uses the median as a descriptive statistic of salience at

fixated and control points. This ensures that extreme outliers

have no negative effect. The naı̈ve Bayes classifier is not by

definition robust against outliers, as its robustness depends very

much on how the necessary probability distributions are

estimated. If simple bin counting is used it is not robust against

outliers. Similar arguments hold for the KL-divergence and

the correlation , where the true fixation probability distribution

has to be estimated from the data.

In summary, our evaluation shows that there are large

differences in the suitability of the different measures when it

comes to evaluating models of fixation selection . Sa, NSS and the

ratio of medians are not intuitive to interpret and/or not robust.

From the three classification measures, the AUC appears to be

most favorable. It improves on the 80th percentile measure by

removing the arbitrary parameter and by including false alarms

into the analysis. The naı̈ve Bayes approach needs more data than

is often available and the estimation of probability density maps is

non-trivial. Correlation and KL-divergence need much data and

require the estimation of density functions. Additionally, KL-

divergence is not easy to interpret, but has a sound theoretical

basis when the comparison of probability densities is concerned .

The AUC stands out on the properties we have outlined. Based on

our defined requirements, the AUC seems to be the best choice for

evaluating models of fixation selection.

The effect of pooling over subjects. The selection of an

appropriate measure is only one aspect of the evaluation process.

Additionally, properties of the data against which the model is

evaluated are of importance. Usually, when devising models of

fixation selection , we are interested in the combined viewing

behavior of several subjects, i.e. fixation data is pooled across

subjects. The model should preferably predict those locations that

are fixated by many subjects, because these fixations are most

likely caused by salience or other factors that are stable across

subjects, and not causes of fixations that are irrelevant to

understanding information selection mechanisms. As a

consequence of this, models that are trained to predict the joint-

subject viewing behavior should perform better in predicting

fixations from a set of subjects than in predicting the individual

subjects from that set. This important property of model quality is

not captured by the AUC and NSS. Figure 1 shows an example,

where the quality of prediction as measured by AUC or NNS for

the combined smooth fixation density map is just as good as the

average quality of prediction of the individual subjects. That this is

a general property of the NSS measure is easy to see: it takes the

mean salience values at fixated locations, and for the mean it does

not make a difference whether we take it for subsets individually

and then average over the resulting value, or take the mean of the

complete set directly. The linearity of AUC under decomposition

of positive observations into subsets is less obvious, but proven in

Materials and Methods: Proof of AUC linearity. In contrast, KL-

divergence and correlation yield better values for predicting the

Table 1. Summary of described evaluation measures.

Sa NSS Mfix=Mr 80th AUC naı̈ve Bayes KL correlation

Intuitive Scale 2 0 2 + + + 2 0

Few Parameters + + 2 2 + 2 2 2

Robustness 2 2 + + + 2 2 2

Low data demand + + + + + 2 2 2

The table shows a summary of the evaluation measures and their performance with regard to the desirable properties described above. ‘+’ indicates that the measure
exhibits the property, while ‘0’ and ‘2‘ indicate that the measure is neutral w.r.t. to the property or does not exhibit it.
doi:10.1371/journal.pone.0024038.t001
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joint viewing behavior, because they operate on fixation density

map estimates, which take the spatial relation between fixations

into account, and they are thus able to give non-linearly more

weight to those locations that have been looked at by many

subjects (see Figure 1). This non-linear weighting can be a good

reason to consider the KL-divergence or correlation for model

evaluation, despite their computational difficulties mentioned

above. Deciding which of the two measures to use when one

wants to exploit the effect of pooling over subjects is a difficult

questions. Both measures are not robust, and both have the

potentially disadvantageous property of being sensitive to non-

linear monotonic transformations of the prediction. Correlation

has the advantages of boundedness and being slightly less sensitive

to some rescalings of the model output. However, the intuitive

interpretation of its scale breaks down and becomes misleading if

the dependence that is being measured is not really linear. KL-

divergence is extremely sensitive to low (close to zero) predictions

for locations that get a higher empirical salience, but is

conceptually more appropriate for comparing probability

distributions. In the end, both measures are not optimal, but

because of its sound theoretical basis, we recommend using the

KL-divergence when one wants to capture the ability of the model

to exploit similarities in the viewing behavior within a group of

subjects. In practical applications of this measure , one should also

be aware of an additional complication: KL-divergences are

dependent on the number of fixations used to compute the fixation

density maps (sec:mam: sec:fdm). As a result, values which are

estimated from different numbers of fixations are not directly

comparable. For example, when the average fixation duration in

an experiment with fixed viewing time per stimulus is dependent

on image category, this can confound a comparison between

categories. In Materials and Methods: Correction of KL

divergence for small samples we investigate this dependency and

describe a method for correcting KL-divergence scores for the bias

introduced by limited data by exploiting the measure’s relation to

information entropy. In summary, the linearity of AUC under

decomposition into subsets and the sensitivity of KL-divergence

and correlation for joint-viewing versus single-subject behavior are

both relevant whenever a model of fixation selection is evaluated

against fixation data. KL-divergence is especially appropriate

when fixation data from a group of subjects are the target of a

prediction.

Intermediate summary. This section focused on a

theoretical investigation of different evaluation measures that are

used to evaluate models of fixation selection. We conclude that

AUC excels with respect to our list of desired properties: The

disadvantage of non-intuitive interpretation of the meaning of the

AUC is outweighed by it’s non-parametric nature, boundedness,

robustness and compatibility with small sample sizes. In practice, it

is often useful to average evaluation scores across subjects and

images in order to reduce the variance introduced by small sample

sizes. The linearity of the AUC ensures that these averages retain a

meaningful interpretation. This property, however, comes at a

cost. When the goal is to predict consistent fixation behavior across

all subjects, more weight should be given to locations that are

consistent between observers. Here we recommend the use of the

KL-divergence. However, it is important to employ algorithms

that minimize a systematic bias in the case of few data points

available (see Materials and Methods: Correction of KL

divergence for small samples).

Properties of fixation data
The aim of the second part of this work is to investigate the

upper and lower bounds on the prediction performance of fixation

selection models. To this end, we examine the image and subject

independent spatial bias on the one hand, and image-specific

inter-subject consistency on the other hand. We use data from an

eye tracking study carried out previously in our group (see

sec:mam: sec:experiment for details and Figure 2 for some

examples of stimuli). We first analyze what kind of predictions

can be achieved purely from the spatial bias without any

knowledge of the image that is being viewed, and evaluate how

this lower bound is influenced by the number of subjects and

images available for its estimation. Secondly, we describe a

method for computing an upper bound for model performance

that is based on ‘inter-subject consistency’ and investigate in how

far it depends on the number of subjects used for its computation.

The upper and lower bounds are based on predictions blind to

the predicted subject. Notably, the inter-subject consistency

ignores subject idiosyncrasies. The question thus arises whether

Figure 1. Predicting the joint fixation selection process of several subjects vs. predicting individual subjects. The prediction in this
case was generated not from a model but from the fixations of several independent subjects. It therefore captures the joint process of a group of
subjects. When treated as a classification problem (top row), only the fixation locations are important. In this case, the mean of the AUC or NSS scores
for the individual evaluations are identical to the AUC or NSS score of evaluating the joint process. When treated as a stochastic process (bottom row;
see sec:mam: sec:fdm for computational details of fixation density map estimation), locations that were fixated by one but not all subjects are less
important to predict. KL-divergence, which evaluates not individual fixations but the prediction of the stochastic process, yields a better score for the
evaluation of the joint process. This also holds true when it is corrected for the number of fixations in the data (KLc).
doi:10.1371/journal.pone.0024038.g001

Measures and Limits of Fixation Selection Models

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24038



the upper bound proposed here is really an absolute upper bound

for the predictive power of models of fixation selection . We

therefore investigate firstly whether knowledge of the subject

idiosyncrasies can be utilized to improve predictions, and secondly

whether we can combine image- and subject-specific information

to surpass the upper bound given by the inter-subject consistency.

Estimating the lower bound for fixation selection

models. A way to estimate the lower bound for performance

of fixation selection models is to compute the predictive power of

the spatial bias. This prediction does not exploit information

specific to the image or subject whose fixations are being

predicted. Thus it has to be surpassed by any valuable model of

fixation selection . Here, we take into account that the spatial bias

varies between different image classes (Figure 2). We estimate the

lower bound for NSS and AUC as the best representatives of

central tendency measures and classification measures. As the

results for AUC and NSS are qualitatively very similar, only the

former is further considered here. More details on NSS results can

be found as reference values in sec:mam: sec:references. Since we

explicitly wish to consider small data sets, KL divergence is not

suitable here (but see sec:mam: sec:references). To obtain a better

understanding of the reliability of the lower bound, we investigate

the dependence of the estimation quality on the number of

subjects and images used. Specifically, we compute the lower

bound by predicting fixation patterns of one subject on one image

(the test set) with fixation data from other subjects on other images

(the training set). To predict fixations in the test set, we construct

an FDM from the training set and interpret it as a prediction for

fixations in the test set. To quantify the quality of this prediction,

we compute the AUC and NSS between the calculated FDM and

fixations in the test set. To assess the dependence of the spatial bias

estimation quality on data set size, we vary the number of images

and subjects used to create the FDM. In detail, we individually

increase the number of subjects and images in the training set

exponentially from 1 to the maximum in seven steps

(Nimg[f1,2,4,8,16,32,63g; Nsub[f1,2,4,7,13,25,47g). For each of

the 49 combinations, we use every image and subject combination

as the test set 47 times such that each of the repetitions is one

random sample of images and subjects for the training set. To

avoid using specific subject-image combinations more often than

others, we treat cases in which we draw only one or two images or

subjects separately. In this case the training set is explicitly

balanced over repetitions and different test sets. In the other cases

the large number of possible combinations ensures a roughly even

sampling. We report the predictive power of the spatial bias as the

mean over test subjects, test images and repetition.

The spatial bias depends on the image category (Figure 3,

naturals and urban scenes left and right respectively, pv0:0001).

Furthermore, an increasing number of subjects (Figure 3, rows of

large matrix, pv0:0001) and images (Figure 3, columns of large

matrix, pv0:0001) significantly increase the predictive power of

the spatial bias estimate (three factorial ANOVA, category X

number of subjects X number of images). For natural scenes (left)

the increase is steeper than for urban scenes (right) and thereby

suggests that eye-movement patterns across subjects and stimuli

are more similar during the viewing of natural scenes. The

predictive power of the spatial bias estimate reached for the

maximum number of subjects is surprisingly high (AUC of 0.729,

0.673 for naturals and urban scenes respectively) and poses a

challenging lower bound for prediction performance. The

predictive power of the spatial bias estimate increases extremely

slowly when more than 32 images and 25 subjects are used,

implying that the estimation becomes reliable at this point. A

smaller number of subjects can be compensated by a larger image

set and vice versa. However, using too few data leads to a danger

of underestimating the lower bound and thereby overestimating

one’s model quality. In conclusion, the reliability of the lower

bound estimation depends on the size of the data set; for all

practical purposes, 32 images and 25 subjects seem to be sufficient

for a reliable estimate.

Estimating the upper bound for fixation selection

models. To derive the upper bound for fixation selection

models, we estimate the inter-subject consistency analogously to

the spatial bias reliability. The rationale is that, due to variance

across subjects, models that do not account for individual

idiosyncrasies cannot perform perfectly. Therefore, comparing

model scores to a score obtained by predicting fixations from one

subject with other subjects provides an intuitive normalization. If

the model score and inter-subject consistency are equal, the model

predicts a new subject’s fixations as well as other subjects’ fixations

would. In the following, we investigate the dependence of inter-

subject consistency on the number of subjects used for the

prediction. To estimate inter-subject consistency, we first separate

subjects into a test and a training set and compute an FDM from

the training set. Then, we measure how well this FDM predicts the

one subject in the test set. In contrast to above, the images in test

Figure 2. Four representative exemplary stimuli from each category used in the eye-tracking study. The top row shows natural scenes,
the bottom row shows examples from the urban scenes. The right-most panels depict the spatial distribution of the first 15 fixations across all 64
images and 48 subjects in the two categories. On the natural scenes, there is a rather strong central fixation bias, while on the urban images fixations
are more spread out.
doi:10.1371/journal.pone.0024038.g002
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and training sets are identical. To obtain a maximally accurate

estimate of the training set size for which inter-subject consistency

saturates, the number of subjects in the training set is increased in

steps of one. Similar to the procedure above, we use every subject

and image combination 47 times as test set for every possible

number of subjects in the training set. For each of the 47

repetitions a random set of training subjects is drawn. The cases

where only one or two training subjects are drawn are explicitly

balanced across test subjects. In the following, we report the mean

AUC over test subjects, test images and repetitions as a measure of

inter-subject consistency. As expected, the inter-subject

consistency increases with the number of subjects in the training

set (Figure 3, second row from top ‘image-specific’ in panels A and

B, pv0:0001; one factorial ANOVA with number of subjects as

factor; additional datapoints omitted for clarity). With the

maximum number of training subjects, AUC is 0.802 for

naturals and 0.846 for urbans. In contrast to the pure spatial

bias predictions, predictability is higher for urbans than for

naturals. This results in a dynamic range of the AUC between

lower and upper bound of 0.073 and 0.173 for naturals and urbans

respectively. Looking at the development of inter-subject

consistency with increasing subject set size, it is reasonable to

assume that further increasing the training set would not have a

strong effect. The second derivative of the curve is always negative,

suggesting that the curve saturates. For example, from 20 to 21

subjects, the increase is 0.001, from 40 to 41 it is only 0.0002.

Thus, for all practical purposes, the inter-subject consistency of

about 20 subjects constitutes an upper bound for generic models of

fixation selection in free viewing tasks.

Subject-specific spatial bias. To investigate the importance

of subject idiosyncrasies for the prediction of fixation locations , we

examine whether knowledge of a subject-specific spatial bias is

more valuable than knowledge of the bias of other subjects. To

that end, we estimate how well a subject-specific spatial bias

predicts fixations of the same subject on other images. We proceed

as before and predict fixations in the test set with an FDM based

on fixations in the training set. For every combination of the

number of predicting images, test subject, and test image, we use

63 different training sets. The images in the different training sets

are randomly sampled and the subject is the same in training and

test set. The random samples are balanced explicitly if there are

only one or two images in the training set. Analogous to the

generic spatial bias, the subject-specific spatial bias’s predictive

power is dependent on the number of images used for estimation

(Figure 3; vertical bar ‘subject-specific’ directly to the right of the

large matrix in panel A and B, pv0:001, ANOVA with number of

images as the only factor). For any number of images, the subject-

specific spatial bias is more predictive than the predictive power of

a single independent subject (Figure 3 compare left-most column

in the central square to vertical column directly to the right).

However, it is not higher than the predictive power of the best

spatial bias, obtained from a set of 47 independent subjects

(Figure 3 compare right-most column in the central square to

vertical column directly to the right). With the exception of 63

images from the ‘natural’ category, the bias from a large number

of subjects achieves better performance than the subject-specific

bias. The exact number of subjects that is needed to achieve better

performance than the subject-specific spatial bias depends on the

number of images (see dashed lines in Figure 3). The improvement

in AUC over a generic prediction based on a single independent

subject ranges from 0.009 on urbans and 0.021 on naturals for a

single image to 0.017 on urbans and 0.029 on naturals for 63

Figure 3. Estimation of lower and upper bounds for natural (A) and urban scenes (B). All data shown are AUC values averaged over all
predictions of single subjects on single images in a given parameter combination. The predictions are based on a spatial bias (large matrix, ‘Subject
and Image independent’), a subject-specific bias (column next to the matrix, ‘Subject-specific’), a PCA-cleaned subject-specific bias (rightmost
column), an image-specific bias (row above the matrix, ‘Image-specific’, also referred to as inter-subject consistency) and the combination of image
and subject-specific bias (topmost row). The ‘Subject and Image independent’ scores depend on the number of subjects and images used for the
prediction and represent a lower bound for fixation selection models. The ‘Image-specific’ scores also depend on the number of images and yield an
upper bound for fixation selection models. Comparing ‘Subject-specific’ and Subject and Image independent reveals the effect of using a subject-
specific bias. The dashed lines indicate at what subject group size the subject-specific bias stops being significantly better than the spatial bias
(paired t-test, pw0:05). The subject-specific bias is not significantly different from the spatial bias between the dashed and solid lines. See main text
for more detailed descriptions.
doi:10.1371/journal.pone.0024038.g003
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images. The increase in predictive power of the spatial bias

achieved through incorporating subject-specific information might

appear small, but it is a sizable fraction of the dynamic range

between lower and upper limit (0.073 and 0.173 naturals and

urbans respectively), and significant for all numbers of training

images (paired T-tests over 48 subjects, pv0:001).

Combining the positive effects of knowing the correct

subject and knowing many subjects. We have seen that the

prediction of the spatial bias from one independent subject can be

improved on in two ways. By incorporating information from

more independent subjects ((see Estimating the lower bound for

fixation selection models), reducing the uncertainty in the

estimation of the true spatial bias, or by using subject-specific

information ((see Subject-specific spatial bias). Both improvements

have effects of similar sizes. It seems possible that combining both

methods would allow an even better prediction. We hypothesize

that the spatial bias of a large set of subjects consists of certain

identifiable components, to which individual subjects contribute

with different strengths. In that case, it should be possible to

express an individual subject’s spatial bias as a combination of

these components. Such an approach would be more reliable,

because the components can be estimated from many different

subjects, effectively reducing the noise in the estimate. To identify

these components, we compute the spatial bias for all training

subjects on a given number of images, and perform a principal

components analysis (PCA) on these biases. Figure 4 A,B shows the

first 12 principal components of an exemplary case, which are the

directions where the spatial bias varies most over subjects.

Importantly, the amount of variance explained by the

components drops rapidly (see Figure 4C). Hence the first few

components explain the larger part of variance of the data and the

remainder is increasingly noisy and uninformative. To enhance

the reliability of the estimate, we only keep the first 5 components.

We incorporate subject-specific traits by finding subject-individual

weights for the components. These weights are computed by

regressing the components onto the subject-specific bias, which is

computed on all images in the training set. Figure 4D illustrates

the subject-specific weighting of the multi-subject spatial bias. This

combines the subject specific information and the statistical

reliability of a large data base.

Importantly, we do not use the subject or image to be predicted

for estimating the components. To evaluate the efficacy of this

approach, we carry out the same subject evaluation as for the

evaluation of the sec:subsb, but use the described PCA method

instead of the regular individual subject bias. This procedure

combines two possible sources of improvements: subject-specific

information and noise reduction in the spatial bias estimate. To

ensure that the subject-specific weighting of principal components

has a separate effect, we also evaluate how the PCA spatial bias

cleaning without subject-specific weighting performs. For this

control, we simply weight the first five components with their

eigenvalues and use their sum as the prediction. In order to

evaluate whether this method is able to combine the positive

effects of knowing a specific subject and of having a robust

estimate from many subjects, we need to compare it to both

individual methods.

First we investigate the improvement in predictive power in

comparison to the subject specific spatial bias (Figure 5). In case a

single natural image is used to compute the principal components

no improvement is observed. For an intermediate number of

images a significant improvement (paired t-test, 48 subjects,

significance level indicated by number of asterisks) compared to

the subject specific spatial bias is demonstrated (Figure 5B upper

row, significant deviation of blue dots from the horizontal axis that

was the main diagonal in the original scatter plot). Testing subjects

on even larger numbers of natural images leads to a smooth

distribution of the spatial bias and no further improvement by

PCA-cleaning is achieved. In the case of urban images an

improvement is observed in a range from 4 to 63 images (Figure 5B

lower row), which is shifted by a factor of two compared to

naturals. Hence, in comparison to the subject specific spatial bias

PCA-cleaning boosts performance by a modest degree for the case

of testing with an intermediate number of images. Second, we

compare prediction performance of PCA-cleaned individual

spatial bias to the average obtained by a large number of subjects.

Here we observe a small but significant improvement only for a

larger number of images (Figure 5B significant deviation of red

dots from the horizontal axis). The small effect size might be

expected because there is already so little noise in the spatial bias

for one subject. Thus, the predictive power of the generic spatial

bias is already very high, leaving little room for improvement. On

the other hand, the results for a small number of images illustrate

that the PCA cleaning requires a certain amount of data to work

properly. There is a possibility that the subject specific weights do

not contribute to the observed effect, but that PCA-cleaning is only

effective by removing noisy components. To control for this we

repeated the same analysis but omitted the subject-specific

weighting and instead weighted the components with their

eigenvalues obtained from the PCA. This does not lead to a

change in predictive power compared to the pure spatial bias

(paired T-test, pw0:2; data not shown). In summary, the PCA

cleaned subject-specific spatial bias estimate combines the positive

effects of reliable bias estimation and exploiting subject-specific

traits.

Predicting better than perfect: combining subject- and

image-specific biases. The previous section showed that

subject-specific predictions can improve the already good

prediction of a large group of subjects in the domain of the

spatial bias. After estimating the upper bound for fixation selection

models, we established that the inter-subject consistency marks an

upper bound for prediction quality of subject independent models.

Given these observations, the question arises whether subject-

specific models can surpass the inter-subject consistency bound. As

a proof of concept, we combine inter-subject predictions with the

subject-specific spatial bias as a simple form of subject-specific

information, and analyze if this procedure can lead to a better

prediction. We assume that viewing behavior on an image is

driven partly by a subject-specific spatial bias and by image

properties, i.e. the inter-subject prediction contains both

components. The idea is to replace the general spatial bias in

the inter-subject fixation density map with a subject-specific spatial

bias while keeping the image dependent part. To achieve this, we

first compute the fixation density map of all training subjects on

the image in question, i.e. the inter-subject prediction. Second, we

remove the general spatial bias by dividing the inter-subject

prediction point-wise through the training subjects’ spatial bias

computed on all other images. To arrive at a prediction, we

multiply the resulting image-specific bias point-wise with the

spatial bias of the predicted subject. Finally, we normalize the

resulting map to unit mass and evaluate how well it predicts the

fixations of our test subject. We use the same cross-validation

procedure as for the generic inter-subject predictions, but limit the

computations to the logarithmically increasing training set sizes

used for the spatial bias evaluation. Inter-subject consistency is

recomputed for these new training sets to allow paired tests

between subject-specific and generic predictions. The results show

a small but significant effect on naturals (pv0:001, paired t-test for

4 or more subjects. See Figure 6). For example, the improvement
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for 47 subjects is a mean AUC increase from 0.809 to 0.815.

There is no significant effect on urbans (paired t-test, pw0:2 for all

numbers of subjects). The difference between categories can

probably be explained by the fact that the spatial bias has less

predictive power for urbans and that the inter-subject consistency

is already higher in urbans. We conclude that the combination of

subject-specific information and image-specific information can

surpass the inter-subject consistency upper bound on natural but

not on urban images.

We draw five different conclusions: First, the lower bound,

based on the image- and subject-independent spatial bias, is

surprisingly high (AUC of 0.729 and 0.673 for naturals and urbans

respectively) but the reliability of the estimated bound depends on

the size of the data set. For all practical purposes, 32 images and

25 subjects seem to be sufficient for a reliable estimate. Second, the

reliability of the upper bound, which is based on the consistency of

viewing behavior between subjects, also depends on the data set

size. For all practical purposes, the inter-subject consistency of

about 20 subjects is sufficient to establish an upper bound for

generic models of fixation selection in free viewing tasks. Third,

the incorporation of subject-specific information can significantly

improve the predictive power of the subject- and image-

independent spatial bias. Fourth, the predictive power of the

spatial bias can further increase when the subject-specific

information is de-noised with information from other subjects.

Fifth, the dependence of the upper bound on joint-subject

processes makes it possible to surpass this bound by combining

subject- and image-specific biases.

Discussion

In this work, we have focused on how models of fixation

selection can be evaluated. Based on theoretical considerations, we

argued that the AUC is the best choice for the kind of data that is

usually available in eye-tracking studies. However, when predict-

ing viewing behavior that is consistent across a group of subjects,

Figure 4. PCA-based cleaning of a subject-specific spatial bias. Panels A and B show the first 12 principal components respectively for
naturals and urbans. For demonstration purposes, the underlying subject biases were computed with fixation data from all images and all subjects.
Please note that the sign of the principal components is arbitrary. Panel C shows that the variance explained by each component drops dramatically.
This, and the fact that the first 5 components carry some interpretable meaning, led us to choose the first five components for the cleaning of the
subject-specific bias. Panel D shows an example of this. The left plot shows the spatial bias of all other subjects, the center one the subject-specific
bias and the right plot shows the result of reconstructing the subject-specific bias with the first five principal components.
doi:10.1371/journal.pone.0024038.g004

Measures and Limits of Fixation Selection Models

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24038



KL-divergence presents itself as a superior alternative, given that

the data set is large enough. Regardless of the measure, model

evaluation is also influenced by the inherent properties of eye-

tracking data. In particular, the predictive power of the pure

spatial bias estimate poses a challenging lower bound for

prediction performance that any useful model has to exceed.

Moreover, the inter-subject consistency constitutes an upper

bound for generic models of fixation selection . The accuracy of

the estimate for both bounds depends decisively on data set size.

By using these bounds as a reference frame, we showed that subject

idiosyncrasies can be exploited to increase the prediction perfor-

mance. This can be pushed to the point where the predictive power

surpasses the inter-subject consistency bound. From a more general

perspective, the two bounds discussed in this paper form a reference

frame that allows for a substantially more informed assessment of the

quality of a model of fixation selection than just a measure score

alone. It is essential that these bounds are reliably estimated by

acquiring enough data. To see this, consider a case in which data is

only available from a small set of 10 subjects. In this case the inter-

subject AUC and the predictive power of the spatial bias will be

underestimated. Both these effects subsequently lead to an overes-

timation of model quality. The following two examples illustrate the

advantages of our approach when this caveat is kept in mind.

First, if we consider a task that induces a very specific spatial bias

(e.g. pedestrian search, [14]), the AUC score depends on how much

of the image is covered by the task-relevant area. People will look for

pedestrians on the ground, so in principle it is possible to increase the

area of the sky, e.g. by decreasing the camera’s focal length, without

substantially changing fixations patterns. If our model has also

learned to ignore that additional spatial region, the AUC is increased

substantially. Yet we would not claim that the increased AUC

reflects a better description of the fixation selection process.

Reporting the predictive power of the pure spatial bias alongside

the model’s score allows a fair evaluation of a model in all cases.

Secondly, in our data we found that the category where the spatial

bias is weaker (urbans) has a stronger inter-subject consistency. This

double-dissociation has important consequences for the evaluation of

fixation selection models. One and the same model, incorporating

both spatial bias and image statistics, may score higher on naturals

than on urbans, because of the predictive power of the spatial bias.

On the other hand, if a model is almost optimal and comes close to

the predictive power of other subjects’ fixations, it will score higher

Figure 5. The effect of using a subject-specific PCA cleaned bias for prediction. Panel A explains how the plots in B come about. We scatter
the AUC score for predicting individual subjects averaged over images and repetitions with the PCA-cleaned bias against either the scores for the
subject-specific or average spatial bias. For better visibility we rotate the plot by 450 degrees and sclae it. This causes the x-axis to become a measure
of how well a subject can be predicted with either method and the y-axis becomes a measure of effect size, i.e. how much the prediction improves by
application of the PCA. Please note, the y-axis is labeled such that it indicates the difference between the two scores and not the distance to the
diagonal. To make the effects more visible we scale the y-axis to include the relevant range. The blue dots compare the effect of using PCA-cleaning
to the subject-specific bias. It can be seen that in both categories the effect of the PCA depends on the number of images. The asterisks indicate that
the effect size is significantly larger than zero (paired t-test, *b~pv0:05, **b~pv0:01, ***b~pv0:001).
doi:10.1371/journal.pone.0024038.g005
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on urbans. Thus, the type of dataset the model is evaluated on will

have an effect on one’s judgment of model quality. As a result of this,

a comparison of different models is nearly impossible if they were

evaluated on different data sets, unless the upper and lower bounds

for the specific datasets are explicitly given.

A different, commonly used method to control for the spatial

bias when using AUC is to sample the negative observations not

from the whole image, but only from points that have been fixated

on other images [10]. If this is accompanied by an equally

corrected report of inter-subject consistency, it allows for an

unbiased model comparison much in the same way as reporting

upper and lower bounds as proposed here. In the context of model

evaluation, however, we believe that explicit is better than implicit,

i.e. that reporting the complete reference frame gives the reader a

more direct grasp of the model’s capabilities. We conclude that the

most comprehensive way to evaluate a model of fixation selection,

especially with respect to comparisons between different models, is

to use AUC and/or KL-divergence as performance measures, and

to report both the predictive power of the spatial bias and the

inter-subject consistency of the data set that the model is tested on.

Besides putting model performance into perspective, the proposed

reference frame can also be of use prior to model evaluation. The

two bounds define the dynamic range for predictions of the

distribution of fixation points. The ideal data set for evaluating a

model of fixation selection would have a large range, indicating that

subjects fixate different locations on different images - limiting the

predictive power of the spatial bias - but agree on the selection of

fixation points on single images. When the predictive power of the

spatial bias is small, models of fixation selection can only improve by

uncovering regularities distinct from the spatial bias. At the same

time, high inter-subject consistency indicates that a common process

regulates the selection of fixations in observers, and it is this process

that models of fixation selection target.

With a change in perspective, the reference frame can be used

to probe for differences in viewing behavior. The lower bound

indicates to what extent subjects’ viewing behavior is independent

of the image, whereas the upper bound quantifies their agreement.

This not only allows interesting comparisons between different

groups of subjects, but also provides a tool to investigate the effect

of different stimulus categories. In this work, we investigated urban

and natural images and found that the range of the reference

frame is larger on urban than on natural images. This shows that

urban images elicit higher subject agreement in fixation selection

and evoke a stronger image-dependent component in fixation

target selection. The cause of the differences between categories is

an interesting topic for further investigation.

The inter-subject consistency has been used before as an upper

bound for model performance, which allows for a direct

comparison of our values and the ones provided in the literature.

Interestingly, we found that on first sight not all values were in line

with our results (Figure 7). However, there seems to be a consistent

explanation for the deviations: All values of inter-subject

consistency that lie above those found in our data were computed

on data where there was an explicit task during the eye-tracking

experiment (object naming [16] or pedestrian search [3,15]), or

the stimuli material contained a wealth of high-level information

(web-pages [21]). On the other hand, Hwang et al. [13] explicitly

designed their experiment to minimize high-level information by

rotating the images by 900 or 1800. They report lower inter-subject

consistency, but the effect of group size is in line with our results.

Finally, Cerf et al. [12] use a free viewing task similar to our

experiment and obtain values almost identical to ours. We

conjecture that inter-subject consistency is strongly influenced by

the subjects’ task and the availability of high-level information.

This is also in line with the category differences found in our data

(urbans w naturals), since the urban scenes provide more high-

level information (e.g. man-made objects, people), as well as with

category differences reported by Frey et al. [30]. Interestingly,

high inter-observer consistency is not related to a large influence of

the spatial bias. In our dataset, the former is higher for urban

scenes while the latter is higher on natural images. A speculative

explanation of this finding is that when high-level information is

present in an image, it will guide the eye movements of many

subjects to locations that are not necessarily in the center of the

image, increasing inter-subject consistency and decreasing the

influence of the spatial bias. In the absence of high-level

information, subjects tend to look more towards the center of

the screen, but in a less homogenous fashion. This fallback strategy

Figure 6. Combining a subject-specific and image-specific spatial bias for a better than perfect prediction. The plots are produced as in
Figure 5. The effect depends on the number of subjects that enter the bias estimation and the image category. For natural scenes, a statically
significant effect (paired t-test, *** = pv0:001) can be seen when four subjects or more are used. The effect cannot be seen for urban scenes, which
might be explained by the low predictive power of the subject-specific bias compared to the high predictive power of the image-specific bias on
urbans.
doi:10.1371/journal.pone.0024038.g006
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leads to an increased spatial bias and decreased inter-subject

consistency. Further evidence for this hypothesis comes from eye-

tracking studies with pink-noise stimuli, which are completely

devoid of high-level information and where the influence of the

spatial bias is comparatively large [31]. Our analyses of subject

idiosyncrasies relative to our established bounds showed that the

increase in performance, although statistically significant, is very

small. In the case where data from 63 images are used, knowing

the spatial bias of a specific subject is as good as knowing more

than 7 other subjects on naturals, or knowing more than 2 other

subjects on urbans. The smaller effect for urbans fits the

observation that inter-subject consistency is higher in that

category, making knowledge about a specific subject less unique.

This relates to a possible reason for the small overall effect size in

both categories: Acik et al. [31] show that different demographic

subject groups have remarkably different viewing behavior.

Specifically, explorativeness, a property that is closely related to

the spatial bias, decreases with increasing age. Our subject group

consisted exclusively of university students between 19 and 28

years of age. Thus it can be expected that the effect of knowing the

subject to be predicted would be much larger in a more

heterogeneous subject group with lower inter-subject consistency.

In such a scenario, the improvement caused by PCA-cleaning

demonstrated in the present study could become more relevant. In

general, the PCA-cleaning requires fixation data on a fair number

of images for a good signal to noise ratio. In practice, the principal

components could be determined from a large set of subjects and

images recorded in a baseline study. It may then be possible to

tailor a clean subject-specific spatial bias based on fixations from

the subject of interest on few images. This technique may be useful

in a modeling context, when the goal is to fine-tune a generic

model for predicting individual subjects’ fixations.

The spatial bias is of course only one feature of viewing

behavior where subject idiosyncrasies can play a role. There are

possibly many different ways to incorporate these into a model of

fixation selection. An obvious candidate would be the relative

importance of different image features in a bottom-up model.

Whether subject-specific modeling of feature weights has a positive

effect is an interesting question for further research, but goes

beyond the scope of this article.

Finally, we showed that it is possible to surpass the limit set by

the inter-subject consistency when incorporating subject and

image-specific information into the prediction. Despite the very

small effect, this result exemplifies the potential value of subject-

specific predictions. However, it also reveals another aspect of the

evaluation of models of fixation selection. Judging only by the

AUC values, we have created a prediction that exceeds the inter-

subject consistency bound and incidentally also the best prediction

ever described in the literature. In a sense, our prediction is better

than what has previously been called ‘perfect’. Of course no

sensible person would congratulate us on this achievement.

Rather, it shows that claims about theories of fixation selection

based purely on a prediction’s AUC values, or the percentage of

inter-subject AUC achieved, can be quite hollow.

A decisive question that should be part of every model

evaluation is what we can learn from this model about processes

of fixation selection implemented in the brain. Good models do

not only achieve high prediction scores, but also reproduce and,

better, explain differences in human viewing behavior, such as the

different reference frames between natural and urban images, or

the temporal evolution of scan paths. Models that replicate novel

aspects of viewing behavior might still be revealing about the

underlying mechanisms, despite having low predictive power.

Here, we have to consider two questions: do we understand the

mechanism by which our model goes from input to prediction?

And is this mechanism plausible? If we can answer both these

questions in the affirmative, and our model performs well on an

adequate stimulus set under the evaluation procedures described

in this article, we really will have made a contribution.

Materials and Methods

Theoretical maximum value for AUC
In the present work, receiver-operating characterisics (ROC) ((see

Existing measures) analysis is applied to classify fixated locations vs.

non-fixated locations. This treats the prediction of fixations as a

discrete binary problem: a location is either fixated or it is not.

However, for an unbounded number of subjects and taking into

account finite precision of the occulomotor system and the eye-

tracker, there is no principled reason why a location cannot be

fixated and therefore all locations should eventually be fixated. This

implies that every location has a finite probability to be selected as

fixated and a finite probability to be selected as non-fixated. Hence,

classification of a location inherently carries an error, as it is neither

perfectly fixated nor non-fixated. It follows that an AUC of 1 is not

achievable and a bound lower than 1 does exist.

Figure 7. A comparison of inter-subject consistency AUC in different studies. Green and blue lines show the dependence of inter subject
consistency on the number of subjects in our data. The symbols show inter-subject consistency values reported in other studies. All studies that
reported higher values used either stimuli that contained a wealth of high-level information or employed a specific task. Cerf et al. [12] also use a free
viewing task and are compatible with our findings. Harel et al. [17] only report a range of values (read from a figure). Notably, Hwang et al. [13] use
image rotations to diminish top-down influences and observe lower inter-subject consistency.
doi:10.1371/journal.pone.0024038.g007
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In this section, we formalize these considerations and derive a

quantitative estimate of the upper bound of the area under the

ROC curve when we conceptualize the prediction as a probability

density function. In the following we redefine the hit and false

alarm rate for calculating the AUC value to work with probability

distributions. The observed distribution of fixation points upon

presentation of stimulus i is described by efmi(x), with

0ƒefmi(x)ƒ1 for all x~1 . . . n. The 2D topology is irrelevant,

as there is no interaction between different positions, hence we can

use a one dimensional index. Furthermore
P

x efmi(x)~1. We

assume that for all x
P

i efmi(x)~const. This means that for every

location, across all images, the probability of fixations is constant,

i.e. there is no spatial bias. A spatial bias leads to additional

complications like equilibrating the spatial discretization to achieve

a constant distribution of control (non-fixated) locations. It does,

however, not change the principle result. We furthermore assume

that the prediction of fixated regions pfm(x) is perfect when

pfm(x)~efm(x). Now we evaluate the quality of this prediction in

terms of ROC. For a threshold h the number of hits is given by

hit(h)~
X

Vx[fpfm(x)whg
(efm(x))

We classify as a fixated all locations where the prediction

exceeds the threshold, and weight each such location with the

empirical probability that this point is fixated. Above we assumed

pfm equals efm and we simplify

hit(h)~
X

Vx[fefm(x)whg
(efm(x))

Because of all x
P

i efmi(x)~const and
P

x efmi(x)~1 the

distribution of control fixations is flat at a value of
1

n
and the

number of false alarms is

fa(h)~
X

Vx[fpfm(x)whg
(1=n)

Again we count all locations where the prediction exceeds the

threshold, but now weight each such location with
1

n
. As before,

the predicted map equals the empirical one and we have

fa(h)~
X

Vx[fefm(x)whg
(1=n)

For any non-degenerate distribution where efm takes on values

other than 0 and 1 there must be a threshold where hit(h)v1 and

fa(h)w0. Hence the area under the ROC curve is smaller than 1.

What is the upper boundary of the AUC for a specific efm? Given

hist : efm(x){wh(s),

with h(s) the frequency of occurrence of a specific saliency value s.

h(s) has some important properties:

ð1

0

h(s) ds~n

the spatial discretization of efm(x) is n and because

ð
x

efm(x)~1

also

ð1

0

h(s):s ds~1

is a probability density distribution with integral 1. For a given h the

false alarm rate is given by

fa(h)~1=n

ð1

s~h

h(s) ds

The integral yields the number of points above the threshold

which is weighted with 1=n. The hits are given by

hit(h)~

ð1

s~h

h(s):s ds

When using these definitions of hits and false alarms the AUC is

given by

AUC(h)~

ðfa~1

fa~0

hit(fa) dfa

Note that the false alarm rate increases as we lower the

threshold from 1 downward. By change of variables we obtain

AUC(h)~

ðh~0

h~1

hit(fa)
dfa

dh
dh

changing the bounds

AUC(h)~

ðh~1

h~0

({1):hit(fa)
dfa

dh
dh

As
dfa(h)

dh
~{h(s) (see definition of fa above) we obtain

AUC(h)~

ðh~1

h~0

({1):hit(fa)({1):h(s) dh

AUC(h)~

ðh~1

h~0

hit(fa(h)):h(h) dh

AUC(h)~

ðh~1

h~0

ðs~1

s~h

h(s):s ds h(h) dh

This formula yields the upper bound for predicting a given

empirical fixation map.

Proof of AUC linearity
Here, we prove that the value of the area under the receiver-

operating characteristics curve (AUC) for a given multiset of
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positive (P) and negative (N) observations does not depend on how

the positive observations are grouped, i.e.

AUC(P1 ] P2,N)~
jP1j

jP1 ] P2j
:AUC(P1,N)z

jP2j
jP1 ] P2j

:AUC(P2,N)

ð1Þ

where ] denotes the multiset union. As a given location may be

fixated several times the notion of a multiset seems appropriate.

Multisets are a generalization of sets and may contain multiple

memberships of one and the same element. The AUC is obtained

through trapezoidal approximation of the area under the curve

plotting the true positive rate (TPR) against the false positive rate

(FPR) for all thresholds, according to:

AUC(P,N)~
Xn

i~2

TPR(ti)zTPR(ti{1)

2
: FPR(ti){FPR(ti{1)ð Þð2Þ

TPR(t)~
jfxjx[P ^ x§tgj

jPj ð3Þ

FPR(t)~
jfxjx[N ^ x§tgj

jNj ð4Þ

t1~?, ivk[tiwtk, tn~{? ð5Þ

Lemma. Let S[P(R) be a finite set of real numbers and

f : P(R)?R be a function, such that for each m[S hold

f Sð Þ:jSj~f S\fmgð Þ jSj{1ð Þzf (fmg)

That implies for any set T(S

f Sð Þ:jSj~f S\Tð Þ jSj{jT jð Þzf (T):jT j~
X
s[S

f (fsg):

This can easily be seen through induction over jT j, beginning

by T~1
The Lemma reduces (1) to

AUC(P,N)~
jPj{1

jPj
:AUC(P\fpg,N)z

1

jPj
:AUC(fpg,N) ð6Þ

From (3) follows

Vp[P, TPRP\fpg(t)~

TPRP(t):jPj{1
jPj{1

if tƒp

TPRP(t):jPj
jPj{1

if twp

8>><
>>: ð7Þ

Now we can compute AUC(P\fpg,N) and AUC(fpg,N). Let

k[½1,n� be the smallest value for which tkwp, then

AUC(P\fpg,N)~
Xk

i~2

(TPRP(ti)zTPRP(ti{1)):jPj
2:(jPj{1)

:

FPR(ti){FPR(ti{1)ð Þ

z
Xn

i~kz1

(TPRP(ti)zTPRP(ti{1)):jPj{2

2:(jPj{1)
:

FPR(ti){FPR(ti{1)ð Þ

~
jPj
jPj{1

:
Xk

i~2

TPRP(ti{1)zTPRP(ti)

2
:

FPR(ti){FPR(ti{1)ð Þ

z
jPj
jPj{1

:
Xn

i~kz1

TPRP(ti{1)zTPRP(ti)

2
:

FPR(ti){FPR(ti{1)ð Þ

{
1

jPj{1
:
Xn

i~kz1

FPR(ti){FPR(ti{1)

~
jPj
jPj{1

:AUC(P,N){
FPR(tn){FPR(tk)

jPj{1

~
jPj
jPj{1

:AUC(P,N){
1{FPR(tk)

jPj{1

ð8Þ

and

AUC(fpg,N) ~
Xn

i~2

TPR(ti{1)zTPRP(ti)

2
: FPR(ti){FPR(ti{1)ð Þ

~
Xk

i~2

0z
Xn

i~k

1z1

2
: FPR(ti){FPR(ti{1)ð Þ

~FPR(tn){FPR(tk)

~1{FPR(tk)

ð9Þ

Using (8) and (9) it is easy to see that (6) is true, proving (1).

Computational details of AUC analysis
Although in theory AUC is independent of arbitrary parame-

ters, this is not entirely true in practice. Strictly speaking,the ROC

curve plots the probability of a hit against the probability of a false

alarm, and these probabilities of course have to be estimated.

However, we have found that when applying this measure to the

evaluation of models of fixation selection, using relative frequen-

cies as an estimation of probabilities works well and can be seen as

a sensible default value that requires no further parameters. In that

case, there remain two decisions on related issues that have to be

made when computing the AUC, and both influence the resulting

value: first, we need to decide which thresholds to use to create the

underlying ROC curve, since an infinite number of thresholds

with infinitesimal spacing is not achievable. Second, it has to be

decided how the area under the ROC curve is computed. In

general, trapezoidal integration is the method of choice. However,

in the special case of fixation classification, there is a simpler way.

Here, it is usually the case that we have a very large number of
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negative values (either all values in the salience map, or all values

that were not fixated, or all values at locations that were fixated on

other images) and a smaller set of positive values (salience values at

fixated locations). Obviously it suffices to use all unique values in

the combined set of positives and negatives as thresholds. Neither

the true positive rate nor the false positive rate will change for any

other threshold values. In general, the true positive rate can only

increase for threshold values in the set of positives. All other

thresholds, those in the set of negatives, can only increase the false

positive rate while the true positive rate remains constant. This

implies that the ROC curve approaches a step function and the

thresholds in the set of actuals define the steps. In a step function,

there is no difference between trapezoidal integration and lower

sum integration. And since the thresholds from the set of actuals

define the steps, it suffices to use lower sum integration with only

these values as thresholds. There is one pitfall that has to be

avoided with this approach. When no threshold reaches a true

positive rate of one before the false positive rate is one, the AUC

can be underestimated. If this is the case, we use trapezoidal

integration for the last segment of the curve. This method, which is

computationally much more efficient, as it involves fewer threshold

values, was adopted for all reported AUC values in this article.

Fixation density map estimation
In the analysis of eye-tracking data, we make frequent use of

fixation density maps (FDM), which estimate the probability that a

specific location is fixated. These are computed by smoothing a

two-dimensional histogram of fixations, where each pixel is one

bin, with a Gaussian kernel of 20 FWHM, normalizing to unit

mass. The rationale for smoothing is that a) the eye-tracker

Figure 8. The effect of sample size on the KL-divergence. A. Performance of different methods to remove the sample size bias from entropy
estimates in a simulation using eye-tracking data. The bold line shows the maximum likelihood entropy estimate computed on the entire data set
(Nw40000) and can be interpreted as ground truth. The Chao-Shen and Jeffreys correction methods approach the target value with the lowest
number of samples. Descriptions of the individual methods can be found in [35] (Chao-Shen), [32] (shrink), [36] (Laplace), [37] (Jeffreys), [33] (MM), [34]
(NSB), [38] (SG), [39] (minimax). B. Sample size dependence of different KL-divergence estimation methods. The standard maximum likelihood
method shows a strong positive bias for small samples, both correction methods tested can reduce this problem for sample sizes of ca. half the
number of bins in the estimated distributions or larger.
doi:10.1371/journal.pone.0024038.g008

Table 2. AUC values for natural scenes.

Nr. of subjects ? Nr. of images ; 1 2 4 7 13 25 47 Subject-specific

Image-specific 0.689 0.724 0.748 0.763 0.778 0.791 0.802

63 0.703 0.715 0.723 0.726 0.727 0.728 0.729 0.732

32 0.693 0.708 0.718 0.722 0.724 0.726 0.726 0.722

16 0.678 0.696 0.709 0.715 0.719 0.721 0.722 0.707

8 0.662 0.680 0.695 0.704 0.709 0.713 0.715 0.689

4 0.647 0.661 0.677 0.688 0.696 0.701 0.704 0.674

2 0.636 0.645 0.657 0.668 0.680 0.686 0.690 0.659

1 0.619 0.631 0.643 0.651 0.660 0.668 0.675 0.640

doi:10.1371/journal.pone.0024038.t002
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operates with limited resolution (calibration-error v:30) and b) the

visual system samples information at high-resolution not only from

a single fixated pixel but from the fovea which corresponds to

about 20 of visual angle in diameter. For computational efficiency

it is often necessary to scale FDMs to smaller size. This is achieved

by adjusting the bin sizes of the histogram and the size of the

Gaussian kernel accordingly.

Correction of KL divergence for small samples
The KL-divergence can be expressed in terms of Information

Entropy, and for Information Entropy it is known that it

systematically depends on the sample size [32–34]. These

observations lead us to suspect that the KL-divergence is also

biased, which is problematic when different models are evaluated

against densities estimated from different sample sizes. We carry

out two simulations to investigate the size of this potential

confound. First, we treat the overall spatial bias as our prediction.

We then take a random sample of fixations from the set that

constitutes the spatial bias and repeatedly calculate the KL-

divergence between the FDM of our sample and our prediction . If

the sample gives a perfect estimate of the distribution it was drawn

from the KL-divergence should be zero. We increase the number

of fixations per sample from 6 to 800 in steps of 2, and draw 1000

samples of every size. Since discrete Entropy estimates are also

strongly influenced by the binning of the probability density

function, we do not use our standard procedure for computing

fixation density maps. Instead, we sort the data into a grid of

16612 bins (leading to N = 192). The number of grid cells was

selected such that the area of each bin is equal to the area of a

circle of diameter two degrees of visual angle. These FDMs are not

smoothed, since they already have a coarse resolution. In a second

simulation, we take a normal distribution with specified param-

eters (m~0, s~1) as our prediction and sample our data from a

different normal distribution (m~2, s~1). In this case the true

KL-divergence can be determined analytically and the KL-

divergence computed from different sample sizes can be compared

to this target value. We proceed in the same way as before and

increase the sample size from 6 to 800 in steps of 2 and draw 1000

samples of every size. Densities are estimated as histograms with

100 bins. In both cases the estimated KL-divergence was higher

than the analytical value. The difference between mean estimated

KL-value and analytical value decreased with increasing sample

size (the results for simulation 1 are depicted in Figure 8A; results

for simulation 2 were similar). Thus, comparing models evaluated

on different data set sizes is difficult. One approach to cope with

the sample size dependence of the estimate is to keep the sample

size constant in every comparison by randomly sampling as many

fixations from each data set as are available from the smallest one.

However, if the size of a novel data set is comparably small and

previous model evaluations were performed on a larger and

inaccessible data set, it is not possible to reduce the larger data set.

Thus, to foster comparisons between different studies, it would be

advantageous to be able to directly correct for the bias introduced

by sample size. There are multiple methods that try to improve the

estimate of entropy values (recall that KL-divergence is directly

dependent on the Entropy estimates), as compared to the typically-

used maximum likelihood approach. We therefore investigate the

applicability to fixation data of several methods [32–39], for which

[32] provides an implementation. To compare the efficacy of the

different approaches, we carried out simulations in which we

Table 3. AUC values for urban scenes.

Nr. of subjects ? Nr. of images ; 1 2 4 7 13 25 47 Subject-specific

Image-specific 0.731 0.770 0.796 0.813 0.827 0.838 0.846

63 0.652 0.662 0.667 0.670 0.672 0.672 0.673 0.669

32 0.639 0.652 0.659 0.663 0.665 0.667 0.667 0.657

16 0.623 0.637 0.646 0.652 0.655 0.657 0.658 0.640

8 0.608 0.619 0.630 0.636 0.640 0.643 0.645 0.624

4 0.598 0.605 0.612 0.619 0.624 0.627 0.629 0.612

2 0.593 0.596 0.601 0.604 0.609 0.610 0.612 0.603

1 0.581 0.588 0.592 0.597 0.599 0.600 0.604 0.590

doi:10.1371/journal.pone.0024038.t003

Table 4. NSS values for natural scenes.

Nr. of subjects ? Nr. of images ; 1 2 4 7 13 25 47 Subject-specific

Image-specific 0.741 0.941 1.159 1.319 1.465 1.571 1.638

63 0.773 0.835 0.871 0.887 0.897 0.903 0.905 0.976

32 0.730 0.804 0.850 0.870 0.882 0.890 0.893 0.929

16 0.664 0.752 0.810 0.837 0.855 0.865 0.870 0.854

8 0.574 0.672 0.744 0.781 0.807 0.822 0.829 0.748

4 0.472 0.570 0.653 0.699 0.732 0.753 0.764 0.623

2 0.368 0.461 0.536 0.593 0.634 0.657 0.666 0.492

1 0.277 0.346 0.439 0.490 0.520 0.559 0.577 0.376

doi:10.1371/journal.pone.0024038.t004
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estimated the entropy of differently sized samples from the general

spatial bias. In addition to the direct relevance for the calculation

of KL-divergence, an important advantage of an unbiased entropy

estimate is that entropy can be used to characterize viewing

behavior [31,40,41]. It is therefore relevant to have an unbiased

estimate, e.g. for comparing different experimental conditions with

different amount of fixations. The simulations follow the pattern

that we used for determining the sample size dependence in KL-

divergence. Due to the large number of different correction

methods compared, we only draw 200 samples of each size to

reduce computational load. We compare estimates for different

sample sizes to the entropy of all fixations in one category

(Nnaturals~43295,Nurbans~44753), assuming that the estimate is

nearly unbiased with such a large sample size. The simulations

show that it is in principle possible to improve the entropy

estimate. However even in the best case, the number of samples

required for a reasonable estimate is approximately half the

number of bins of the fixation density map. This is a large

improvement over uncorrected Entropy, which requires the

number of data points to be at least equal to the number of bins

squared. The fixation densities in our simulations were down

sampled to 169 bins. Considering that FDMs are typically

smoothed with a 2deg FWHM Gaussian kernel, the effective

resolution of a FDM is already much lower than the number of

pixels suggests, making the down sampling tenable. Overall the

correction methods proposed by Chao and Shen [35] and Jeffreys

[37] work best of all tested methods. To yield a correction method

for the KL-divergence, its Entropy and cross-Entropy terms have

to be corrected. Starting with Chao-Shen, the pure entropy term

can straightforwardly be corrected. Moreover, if we presuppose

that a model output corresponds to a correct probability density

(Q), we can also apply Chao-Shen to correct the cross Entropy

H(P,Q). Here, we use

H(P)~{
X

i

pcs
i � log(pcs

i )

Coverage(pcs
i )

H(PjjQ)~{
X

i

pcs
i � log(qi)

Coverage(pcs
i )

to compute the corrected KL-divergence, where pcs and Coverage

are the two Chao-Shen correction terms (see [35]). The Jeffreys

correction can simply be applied by adding 1=2 to the cell counts of

the FDM before it is normalized to unit mass. To validate

applicability of Chao-Shen in the case of KL, we repeated the

simulations for the maximum likelihood KL-divergence estimation

but used the Chao Shen and Jeffreys corrected estimation. As shown

in Figure 8B, the correction substantially improves the KL estimates

as compared to the maximum likelihood version. The Jeffreys

correction works well on our data, which is in part due to the fact

that our distribution does not deviate too much from the uniform

prior assumed by the correction method. If there are strong reasons

to believe that one’s data deviate much from a uniform distribution,

one should therefore be careful with this correction. The Chao Shen

correction is very close to the true KL-divergence between the

underlying distributions at a sample size of about N=2.

Table 5. NSS values for urban scenes.

Nr. of subjects ? Nr. of images ; 1 2 4 7 13 25 47 Subject-specific

Image-specific 1.020 1.279 1.533 1.708 1.853 1.954 2.013

63 0.519 0.559 0.581 0.593 0.600 0.604 0.605 0.613

32 0.470 0.519 0.549 0.564 0.572 0.578 0.581 0.559

16 0.403 0.459 0.496 0.515 0.528 0.534 0.538 0.483

8 0.325 0.381 0.425 0.444 0.461 0.473 0.477 0.395

4 0.250 0.303 0.341 0.365 0.382 0.391 0.396 0.307

2 0.186 0.231 0.273 0.284 0.300 0.298 0.305 0.231

1 0.138 0.174 0.195 0.221 0.240 0.230 0.240 0.170

doi:10.1371/journal.pone.0024038.t005

Table 6. KL-divergence values for natural scenes.

Nr. of subjects ? Nr. of
images ; 1 2 4 7 13 25 47

Image-specific 0.424

63 0.900 0.763 0.707 0.684 0.670, 0.662

32 0.678

16 0.707

8 0.757

4 0.850

2 1.037

1 1.467

doi:10.1371/journal.pone.0024038.t006

Table 7. KL-divergence values for urban scenes.

Nr. of subjects ? Nr. of
images ; 1 2 4 7 13 25 47

Image-specific 0.364

63 1.274 1.190 1.153 1.141 1.137 1.139

32 1.153

16 1.201

8 1.298

4 1.501

2 1.981

1 3.280

doi:10.1371/journal.pone.0024038.t007
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Description of the eye-tracking study
The study has been approved by the ethics committee of the

University of Osnabrück and was conducted according to the

principles expressed in the Declaration of Helsinki. All subjects

gave written informed consent prior to the study and were

informed of their right to withdraw at any time without negative

consequences. The experiment consisted of the presentation of 255

stimuli from four different categories (naturals, urbans, fractals and

pink-noise). The ‘natural’ category contains 64 stimuli that depict

outdoor scenes like landscapes, forests and flowers. The 64

‘urbans’ show rural and city scenes with many man-made

structures. The images comprise a large variety of different scenes

and vary over many different parameters (street scenes, buildings,

differences in depth and openness, close-ups and landscape

perspectives). In the urban scenes only very few persons are

shown and very little text. All stimuli have a large depth of field to

avoid the guidance of eye movements by the photographer. We do

not use the artificial stimuli from the fractal and pink-noise

categories. The task of the subjects was to freely view the pictures

(‘watch the images carefully’). Each stimulus was shown for six

seconds and a fixation point was shown in the center of the screen

before each stimulus to perform a drift correction. The distance to

the screen was set at 80 cm; the display used was a 21-inch CRT

monitor (SyncMaster 1100 DF 2004, Samsung Electronics, Seoul,

South Korea) with a screen resolution of 12806960 pixels; refresh

rate was 85 Hz. The stimuli had a size of approximately

28.4621.3 degrees. 48 subjects (24 male) participated in the

experiment and received either 5 or course credit as compensa-

tion. Subjects were aged between 19 and 28 years, naı̈ve to the

purpose of the study and had normal or corrected-to-normal

vision. The eye-tracker used was an Eyelink II system (SR

Research Ltd., Mississauga, Ontario, Canada). This head-

mounted system is capable of tracking both eyes; however, only

the eye giving a lower validation error after calibration was used

for data analysis. Sampling rate was set at 500 Hz. Saccade

detection was based on three measures: eye movement of at least

0.10, with a velocity of at least 300/sec and an acceleration of at

least 80000/sec2. After saccade onset, minimal saccade velocity

was 250/sec. The first 15 free fixations of each trial were used for

data analysis. All data is available from the authors upon request.

Reference values for spatial bias and inter-subject
consistency

Here we report numeric AUC (Table 2 and 3) and NSS (Table 4

and 5) values for predicting fixations of one subject on one image with

a subject and image independent spatial bias (estiamted lower bound,

see Estimating the lower bound for fixation selection models) and

with an image-specific bias (inter-subject consistency, estimated upper

bound, see Estimating the upper bound for fixation selection models).

All reported values are means across cross-validation runs, as

described in Estimating the lower bound for fixation selection

models. So far we omitted the computation of upper and lower KL-

divergence boundaries. Testing the estimation reliability by changing

the number of subjects and images in the training set would be

confounded by the different numbers of fixations in the training set

(our correction methods are intended for controlling the test set and

thus do not apply here). To nevertheless be able to report sensible

reference bounds, we restrict ourselves to a large training set size such

that the influence of different amounts of fixations in the training set is

small. In detail, we pick out one row (63 images, varying the number

of subjects for prediction) and one column (25 subjects, varying the

number of images for prediction) of the subject and image

independent predictions. This leaves either many images or many

subjects in the training set, such that there are at least 375 fixations in

the training set. To furthermore minimize the effect of different

amounts of fixations in the training set, we bin the screen into 12|16
squares. The test set always contains fixations from 23 subjects, we

omit the case where more than 25 subjects are in the training set, such

that the number of fixations is constant at 345 fixations. The

evaluation of the entropy correction methods has shown that with this

amount of fixations and dimensionality of the probability density

map, no correction for different amounts of fixations is needed. We

also compute the inter subject consistency for predicting 23 subjects

with data from the remaining 25 subjects for every image and 48*63

random assignments of subjects into test and training set. Table 6 and

7 report the mean over images and random assignments.

Open-source python toolbox
To foster model comparison and ease reproduction of our

results we provide a free open-source python toolbox. It allows to

conveniently represent fixation data and can be used to estimate

the lower and upper bound for fixation selection models on a given

data set. Implementations of AUC and KL-divergence, as well as a

few other measures, are also contained in the toolbox. The toolbox

can be accessed at https://github.com/nwilming/ocupy. Further-

more, the data used in the current work is available from the

authors upon request.
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31. Açik A, Sarwary A, Schultze-Kraft R, Onat S, König P (2010) Developmental

changes in natural viewing behavior: bottom-up and top- down differences
between children, young adults and older adults. Frontiers in Psychology 2.

32. Hausser J, Strimmer K (2009) Entropy inference and the James-Stein estimator,
with application to nonlinear gene association networks. The Journal of Machine

Learning Research 10: 1469–1484.
33. Miller G (1955) Note on the bias of information estimates. Information Theory

in Psychology: Problems and Methods II-B II: 95–100.

34. Nemenman I, Shafee F, Bialek W (2002) Entropy and inference, revisited.
Advances in Neural Information Processing Systems 1: 471–478.

35. Chao A, Shen T (2003) Nonparametric estimation of Shannon’s index of
diversity when there are unseen species in sample. Environmental and Ecological

Statistics 10: 429–443.

36. Holste D, Grosse I, Herzel H (1998) Bayes’ estimators of generalized entropies.
Journal of Physics A: Mathematical and General 31: 2551.

37. Krichevsky R, Trofimov V (2002) The performance of universal encoding. IEEE
Transactions on Information Theory 27: 199–207.
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