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Abstract

Background: ‘Virtual’ or inferred phenotypes (vPhenotypes) are commonly used to assess resistance to antiretroviral agents
in patients failing therapy. In this study, we provide a clinical context for understanding vPhenotype values.

Methods: All HIV-infected persons enrolled in the British Columbia Drug Treatment Program with a baseline plasma viral
load (pVL) and follow-up genotypic resistance and pVL results were included up to October 29, 2008 (N = 5,277). Change
from baseline pVL was determined as a function of Virco vPhenotype, and the ‘‘dynamic range’’ (defined here by the 10th
and 90th percentiles for fold-change in IC50 amongst all patients) was estimated from the distribution of vPhenotye fold-
changes across the cohort.

Results: The distribution of vPhenotypes from a large cohort of HIV patients who have failed therapy are presented for all
available antiretroviral agents. A maximum change in IC50 of at least 13-fold was observed for all drugs. The dideoxy drugs,
tenofovir and most PIs exhibited small ‘‘dynamic ranges’’ with values of ,4-fold change observed in .99% of samples. In
contrast, zidovudine, lamivudine, emtricitabine and the non-nucleoside reverse transcriptase inihibitors (excluding
etravirine) had large dynamic ranges.

Conclusion: We describe the populational distribution of vPhenotypes such that vPhenotype results can be interpreted
relative to other patients in a drug-specific manner.
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Introduction

HIV drug resistance testing assists clinical decision-making in

the selection of antiretroviral therapy [1,2], and is routinely used

as a guide to future treatment options for HIV-infected patients

who develop virological treatment failure [3,4]. A number of

genotypic resistance interpretation systems are available based on

either rules-based algorithms or ‘‘virtual phenotypes.’’ However,

the lack of concordance (up to ,20%, [5]) among the data

generated using these systems clearly signals a need for

standardization and a context from which to approach an

individual patient’s result [6].

Currently, genotypic rather than phenotypic tests are commonly

used for drug resistance testing, largely due to the former’s lower

cost and faster turn-around time. However, inferring phenotypes

from genotypic testing remains a challenge due to subtle changes

in viral replication and patterns of mutational profiles. Conse-

quently, the various genotype-phenotype interpretation algorithms

have met with variable success [1,7,8,9].

Cut-offs
The interpretation of either a virtual or real phenotype is based

primarily on a ‘‘cut-off’’ value, which defines a threshold between

a susceptible wild-type phenotype and a reduced drug suscepti-

bility (ie, resistant) phenotype. Initially, cut-offs were based on the

reproducibility of the assay (‘‘technical cutoffs’’). With this system,

all antiretrovirals were assigned the same (relatively arbitrary) cut-

off value, and if the fold-change in drug concentration required to

inhibit the virus was greater than this value, the variants were

considered to have reduced susceptibility compared to wild type.

This was subsequently refined by the use of epidemiologically

derived cut-offs from the distribution of wild-type susceptibilities in

large numbers of antiretroviral-naı̈ve patients [10]. These

biological cut-offs take advantage of the natural variation in drug

susceptibility present in non-drug-exposed HIV variants [10] and

are more clinically relevant than arbitrary values for assay

reproducibility. However, biological cut-offs are not derived from

data of clinical responses to antiretroviral agents and may

therefore lack clinical relevance.
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In a phenotypic resistance assay, the degree of resistance is

defined using the median inhibitory concentration (IC50). IC50 is the

concentration of a drug required for a 50% inhibition of viral

replication in vitro [11]. vPhenotypes are assembled using large

databases of phenotypic resistance data matched to genotypic viral

sequences derived from patients. The resistance level of a

vPhenotype is based on observed phenotypic fold-changes (FC) in

IC50 associated with the replication of a virus with a given sequence.

Higher fold-changes represent lower susceptibility to the drug

relative to the reference strain. In other words, if a virus showed a

two-fold increase in IC50 (essentially a vPhenotype value of 2), this

would indicate that twice as much drug would be required to inhibit

viral replication by one-half, compared to a wild-type virus. Thus,

the phenotypic resistance level of a patient’s virus can be predicted

from the vPhenotype associated with the viral sequence.

However, cut-offs based on the actual in vivo virological response

to a regimen may better inform the interpretation of resistance

data [12] and may provide a more accurate clinical prognosis for

patients on long-term antiretroviral therapy. Clinical cut-offs

(CCO) can be established by using vPhenotypes to determine

clinically relevant phenotypic fold-change resistance levels [13]. In

this approach, the cutoffs are defined not by an in vitro indicator,

but by actual virologic responses to therapy in patients with drug

resistant HIV. The lower CCO indicates the point at which

virologic response to an agent begins to be compromised, and the

upper CCO indicates the point where response to the agent is

nearly completely abolished [13].

In addition to knowing whether a patient’s inferred phenotype is

above or below a given clinical or biological cut-off, we feel that it

may be useful to place the results against the spectrum of other

patients experiencing virological treatment failure. By comparing

vPhenotype levels across such a dataset, frequency distributions of

the various resistance levels may be constructed, revealing a profile

of the resistance generally experienced by patients during drug

treatment. This serves as a good point of comparison for assessing

the severity of a patient’s vPhenotypic resistance level in the

context of other patients undergoing treatment. By combining all

patient-derived resistance data together, the drug’s overall

‘‘dynamic range’’ can be determined as the range of vPhenotype

scores between which a majority of patient samples fall.

Here we present data on the distribution of vPhenotypes from a

large cohort of patients failing therapy in British Columbia,

Canada. We have determined minimum and maximum virtual

phenotypic susceptibility, as well as the ‘‘dynamic range’’ of

susceptibility for all licensed antiretroviral agents.

Methods

Study population
We evaluated all HIV-infected adults who enrolled in the British

Columbia (BC) Drug Treatment Program between 1996 and 2008

with a baseline plasma viral load (pVL) .1000 HIV RNA copies/

mL until 2001 and .250 copies/mL thereafter; and for whom at

least one follow-up sample with genotypic drug resistance data was

available. Samples were evaluated from a total of 5,277 patients,

most of whom had multiple samples (median 2; inter-quartile range:

1–5). From these samples, a total of 19,611 vPhenotype results were

obtained by genotyping of the HIV protease (PR) and reverse

transcriptase (RT) regions for HIV drug resistance mutations at the

BC Centre for Excellence in HIV/AIDS.

HIV RNA extraction and drug resistance analysis
Drug resistance testing was performed on physician-requested

samples with pVL as defined above. HIV RNA was extracted from

frozen plasma samples using guanidinium-based lysis buffer

followed by isopropanol/ethanol washes or by automated

extraction using a NucliSENS easyMAG (bioMerieux). Amplifi-

cation of the PR and RT regions was performed using nested RT-

PCR and sequenced in both the 59 and 39 directions on an ABI

3100 or 3730 automated sequencer. Sequence data were analyzed

using Sequencher (Genecodes) or RE_Call (BC Centre for

Excellence in HIV/AIDS [14,15,16]) sequencing software.

Nucleotide mixtures were identified if the secondary peak height

exceeded 20% of the dominant peak height. Sequences were

aligned to HIV-1 subtype B reference strain HXB2 (Genbank Acc.

No. K03455) using a modified NAP algorithm [17]. Results of the

genotyping analysis were reported as amino acid changes in the

HIV protease and reverse transcriptase genes relative to HXB2.

Generation and analysis of vPhenotypes
Virco (Mechelen, Belgium) converted the genotypic sequence

data to Virtual Phenotypes. The vircoHTYPE versions used in this

analysis varied over time, where the specific version used

depended on the version in place at the time of testing.

vPhenotype results were expressed as percentile ranks of fold-

change in IC50 for each antiretroviral drug. Analysis of the

distribution of vPhenotypes was performed on two groups: all

samples sequenced within the BC Drug Treatment program

(N = 19,611), and a subset of about half of these samples

(N = 9,606) which had one or more International AIDS Society

(IAS) key drug resistance mutation(s) [18]. The dynamic range of

vPhenotype scores for each agent was defined as the range

between 10th and 90th percentiles of values. These percentiles were

somewhat arbitrarily chosen, but are illustrative in that they reflect

the range between which a majority of patient samples falls, while

excluding outlier values. We have also presented the 1st & 99th,

and 5th & 95th percentiles for the reader’s convenience.

Ethics Statement
Ethical approval was granted by the Providence Health Care/

University of British Columbia Ethics Board. All data were

analysed anonymously. Requirement for consent was waived by

the Ethics Board because the analysis involved no more than

minimal risk to subjects.

Results

Distribution of virtual phenotypes
Virtual phenotypes were collected for a total of 19,611 samples

from 5,277 different patients. Results were analyzed in two sets: (I)

all samples submitted for virtual phenotyping; and (II) a subset of

group I for which at least one key IAS resistance mutation [18]

was identified. The distribution of vPhenotypes for all samples

tested in BC is summarized in Table 1. The distribution of

vPhenotypes for samples with one or more IAS key mutation

(N = 9,606) is shown for each drug class in Figures 1, 2, and 3, and

summarized in Table 2. Overall, the shapes of the distributions

from both groups resemble each other closely within each drug

class. Data are generally presented for the IAS key mutation subset

for simplicity, to limit the effect of testing of antiretroviral-naı̈ve

individuals, as well as to emphasize a more clinically relevant

group of patients where at least some degree of drug resistance is

certain.

Also shown for each drug is the proportion of patients (with 1 or

more IAS resistance mutation) that fall below, between, and above

the clinical cut-offs of the Virco vPhenotype reports (Table 3). In

general, a majority of these patients have virus that falls below the

lower clinical cut off (CCO) for most drugs that have established

Distribution of vPhenotypes
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CCOs: 15/19 drugs (79%). The exceptions are the nucleoside

reverse transcriptase inhibitors lamivudine (3TC), emtricitabine

(FTC), didanosine (ddI), and abacavir (ABC), with the former two

having a majority of patients with vPhenotypes above the upper

CCO, and the latter two with a majority of patients falling

between the two CCOs. When all 19,611 vPhenotypes were

examined, a majority of samples had vPhenotypes below the lower

CCO for every agent except ddI (data not shown).

It is worth noting that HIV from patients exhibited a range of

‘‘wild-type’’ phenotypic susceptibility to different drugs that was

above or below that seen for the reference laboratory wild-type

strain. In other words, the baseline drug susceptibility of ‘‘wild-

type’’ viruses varied among different patient-derived HIV strains,

and this range of baseline susceptibility should be kept in mind

when considering the susceptibility of resistant viruses. For

example, the 50th percentile for vPhenotypes of most drugs

hovered around 1-fold change (0.6 to 1.6), but with two notable

exceptions of .40-fold change for 3TC and FTC (Table 2).

Fold-change in IC50 was .1 in a majority of non-nucleoside

reverse transcriptase inhibitor (NNRTI) samples and ,1 in more

than 50% of protease inhibitor (PI) and nucleoside reverse

transcriptase inhibitor (NRTI) samples (Table 1 and 2). The

range and pattern of vPhenotype distribution varied widely among

the different antiretrovirals. Stavudine (d4T), didanosine (ddI), and

tenofovir (TDF) displayed some of the lowest maximum changes in

vPhenotype susceptibilities (approximately 13- to 25-fold, Table 1)

and the narrowest ‘‘dynamic ranges,’’ all falling between 0.7- and

1.8-fold (Table 1). For these drugs there was a modest ,2-fold

decrease in susceptibility in 90% of samples and ,4-fold decrease

in susceptibility in 99% of all samples tested. In contrast, the

NNRTIs delavirdine (DLV) and nevirapine (NVP) exhibited the

broadest dynamic ranges of approximately 1- to 60-fold. The

maximum fold-change in IC50 for any drug was not representative

of the drug’s dynamic range. For the drugs studied, the median

difference was ,12-fold between the maximum decrease in

susceptibility and the upper limit of the dynamic range, with this

difference being most dramatic for the NNRTIs (Table 1).

NRTIs. Overall, there are three general distributions of

resistance within the NRTI class: 3TC/FTC comprise one

group; zidovudine (AZT) comprises another; and the remaining

NRTIs (ddI, d4T, TDF, and ABC) comprise a third group

(Figure 1). 3TC and FTC both displayed the broadest dynamic

ranges, reaching approximately 50-fold decreased susceptibility

(more than 10 times greater than the upper limit of dynamic range

observed for the other NRTIs, excepting AZT). AZT exhibited an

intermediate dynamic range, while the other NRTIs showed a

relatively narrow range of resistance.

NNRTIs. Two distinct groupings of NNRTI drugs were

observed based on the distribution of virtual phenotypes: etravirine

(ETR), the newest member of this drug class, constituted one

Table 1. HIV susceptibility to antiretroviral agents (All BC vPhenotypes).

Probability distribution of Virtual phenotype (fold-change in IC50)
(N = 19,611)

Drug
Lower CCO –
Upper CCO N Percentile

Min 1st 5th 10th 50th 90th 95th 99th Max

AZT 1.5–11.4 18392 0.4 0.7 0.8 0.9 1.1 11.3 19.6 41.2 105

3TC 1.2–4.6 18432 0.7 0.8 0.9 0.9 1.0 48.4 50.6 57.5 133.8

ddI 0.9–2.6 18177 0.6 0.8 0.8 0.8 0.9 1.7 2.2 2.7 24.4

d4T 1.0–2.3 18281 0.5 0.7 0.7 0.7 0.9 1.4 1.7 2.8 13.3

ABC 0.9–3.5 18135 0.5 0.7 0.7 0.7 0.8 3.2 4.0 5.4 22.4

FTC 3.1* 7915 0.5 0.6 0.7 0.7 0.8 47.5 50.2 52.6 82.6

TDF 1.0–2.3 13799 0.4 0.6 0.6 0.7 0.8 1.5 2.1 3.3 18.2

NVP 6.0* 18538 0.5 1.0 1.2 1.2 1.4 58.0 64.1 76.1 2152.5

DLV N/A 16624 0.3 1.3 1.3 1.3 1.6 60.9 109.6 151.4 224.5

EFV 3.3* 18491 0.3 0.9 1.0 1.0 1.1 24.9 105.8 316.3 43341.0

ETR 1.6–27.6 1545 0.3 0.4 0.7 0.8 1.2 2 4.2 22.8 460.0

IDV/r 2.3–27.2 18335 0.2 0.6 0.7 0.7 0.7 2.2 11.6 29.7 145.7

RTV N/A 16498 0.3 0.7 0.7 0.7 0.8 4.1 32.8 111.5 258.3

NFV 1.2–9.4 18325 0.4 0.8 0.9 0.9 0.9 6.5 24.2 41.2 115.6

SQV/r 3.1–22.6 18355 0.3 0.5 0.6 0.6 0.7 1.2 6.9 39.9 183.9

FPV/r 1.5–19.5 6631 0.2 0.5 0.6 0.6 0.6 0.8 1.2 17.2 121.5

LPV/r 6.1–51.2 16293 0.4 0.7 0.7 0.8 0.8 1.0 3.4 62.0 298.4

ATV/r 2.5–32.4 8559 0.5 0.6 0.6 0.7 0.7 0.9 1.5 76.9 303.8

TPV/r 1.5–7.0 6566 0.3 0.6 0.7 0.7 0.8 0.9 1.0 2.4 29.2

DRV/r 10.0–106.9 1853 0.3 0.4 0.5 0.5 0.6 0.7 0.8 2.7 20.9

Dynamic range indicated by italics.
*A total of 3 drugs have only one biological cut-off (for in vitro susceptibility): FTC, NVP, and EFV.
AZT – zidovudine, 3TC – lamivudine; ddI – didanosine; d4T – stavudine; ABC – abacavir; FTC – emtricitabine; TDF – tenofovir; NVP – nevirapine; DLV – delavirdine; EFV –
efavirenz; ETR – etravirine; /r – ritonavir boosted; IDV – indinavir; RTV – ritonavir; NFV – nelfinavir; SQV – saquinavir; FPV – fosamprenavir; LPV – lopinavir; ATV –
atazanavir; TPV – tipranavir; DRV – darunavir.
doi:10.1371/journal.pone.0017402.t001

Distribution of vPhenotypes
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Figure 1. Distribution of Resistance to NRTIs (BC vPhenotypes with 1 or More IAS Key Mutation). The distribution of the vPhenotype
value (log transformed) for nucleoside/nucleotide reverse transcriptase inhibitors across samples tested in British Columbia where at least 1
International AIDS Society key mutation was present. Percentiles indicated include every half percentile, as the minimum and maximum values for
each agent. AZT = zidovudine, 3TC = lamivudine, ddI = didanosine, d4T = stavudine, ABC = abacavir, FTC = emtricitabine, TDF = tenofovir. The
individual distributions may be grouped into 3 general categories: 3TC/FTC, AZT, and other NRTIs.
doi:10.1371/journal.pone.0017402.g001

Figure 2. Distribution of Resistance to NNRTIs (BC vPhenotypes with 1 or More IAS Key Mutation). The distribution of the vPhenotype
value (log transformed) for non-nucleoside reverse transcriptase inhibitors across samples tested in British Columbia where at least 1 International
AIDS Society key mutation was present. Percentiles indicated include every half percentile, as the minimum and maximum values for each agent.
Note that the scale of the horizontal axis extends to 1000 rather than 100 for Figures 1a and 1c, reflecting the higher maximum fold-change values
observed for the NNRTI drug class. NVP = nevirapine, DLV = delavirdine, EFV = efavirenz, ETR = etravirine.
doi:10.1371/journal.pone.0017402.g002

Distribution of vPhenotypes
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group, while all other NNRTIs (efavirenz [EFV], delavirdine

[DLV] and nevirapine [NVP]) comprised the second. ETR

exhibited a dynamic range roughly similar to that of the third

group of nucleoside agents discussed above (i.e., ddI, d4T, ABC,

TDF), while the other NNRTIs displayed dynamic ranges

approximately 10 times wider (Table 2, Figure 2). In general,

the NNRTIs (excluding ETR) had the widest dynamic ranges of

susceptibility and the largest maximum fold-changes in IC50 (over

40,000-fold for EFV) of all the drugs studied.

PIs. The protease inhibitors all exhibited roughly the same

dynamic ranges and distributions of resistance (Tables 1 and 2,

Figure 3). Most fell within a relatively narrow dynamic range of

,1-fold to approximately 7-fold, though ritonavir (RTV) and

nelfinavir (NFV) exhibited larger dynamic ranges extending to

.20-fold. Indinavir (IDV) displayed an intermediate dynamic

range with an upper limit of 11.6-fold (Table 2). The dynamic

ranges of tipranavir (TPV) and darunavir (DRV) were especially

low (0.7 to 1.0; and 0.5 to 1.0, respectively), indicating that almost

90% of patient virus in BC was hypersusceptible to these agents –

though fewer patients in our program have been treated with them

(Tables 1 and 2). For all PIs, the median fold-change in

susceptibility was #1, indicating a majority of samples having

lower susceptibility to these agents compared to the reference

strain.

Comparing the dynamic range of vPhenotypes to clinical
cutoffs

The ‘‘dynamic range’’ for most NRTIs was generally compa-

rable to the range between their individual CCOs, with the

exception of zidovudine and lamivudine, where the 90th percentile

was well above the upper Virco CCO. Conversely, the dynamic

ranges of most PIs (excluding nelfinavir) were well within the range

of their CCOs, perhaps reflecting the higher genetic barrier to

resistance for this drug class. Neither of the two most common

NNRTIs nevirapine nor efavirenz has a defined CCO range, so

the NNRTIs are excluded from this comparison.

Discussion

Here we present the distribution of vPhenotypes from a large

cohort of HIV-infected individuals who initiated antiretroviral

therapy in British Columbia between 1996 and 2008 and who

subsequently failed antiretroviral therapy during follow-up. These

data clearly indicate that the range of IC50 values varies widely

among antiretroviral agents regardless of drug class. For example,

the upper limit of the dynamic range (90th percentile) varied from

1-fold change for the PIs TPV and DRV to around 100 for the

NNRTIs DLV and EFV. The maximum fold-change in IC50

varied even more dramatically, ranging from approximately 13 for

d4T to more than 43,000 for EFV. Some sequences exceeded the

upper limits of the assay’s ability to measure vPhenotype. The

wide variability in IC50 fold-change also points to the value of

interpreting variations in susceptibility within the context of a large

dataset of other patient samples, such as that described here. We

also present the proportion of patients with HIV that falls between

and outside the Virco clinical cut-offs for vPhenotype resistance,

which provides a good basis for the overall extent of drug

resistance to various antiretroviral agents in a typical Western

clinical setting.

A raw FC-IC50 vPhenotype score is difficult to interpret and is

unlikely to be useful clinically, as its meaning may vary depending

on the drug under consideration. Interpreting the vPhenotype of a

patient-derived virus in the context of other patients’ viruses may

be more useful. For example, an IC50 change of 15-fold would be

within the expected dynamic range for most NNRTIs, but would

Figure 3. Distribution of Resistance to PIs (BC vPhenotypes with 1 or More IAS Key Mutation). The distribution of the vPhenotype value
(log transformed) for protease inhibitors across samples tested in British Columbia where at least 1 International AIDS Society key mutation was
present. Percentiles indicated include every half percentile, as the minimum and maximum values for each agent. IDV = indinavir, RTV = ritonavir,
NFV = nelfinavir, SQV = saquinavir, FPV = fosamprenavir, ATV = atazanavir, TPR = tipranavir, DRV = darunavir, LPV = lopinavir.
doi:10.1371/journal.pone.0017402.g003

Distribution of vPhenotypes
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be considered exceptionally resistant if it applied to tenofovir.

Further, since a majority of vPhenotypes collected fell below the

lower Virco clinical cut-off defined for each drug, it may be

additionally helpful to examine the distribution of vPhenotypes

within a population in order to better resolve differences in

resistance amongst patients. This approach may be especially

useful in the case of newly released drugs, where clinical outcome

data associated with the vPhenotypes are unknown.

A drug’s vPhenotypic dynamic range provides a useful

framework for interpreting vPhenotypic resistance data and

captures information about the population distribution for

resistance, which may also be useful. Note however, that its

relevance for patient outcomes is not known and that the dynamic

range of a drug may not necessarily reflect its clinical utility. 3TC/

FTC susceptibility is dramatically decreased by a single mutation

(the M184V mutation in reverse transcriptase [19]), giving a large

dynamic range. Nevertheless, these are very effective, commonly

prescribed agents. Similarly, there is no direct link between

dynamic range and clinical outcomes for the PI drug class, since

boosted-PI therapy is associated with better outcomes than

treatment with non-boosted PIs, even though the patient’s virus

exhibits the same vPhenotype value for both.

The prevalence of resistance to specific drugs among patients

failing therapy in our cohort largely reflects local prescription

patterns over the past decade, as well as the introduction of new

drugs over the years [20]. This also had an effect on the number of

samples exposed to different drugs, with many samples

(N = 18,392 of the total 19,611) exposed to the first antiretroviral

drug, AZT, but fewer for recently approved drugs such as ETR

(N = 1,545). Also playing a role are single-mutations that confer

drug resistance, such as is seen for 3TC/FTC and the M184V

mutation [20]. Drug resistance patterns as a whole also changed

over time, with fewer cases of resistance in more recent years [21].

In addition, the specific Virco vPhenotype version has also

changed over time, which may have influenced our results (though

in general, the ranges were similar for all two year periods from

2000 to 2008, with the main exceptions of lopinavir and

atazanavir, reflecting the introduction of widespread use of these

agents; Figures S1, S2, S3).

The maximum changes in IC50 observed here were generally

lower than those reported for ‘‘real’’ phenotypes determined using

a recombinant viral assay (Virco AntivirogramH [22]). This is

mainly due to the fact that a virtual phenotype is an average of

fold-changes in IC50 seen in database samples with similar

mutational profiles, while the actual phenotype assay will give a

physical result of the ability of the virus to grow in the presence of

a drug.

These data have enabled us to generate the range of phenotypes

for each antiretroviral agent into which the vast majority of HIV

patients receiving treatment in British Columbia will fall. As such,

Table 2. HIV susceptibility to antiretroviral agents (All BC vPhenotypes with one or more IAS Key mutation).

Probability distribution of Virtual phenotype (fold-change in IC50)
(N = 9,606)

Drug
Lower CCO –
Upper CCO N Percentile

Min 1st 5th 10th 50th 90th 95th 99th Max

AZT 1.5–11.4 9360 0.4 0.7 0.8 0.8 1.3 19.5 27.5 52.7 105

3TC 1.2–4.6 9402 0.8 0.9 0.9 0.9 45.8 50.5 51.7 58.2 133.8

ddI 0.9–2.6 9149 0.6 0.8 0.8 0.8 1.2 2.2 2.5 3.5 24.4

d4T 1.0–2.3 9251 0.5 0.7 0.7 0.7 0.9 1.7 2.2 4.4 13.3

ABC 0.9–3.5 9105 0.6 0.7 0.7 0.7 1.6 4.0 4.9 6.5 22.4

FTC 3.1* 2829 0.6 0.7 0.7 0.8 41.8 50.9 52.1 54.1 82.6

TDF 1.0–2.3 6435 0.4 0.6 0.6 0.6 0.9 2.1 2.5 3.8 18.2

NVP 6.0* 9513 0.5 1.1 1.2 1.3 1.4 64.0 69.6 83.0 2152.5

DLV N/A 8866 0.3 1.3 1.3 1.5 1.6 100.0 141.3 158.3 224.5

EFV 3.3* 9468 0.3 0.9 1.0 1.1 1.2 94.8 181.1 411.0 43341.0

ETR 1.6–27.6 500 0.3 0.3 0.5 0.6 1.2 8.2 11.9 60.8 460.0

IDV/r 2.3–27.2 9303 0.2 0.7 0.7 0.7 0.8 11.6 19.5 37.8 145.7

RTV N/A 8733 0.3 0.7 0.7 0.7 0.8 29.5 59.3 160.9 258.3

NFV 1.2–9.4 9293 0.4 0.8 0.9 0.9 1.0 24.1 34.2 44.4 115.6

SQV/r 3.1–22.6 9323 0.3 0.4 0.6 0.6 0.7 6.9 29.4 42.8 183.9

FPV/r 1.5–19.5 2290 0.2 0.5 0.6 0.6 0.6 2.4 6.1 27.6 121.5

LPV/r 6.1–51.2 7707 0.4 0.7 0.7 0.8 0.8 4.6 22.1 86.2 298.4

ATV/r 2.5–32.4 3071 0.5 0.6 0.7 0.7 0.7 7.1 42.1 97.3 303.8

TPV/r 1.5–7.0 2232 0.3 0.5 0.7 0.7 0.8 1.0 1.4 9.0 29.2

DRV/r 10.0–106.9 586 0.3 0.4 0.5 0.5 0.6 1.0 1.9 10.5 20.9

Dynamic range indicated by italics.
*A total of 3 drugs have only one biological cut-off (for in vitro susceptibility): FTC, NVP, and EFV.
AZT – zidovudine, 3TC – lamivudine; ddI – didanosine; d4T – stavudine; ABC – abacavir; FTC – emtricitabine; TDF – tenofovir; NVP – nevirapine; DLV – delavirdine; EFV –
efavirenz; ETR – etravirine; /r – ritonavir boosted; IDV – indinavir; RTV – ritonavir; NFV – nelfinavir; SQV – saquinavir; FPV – fosamprenavir; LPV – lopinavir; ATV –
atazanavir; TPV – tipranavir; DRV – darunavir.
doi:10.1371/journal.pone.0017402.t002
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we believe this approach provides an objective framework for

interpreting drug resistance that puts all drugs within a clinically

relevant context and allows for the establishment of standardized

guidelines for the application of drug resistance data in clinical

practice. Although the data presented here represent a time-

dependent phenomenon that reflects the standard of HIV care in

British Columbia, these data could be regularly updated and this

approach could provide a new avenue of analysis for international

data.
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Figure S1 NRTI dynamic ranges over time.
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Figure S2 NNRTI dynamic ranges over time.

(TIF)

Figure S3 PI dynamic ranges over time.
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