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Abstract

Background: Comparative phylogeography links historical population processes to current/ecological processes through
congruent/incongruent patterns of genetic variation among species/lineages. Despite high biodiversity, India lacks a
phylogeographic paradigm due to limited comparative studies. We compared the phylogenetic patterns of Indian
populations of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis). Given similarities in their distribution within
India, evolutionary histories, body size and habits, congruent patterns of genetic variation were expected.

Methodology/Principal Findings: We collected scats from various biogeographic zones in India and analyzed mtDNA from
55 jungle cats (460 bp NADH5, 141 bp cytochrome b) and 40 leopard cats (362 bp NADH5, 202 bp cytochrome b). Jungle
cats revealed high genetic variation, relatively low population structure and demographic expansion around the mid-
Pleistocene. In contrast, leopard cats revealed lower genetic variation and high population structure with a FST of 0.86
between North and South Indian populations. Niche-model analyses using two approaches (BIOCLIM and MaxEnt) support
absence of leopard cats from Central India, indicating a climate associated barrier. We hypothesize that high summer
temperatures limit leopard cat distribution and that a rise in temperature in the peninsular region of India during the LGM
caused the split in leopard cat population in India.

Conclusions/Significance: Our results indicate that ecological variables describing a species range can predict genetic
patterns. Our study has also resolved the confusion over the distribution of the leopard cat in India. The reciprocally
monophyletic island population in the South mandates conservation attention.
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Introduction

Populations of the same species living in different environments

are expected to show geographic variation in genotype and

phenotype. Demographic history and migration patterns over

space and time can be studied through phylogeography using

standing patterns of genetic variation. While many phylogeo-

graphic studies focus on single species, comparative phylogeogra-

phy aims to elucidate the history and physiography of a region

[1,2]. Hence, it provides a deeper understanding of evolutionary

and biogeographic processes through comparisons of congruent/

incongruent patterns of distribution of variation among species

and lineages [3,4]. Most importantly, it links historical (evolution-

ary and biogeographic) to current (ecological) processes thus

providing a temporal dimension to interpretations [4–6]. For

example, the predominant phylogeographic paradigm for Europe

and North America revolves around the Quaternary glaciations

(25,000 to 10,000 years BP). Current phylogeographic patterns for

many taxa in that region can be explained through range

contractions into refugia (extinctions/vicariance) and post-glacia-

tion dispersal/re-colonization events from these refugia [4,5].

Additionally, geographical barriers such as mountain chains and

rivers further explain local patterns for some taxa [6].

Biogeographically speaking, the geographic location of the

Indian subcontinent is remarkable. A rich assemblage of various

taxa representing major biogeographic realms (Palearctic, Africo-

tropical, Indomalayan) occur in the subcontinent, making it a very

interesting region for comparative phylogeographic studies [7,8].

Based on paleoclimatic data, explanations for current phylogeo-

graphic patterns in India, revolving around vicariance and

dispersal scenarios have been debated [9–11]. However, due to

a combination of the paucity of genetic data, confusing, incorrect

or unresolved taxonomy and the complex biodiversity and history

(geological and paleoclimatic) of the region, the phylogeographic

paradigm for the Indian subcontinent remains vague [10,11]. This

is borne out in a review, where phylogeographic patterns and
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explanations have been discussed for all major regions of the world

except Asia [12]. On the other hand, it appears that for most

larger-bodied mammals, (.1 kg body mass), there are few physical

barriers (apart from some river systems which may act as barriers

for some taxa) within the subcontinent. As a result, for such species

we expect that phylogeographic patterns might be climatic and/or

associated with their ecologies [10].

The family Felidae (among carnivores) is particularly well

represented in India and 15 of the 36 extant species occur here

[13]. Although the felid ancestor appeared approximately 10

million years ago, most species divergences in the felid phylogeny

occurred within a span of the last three million years [14].

Obligate carnivory and the very rapid and fairly recent radiation

in felid species has resulted in a majority of species having

comparable life histories, habits and overall physiology [13,14].

Given the apparent lack of major geographic barriers in the Indian

subcontinent and the vagile nature and relatively recent evolution

of felids, we expect that any difference in phylogeographic patterns

among similar-sized species could be attributed to subtle and

specific differences in their ecology and physiology such as

tolerance to climatic factors. From a practical perspective,

considerable molecular work has been conducted on the family

as a whole, making it easier to generate genetic data on species

within this family [14].

The jungle cat (Felis chaus) and the leopard cat (Prionailurus

bengalensis) fit well within the comparative framework. The jungle

cat belongs to the house cat lineage which is sister to the leopard

cat lineage on the felid phylogenetic tree [14]. They are the two

most common wild felids in India and often occur sympatrically.

The jungle cat has morphological affinities (relatively short tail,

long legs, big pointed ears) to African cats, such as serval

(Leptailurus serval) and caracal (Caracal caracal), which may indicate a

preference for open habitats (as opposed to closed canopy forests),

whereas the leopard cat shares features (pelage color and pattern,

relatively longer tail, small rounded ears) with oriental species

which may indicate a similar preference for relatively more closed

habitats [15]. However, despite the suggestions from morpholog-

ical affinities neither cat is a habitat specialist but both are strongly

associated with water [13,15]. Though the jungle cat (average

body mass in India = 5 kg) is larger than the leopard cat (average

body mass in India = 3 kg), there is an overlap in body mass,

especially of female jungle cats and male leopard cats [15], [16].

The currently accepted distributions of the two felids show them to

be widespread and continuously distributed within India

[13,15,17], however there remain ambiguities in leopard cat

distribution and their presence in Central India is questioned

[15,16]. Given the accepted distribution for the two species and

similarities in habits and body size, we hypothesize that they would

have congruent patterns of genetic variation and structure, despite

potential differences in their ecology.

In this paper, we investigated the comparative phylogeography

of jungle and leopard cats within the Indian subcontinent. We

mainly used non-invasive samples (scat) collected from natural

habitats and mitochondrial DNA sequence analysis. Following

Moodley and Bruford (2007) [18], we tested explanatory variables

which could best explain the partitioning of genetic variation in

both species, including latitudinal ranges, subspecific taxonomy

and biogeographic classes, using the biogeographic classification

for India by Rodgers and Panwar (1988) [19]. We conducted a

niche model analysis using bioclimatic (derived from mean and

extremes of temperature and rainfall data) variables and geo-

referenced locations (latitude-longitude) for leopard cats (museum

samples, historical records, ad-hoc records authenticated from

photographs and current sampling), to explain their genetic

structure. We restricted this to leopard cats since their genetic

diversity and structure required further scrutiny. Finally, we

attempted to explain the existing genetic pattern and spatial

distribution of leopard cats in India through current and historical

climatic conditions for the region and explored how they support

the proposed vicariance hypothesis.

Materials and Methods

Sample collection
We collected scats from various biogeographic zones [19] which

represent major habitat ecoregions in India from where the two

species have been recorded. The regions covered were the

Himalayas, Upper and Lower Gangetic plains, North-East India,

Thar Desert, Semi-arid zone, Deccan Central (Central Plateau,

Eastern Highlands and Chotta-Nagpur), Deccan South and

Western Ghats (Figure 1). Apart from these, scats were obtained

from captive individuals in zoos located within these biogeograph-

ic zones.

Since some of the broad biogeographic zones could be

composed of several forest types/habitats (e.g. the Semi-arid zone

would have riverine tracts, dry deciduous forests, thorn scrub),

within each of the biogeographic zones, we sampled extensively to

cover the various habitats present. We collected scats by walking

through the habitats as well as by driving slowly (,20 km/hour)

along dirt tracts and roads, wherever possible, to cover as much

area as possible. Scats from natural habitats were collected when

encountered and stored in vials containing 90–100% alcohol.

Latitudinal and longitudinal coordinates were recorded using a

hand held Geographical Positioning System (GPS) unit. Notes on

date of collection and other important features such as presence of

tracks were also recorded. A total of 543 scats were collected from

all biogeographic zones. We surveyed several localities/districts in

each eco-region to avoid sampling related or same individuals.

Laboratory methods
Since scats collected in natural habitats could belong to several

carnivores, we had to first assign scats collected to the species of

our interest. For this we used a PCR-RFLP protocol [20] based on

the 16 s rRNA gene for a certain proportion of scats, until the

required number of scats for each species from each region was

obtained. To avoid sampling the same or related individuals (since

cats show female philopatry), as far as possible we selected scats

that were located in different districts within a biogeographic zone.

Scats that were within 5 km from each other were included only if

the sequences generated from them differed from each other (were

separate haplotypes). We had a total of 40 leopard cats and 55

jungle cat scats for further analysis.

Primers were designed using existing sequences for the two

species as well as from house cat sequences downloaded from

NCBI. Initially, we designed primers for the Control Region using

domestic cat sequences, since sequences for this region for our

study species were not available. However, two sets of primers that

amplified a total of 377 bp, worked on our species of interest but

were in the non-variable portions of the Control Region. We

sequenced 10 individuals of jungle cat from various parts of its

distribution (North-East India, Upper Gangetic Plains, South and

Central Deccan Peninsular, Western Ghats, Lower Gangetic

Plains and one from Iraq) using these primers and found no

difference between them. Hence we selected the next most

variable regions, NADH5 and cytochrome b, based on informa-

tion from Johnson and O’Brien (1997) [21]. Within these regions

we designed several primers and sequenced several individuals of

both species before choosing primers that amplified the most
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variable portion of these regions. We initially designed a primer set

for the cytochrome b region for jungle cats based on house cat

sequences. However, we later designed another primer set for the

same region which amplified a longer portion which was then used

for both species. Since we had already generated sequences for

several jungle cat individuals using the previous primer pair, we

truncated the jungle cat sequence length for the cytochrome b

region. Hence the final length of jungle cat cytochrome b region is

smaller than that of leopard cat although they are from

corresponding regions. The final set of primers we used (Table 1)

were for regions of NADH5 (362 base pairs for leopard cat and

460 base pairs for jungle cat) and cytochrome b (202 base pairs for

leopard cat and 141 base pairs for jungle cat) genes. Since most of

our work was on non-invasive samples (scat) which are relatively

poor sources of DNA, we had to amplify several small fragments of

DNA to obtain the total length required (564 base pairs for

Figure 1. Locations of scats collected in various biogeographic zones, used in the study. Red circles: leopard cat (Prionailurus bengalensis)
scats, yellow circles: jungle cat (Felis chaus) scats.
doi:10.1371/journal.pone.0013724.g001

Table 1. Details of primers used in the study.

Gene Name Sequence (59….39) Species
Amplicon
length

Annealing
temperature

NADH5 JCND5_159F JCND5_159R CCTATGCCTTTACCATCAGCA GTGCCACGGGAATGAAGAT Jungle cat 98 bp 59uC

JCND5_210F JCND5_210R CTGTGGCACTTTTCGTCA TAAAGCGGCAGTGTTTGC Jungle cat 186 bp 55uC

JCND5_4 F JCND5_4 R ATCCTCTACAACCGCATTGG AGACAGGAGTTGGGCCTTCT Jungle cat and
Leopard cat

176 bp 59uC

LepcatND5 F LepcatND5 R GACCCATATATCAACCGA GCGTTTGAGTTAGTAAGG Leopard cat 186 bp 55uC

Cyt b HCJC F
HCJC R

ATCTCAGCCTTAGCAGCA TTGTCTGGGTCTCCTAGC Jungle cat and
Leopard cat

141 bp
202 bp

50uC

LepcatCytb2 F LepcatCytb2 R CTGTCTATACATGCACGT TGGCTTTGTCTACTGAGA Leopard cat 239 bp 56uC

LepcatCytb3 F LepcatCytb3 R CATCTTAGGCCTTCTAGT GGAGGATTGGAATGATTG Leopard cat 236 bp 52uC

doi:10.1371/journal.pone.0013724.t001
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leopard cat and 601 base pairs for jungle cat). Each of our primer

pairs amplified between 100 and 200 base pairs (Table 1). We

standardized primer annealing temperatures on blood samples

obtained from captive individuals.

DNA was extracted using QIAmp (QIAGEN) tissue and stool

kits following the manufacturer’s protocols with slight modifica-

tions [22]. All extractions were carried out in a PCR-free

environment to decrease chances of contamination. Extractions

from scat and blood were carried out in separate rooms to

minimize chances of contamination from blood to feces. Since the

samples were mostly fecal, we included controls with all

extractions to monitor contamination. PCR amplifications were

carried out in 10 ml PCR reactions using a PCR master mix

(QIAGEN, Inc.), 4 mg Bovine Serum Albumin (Sigma) and 2 mM

primers using the following program: Initiation at 94uC for

10 min, followed by 94uC for 30 s, 49–60uC (annealing,

depending on the primer pair, see Table 1) for 45 s, 72uC for

50 s, followed by 10 min at 72uC, repeated for 59 cycles. All PCR

reactions included controls to monitor contamination as is

required with non-invasive samples.

Additionally, we designed primers using existing leopard cat

cytochrome b sequences [23] and compared a total of 575 bp (two

new fragments of 239 bp and 236 bp along with 100 bp of the

previously sequenced portion) of Indian sequences to sequences

from East and South East Asia. Only 5 samples (one each from the

North East, Eastern Himalayas and Western Himalayas and two

from Western Ghats) were used for this. The PCR program used

was the same as above with annealing temperatures of 56uC for

the primer pair Lepcatcytb2 and 52uC for Lepcatcytb3. This was

done only for the leopard cat since sequences of populations from

outside India were available only for this species [23].

PCR products were visualized on a 2% agarose gel and

products were purified using Exonuclease-Shrimp Alkaline

Phosphatase (0.7:1 ratio) mixture (USB Corporation) prior to

sequencing. Products were sequenced in both forward and reverse

directions using the ABI Big Dye Terminator sequencing kit in an

ABI 310 automated sequencer (Applied Biosystems).

We randomly picked some scats (that showed new haplotypes

after sequencing) and repeated the entire process from extraction

to sequencing, to check the validity of new haplotypes.

Sequence data submission
All new data has been deposited in GenBank (Jungle cat

NADH5: GU561646-GU561700; Jungle cat Cytochrome b:

GU561701-GU561755; Leopard cat NADH5: GU561756-

GU561795; Leopard cat Cytochrome b: GU561796-GU561806,

GU561808-GU561814, GU561816-GU561837). Details of sam-

ple identities, their locations and accession numbers are provided

in Table S1.

Analyses
Sequences were aligned using the program MEGA [24]. Using

combined NADH5 (303 bp) and cytochrome b (141 bp) regions

we selected unique haplotypes for both species. With the fishing

cat as outgroup, we constructed phylogenetic trees using the

software PAUP* (version 4.0) [25] and the best-fit model for

nucleotide frequencies, transition-transversion ratio and nucleotide

substitution by the Akaike Information Criterion (AIC) [26] in

ModelTest (version 3.8) [27,28]. We used the Neighbor Joining

(NJ) [29] method based on Jukes-Cantor distances with 1000

bootstrap replicates as well as the Maximum Likelihood (ML) [30]

method with 500 bootstrap replicates based on a heuristic search.

The NADH5 and cytochrome b regions were combined for

each species (jungle cat: 460 bp NADH5, 141 bp cytochrome b,

leopard cat: 302 bpNADH5, 202 bp cytochrome b) and genetic

structure was assessed through median-joining haplotype networks

[31] using the program NETWORK (version 4.5.1.0; http://

www.fluxus-engineering.com).

For leopard cats, a separate Maximum-Likelihood tree based on

a heuristic search and 500 bootstrap replicates, as well as a

Neighbor-Joining tree with Jukes-Cantor distances and 1000

bootstrap replicates were built using PAUP* with 575 bp of

cytochrome b and sequences included from the earlier study [23],

using the fishing cat as outgroup. A median-joining haplotype

network for the same dataset was also built using the program

NETWORK.

Intra-population measures of diversity (number of haplotypes,

gene diversity, nucleotide diversity (p), average pairwise difference

(hp), and number of segregating sites (hs)) were calculated for each

species using the software ARLEQUIN (Version 3.1) [32]. Genetic

structure for the two species was investigated through FST with

pairwise differences, using the analysis of molecular variance

(AMOVA). This was done for all categories of explanatory

variables including biogeographic classes, latitudinal ranges and

subspecific classification.

We followed Pocock’s 1939 [16] taxonomic classification of

subspecies for jungle cat and leopard cat. He described four

subspecies of jungle cat in India based on morphological

characters. These were F. c. affinis (Himalayas), F. c. kutas (northern

peninsular India), F. c. prateri (Thar desert) and F. c. kelaarti

(southern India). Pocock 1939 [16] split leopard cat populations in

India into two subspecies. He called the Himalayan ones P. b.

horsfieldi and clubbed the North Eastern and South Indian

populations into one called P. b. bengalensis. For latitudinal

grouping we used classes of 10uN–19.9uN, 20uN–28.9uN and

29uN-35uN that broadly defined south, central and northern India

respectively.

Tajima’s D [33] and Fu’s Fs [34] were computed with 1000

simulations, to test for neutrality and demographic history and we

used the mismatch analysis for both species, to estimate

demographic parameters of past population expansions [35]

These parameters (t, h0, and h1) estimated by a generalized

nonlinear least-square approach with confidence intervals com-

puted using a parametric bootstrap approach were obtained using

ARLEQUIN (Version 3.1) [32]. The population expands from an

initial h0 to h1 in t units of mutational time (t is also the mode of

the mismatch distribution), where h= 2Ne * m (Ne is the effective

population size for females and m is mutation rate per generation

for the sequence studied). Time since expansion (in generations)

can be calculated as t = t/2 m [32,36]. We calculated time since

expansion for the jungle cat, with 601 bp of sequence from

NADH5 and cytochrome b, an estimated mutation rate of 1.3%/

bp/million years, (combined rate of cytochrome b (1.38% MY)

[37] and NADH5 (1.22% MY) [38]) and generation time of a

year.

Furthermore, we tested if geographic and genetic distances are

correlated (isolation by distance) in the two species, using the

biogeographic and taxonomic classification for grouping popula-

tions of jungle cat and only the taxonomic classification for leopard

cats since the biogeographic grouping in this species had just two

populations. We generated geographic distances between individ-

uals using the program Geographic Distance Matrix Generator,

(Version 1.2.3) [39] and took the average distance of individuals of

one population from individuals of another. We tested for the

association between pairwise geographic and genetic distances

(FST) by conducting a Mantel test using the IBD software (Version

1.53) [40] without log transformations and with 10,000 random-

izations for obtaining values for statistical significance.

Phylogeography of Two Felids
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To explain the genetic pattern observed in leopard cat we

explored how current climatic patterns could influence its

distribution, using niche-model analysis. Geo-referenced (latitude

and longitude) unique locations of leopard cat (n = 140) were

obtained from museum specimens across the globe, from the

current study, from literature [16,23,41], as well as locations

reported by others authenticated with photographs. From details

on the specimen vouchers and labels, we verified that none of these

records were duplicated (since many of the specimens in Pocock’s

(1939) [16] literature are specimens housed in the Bombay Natural

History Society, and the Natural History Museum (London)

collections. Museum sample records were obtained by correspon-

dence, visits to some museums, from the Global Biodiversity

Information Facility (Accessed through GBIF Data Portal, www.

gbif.net,on 15th December 2008) and from the Mammal

Networked Information System (Accessed through the MaNIS

portal http://manisnet.org, on 15th December 2008). We obtained

location records from the Bombay Natural History Society,

Natural History Museum (London), Smithsonian National Muse-

um of Natural History (Washington), Field Museum, (Chicago),

Los Angeles County Museum of Natural History (Los Angeles),

University of Kansas Biodiversity Research Centre (Kansas),

Swedish Museum of Natural History (Stockholm), Museum für

Naturkunde (Berlin), California Academy of Sciences and the

University of Michigan Museum of Zoology (Michigan).

We extracted bioclimatic data from the WORLDCLIM data set

(Version 1.4, http://www.worldclim.org/bioclim.htm) [42] for

2.5 min intervals. This dataset ranging over a 50 year period (1950

to 2000) and collected over several globally located weather

stations, uses annual trends, extremes and seasonality of

temperature and precipitation to derive biologically meaningful

variables [43]. 19 bioclimatic variables (annual mean temperature,

mean monthly temperature range, isothermality (2/7 * 100),

temperature seasonality (standard deviation of monthly tempera-

ture *100), maximum temperature of the warmest month,

minimum temperature of the coldest month, temperature annual

range (5–6), mean temperature of wettest quarter, mean

temperature of driest quarter, mean temperature of warmest

quarter, mean temperature of coldest quarter, annual precipita-

tion, Precipitation of wettest month, precipitation of driest month,

precipitation seasonality (CV), precipitation of wettest quarter,

precipitation of driest quarter, precipitation of warmest quarter,

precipitation of coldest quarter) were used for the initial analyses.

Since correlation between variables can lead to model over-

fitting [44] we computed Pearson’s correlation coefficient (r)

between each pair of variables, using SPSS 16.0 statistical

software. The correlation was done by extracting climatic

information from 400 unique, randomly generated points within

the global spread of the distribution of the two cats, using DIVA-

GIS (version 7.1.7.2, http://www.diva-gis.org). We selected 8

variables that were not highly correlated to each other, using

r = 0.7 as the cut off. These were, maximum temperature of the

warmest month (Bio 5), temperature annual range (Bio 7), mean

temperature of the driest quarter (Bio 9), mean temperature of the

coldest quarter (Bio 11), precipitation of wettest month (Bio 13),

precipitation seasonality (Bio 15), precipitation of warmest quarter

(Bio 18) and precipitation of the coldest quarter (Bio 19). These

variables were selected over others because they included climatic

extremes (Bio 5, Bio 7) and others that we felt were biologically

more meaningful. We chose extreme climatic factors since these

are perhaps better ecological indicators of species distributions and

range limits than averages.

We developed distribution models using two distinct techniques,

the Maximum Entropy [45] which is a relatively more complex

and robust model [46] and BIOCLIM [47] which is simpler in its

calculations. We used the software MaxEnt (version 3.3.2) and

DIVA-GIS (version 7.1.7.2, http://www.diva-gis.org) to construct

the models. The maximum entropy approach uses a machine-

learning algorithm which assumes a uniform probability distribu-

tion for presence in the region of interest, subject to certain

constraints provided by the distribution of known presences across

environmental factors. The model is fit and improved over several

iterations. For constructing the model it uses presence data, a

background of randomly selected points that it creates from the

region of interest, and the climatic features for each point. The

final map predicts suitability of habitat as a probability of presence

where zero indicates not suitable and one is highly suitable

[45,46].

In contrast BIOCLIM is based on a heuristic search method

that measures environmental values from known locations of

species (presence-only data) to identify other areas with environ-

mental ranges that are encompassed within those envelopes.

Envelopes are computed for each climatic feature/variable with

the maximum and minimum values of the presence points. Results

are presented as habitat suitability which is derived from the

percentile of points falling within envelopes. Regions with points

that fall within all envelopes constitute the most suitable habitat

[47].

We used the following settings for the MaxEnt model: Ten

replicates in batch mode with auto features (where feature types

are selected by the program based on the training sample size),

jackknife tests, logistic output format, random test percentage

= 25, replicate run type = crossvalidate, regularization multiplier

= 1, maximum iterations = 500, convergence threshold = 0.0001

and maximum number of background points = 10,000. For the

BIOCLIM model, we used the sample point option to generate

random pseudo-absence points with ten replicates (i.e. 140

random points were generated 10 times, independently). The

training (75% of all presence points randomly drawn) and test data

(25% of total points randomly drawn) were also selected through

10 separate replicates using the same option. The training data

was run as a batch file using the BIOCLIM option after selecting

the climatic variables of interest. The envelopes were set at the

0.025 percentile cut-off level to exclude extreme climatic values

(i.e. the envelopes encompassed variation for climatic variables

corresponding to locations, within the 97.5th percentile and all

values falling outside this were excluded as outliers). Further, using

the evaluation option the training replicates were tested with the

test replicates to generate AUC values.

We evaluated and compared models from the two distinct

approaches using the Receiver Operating Curve (ROC)/AUC

(Area Under Curve) statistics. The ROC curve plots the ability of

the model to predict true presences (specificity) against its false

positives (error of commission), across all possible thresholds. The

AUC is then calculated from the ROC plot as a threshold-

independent measure of the model’s performance. Values for

AUC range from 0 to 1 where one indicates a perfect prediction,

0.5 a prediction that would be no different from random and all

values less that 0.5 would indicate poor prediction [48].

For the final maps of predicted habitat suitability from MaxEnt

and BIOCLIM all 140 unique presence data points for leopard cat

were used. In BIOCLIM all variables are given equal weights and

hence it does not have a variable weighting function, while in

MaxEnt variables are weighted (measured as gain) according to

the way they influence model fit. Hence the contribution of each

variable to the final prediction was determined only for MaxEnt.

Gain can be explained as the contribution by the variable to model

fit where an increase in gain due to the variable leads to a better
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fit. In MaxEnt, a jackknife test was performed on both training

and test data as well as for AUC on test data. This test estimates

the gain for individual variables in isolation, as well as the loss in

overall model gain when each variable is omitted. It also reports

the increase or drop in test AUC with the inclusion and exclusion

of the variable [45]. As an additional test of variable importance,

we mapped the presence locations of leopard cats with each

climatic variable.

Results

A total of 543 scats were collected from all major biogeographic

zones within the country. Our laboratory-based species identifi-

cation of scat samples revealed that jungle cat scats were found

within all biogeogoraphic zones sampled, but were rare in the

northern part of the country (Himalayas, North East and foothills)

and hence for the biogeographic grouping we had to pool the

Upper Gangetic Plains and North East samples since they are

neighboring zones. On the other hand leopard cat scats were

found only from the Himalayan zone, North East India and the

Western Ghats. In all we had a total of 55 jungle cat scats and 40

leopard cat scats (Figure 1). In the case of jungle cats there were 16

cases (pairs) where scats were less than 10 km apart (these were

from the Arid and Central Deccan zones). However, except for

three pairs (5 scats) that were within this distance from each other,

the remaining 14 pairs (of 14 scats) were all from different

individuals (their sequences differed). The five scats were from the

arid zone and were on average 6 km apart. The scats that

belonged to different individuals were from the Arid, Central

Deccan and Semi-arid zones and were between 3 km to 5 km

apart. In the case of the leopard cat there were 16 pairs (8 pairs of

5 scats from the Western Himalayas and 8 pairs of 7 scats from the

Western Ghats) that were less than 10 km apart and two of these

belonged to different individuals (inferred from haplotypes), while

the remaining were on average 8 km apart in the Western

Himalayas and 7 km apart in the Western Ghats.

The set of primers we used (Table 1) were for regions of

NADH5 (362 base pairs for leopard cat and 460 base pairs for

jungle cat) and cytochrome b (202 base pairs for leopard cat and

141 base pairs for jungle cat) genes.

Our data revealed a total of 33 haplotypes with 33 polymorphic

sites (28 transitions and 6 transversions) for jungle cat and 8

haplotypes with 11 polymorphic sites (9 transitions and 2

transversions) for leopard cat. Overall genetic diversity in the jungle

cat was higher than in leopard cat which is summarized in Table 2.

Phylogenetic analyses and haplotype networks
We built combined trees for jungle cat and leopard cat with

444 bp of NADH5 and cytochrome b, since the regions sequenced

for these genes did not coincide completely between the two

species. ModelTest revealed that the General Time Reversible

with Gamma distribution (GTR+G) model best fit the sequence

data, with the following settings: number of substitution types

= 6, user-specified substitution rate matrix = (3934011648.0000

49585004544.0000 2565318656.0000 0.0218 49585004544.0000),

assumed nucleotide frequencies: A = 0.31680 C = 0.26430 G =

0.12830 T = 0.29060, shape parameter (alpha) = 0.3442, number

of rate categories = 4, assumed proportion of invariable sites = none,

distribution of rates at variable sites = gamma (discrete approxima-

tion), representation of average rate for each category = mean.

Both ML and NJ trees revealed the same overall pattern, for

jungle cats and leopard cats. Jungle cats within India form a single

shallow, unresolved clade. Leopard cats within India separate out

into two clades, the North (Himalayan/North East) and the South

(Western Ghats). The split between the Himalayan/North East

and Western Ghats populations of leopard cat had a bootstrap

support of 93% for the ML and 100% for the NJ tree (Figure 2).

Haplotype networks were built with 601 bp (460 bp of NADH5

and 141 bp of cytochrome b) sequence for jungle cat and 564 bp

(362 bp of NADH5 and 202 bp of cytochrome b) for the leopard

cat. Figures 3A and 3B reveal relatively low structure in the jungle

cat, while the leopard cat network (Figures 3A and 3C) shows a

clear difference between the Himalayan/North East India and

Western Ghats.

We further analyzed a more global leopard cat dataset which

included Indian, East and South East Asian samples. We restricted

this only to the leopard cat since we had sequences of leopard cat

from outside India available from a recent publication [20].

Sequences of jungle cat from outside India are not available and so

we could not do a similar analysis for this species. For this leopard

cat sequence data the General Time Reversible with Invariable

sites (GTR+I) model was selected by the AIC using ModelTest.

The ML and NJ tree for 575 bp of cytochrome b revealed that the

Indian populations were close to the Thailand population.

However, both trees showed polytomy (low resolution) between

the Thailand (Southern Lineage I) and Korean/Japanese/

Taiwanese (Northern Lineage) populations and between the

Thailand and Indian populations (Figure 4). The haplotype

network for the cytochrome b region (575 bp) of leopard cat

sequence showed results that were similar to the trees where the

relationship between the Indian and Thailand populations were

not clearly resolved, with several missing haplotypes (Figure 5)

potentially due to inadequate sampling in areas like South China,

Myanmar and Orissa (India).

Genetic diversity and structure
All measures of genetic diversity (gene diversity, number of

haplotypes, nucleotide diversity and segregating sites) were higher

on an average for the jungle cat compared to the leopard cat

(Table 2). AMOVA results for the jungle cat using various models

of classification yielded similar results, with FST’s of 0.10, P,0.05

(latitudinal classification), 0.11, P,0.05 (taxonomic) and 0.12,

P,0.05 (biogeographic) (Table 3). However, for the leopard cat a

higher differentiation between groups was obtained using the

biogeographic approach that generated a FST of 0.86 (P,0.05) as

compared to a FST of 0.32 (P,0.05) for the taxonomic

categorization (Table 3).

Using the biogeographic classification for the jungle cat, the

maximum differentiation was seen between the South Deccan and

Upper Gangetic Plains/North East populations which showed an

Table 2. Overall genetic diversity for jungle cat and leopard
cat populations in India.

Jungle cat Leopard cat

N 55 40

Base pairs 601 564

Haplotypes 33 8

Gene Diversity 0.976+/20.008 0.793+/20.039

Nucleotide Diversity (p) 0.007+/20.003 0.005+/20.003

h p 3.452+/21.985 3.074+/21.814

h s 7.212+/22.283 2.601+/21.061

Tajima’s D (P) 21.725 (0.02) 0.648 (0.781)

Fu’s F (P) 226.04 (0.00) 0.813 (0.657)

doi:10.1371/journal.pone.0013724.t002
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FST of 0.29 (P,0.05) followed by the South Deccan and Semi arid

populations (FST = 0.23, P,0.05) (Table 4). Differences were also

seen between the Central Deccan/Lower Gangetic Plains and

Upper Gangetic Plains/North East (FST = 0.17, P,0.05), Western

Ghats and Thar (FST = 0.12, P,0.05), South Deccan and Thar

(FST = 0.19, P,0.05), Central Deccan/Lower Gangetic Plains and

Thar (FST = 0.1, P,0.05) and Upper Gangetic Plains/North East

and Thar (FST = 0.16, P,0.05) populations (Table 4).

The taxonomic classification for jungle cat showed significant

structuring between, F. c. affinis (Himalayan population) and F. c.

kelaarti (South Indian population) with (FST = 0.2, P,0.05), F. c. affinis

and F. c. kutas (Central Indian population) (FST = 0.12, P,0.05), F. c.

prateri (Thar desert population) and F. c. kelaarti (FST = 0.14, P,0.05)

and F. c. prateri and F. c. affinis (FST = 0.16, P,0.05).

The latitudinal gradient classification showed significant

structuring between all classes (10uN–19.9uN and 20uN–28.9uN:

FST = 0.05, P,0.05; 10uN–19.9uN and 29uN–35uN: FST = 0.19,

P,0.05; 20uN-28.9uN and 29uN-35uN: FST = 0.12, P,0.05).

The biogeographic/ecoregion classification for the leopard cat

revealed FST’s of 0.9 and 0.91 (P,0.05) between the Himalaya

and Western Ghats and the North East and Western Ghats

populations, respectively (Table 5). The Himalayan and North

East populations showed an FST of 0.3 (P,0.05). The taxonomic

grouping for leopard cats showed a significant FST of 0.32

(P,0.05) between P. b. horsfieldi and P. b. bengalensis.

Both Tajima’s D (21.725 P,0.05) and Fu’s F (226.04,

P,0.05) values were negative and significant in jungle cat

implying an excess of rare haplotypes (Table 2). On the other

hand, the pooled leopard cat data showed non-significant, low

positive values for Tajima’s D and Fu’s F (Table 2). Mismatch

analyses were unimodal, with an average of 3.5 pairwise

differences for jungle cat and bimodal (with peaks at 1 and 6

pairwise difference) for the leopard cat (Figure 6A and B; Table 6).

Since a unimodal peak of the mismatch distribution and

significant, negative values of Tajima’s D and Fu’s F indicate

population range expansion, we also estimated the time since

expansion for the jungle cat. Time (in generations) since expansion

can be calculated as t/2 m [32,37,38] where t corresponds to the

mode of the mismatch distribution and m is the mutation rate per

generation for the sequence under study. The generation time for

jungle cats was assumed to be one year. Based on a mutation rate

of 1.3%/bp/million years (combined cytochrome b (1.38% MY)

[37] and NADH5 (1.22% MY) [38], 601 bp of sequence (NADH5

and cytochrome b) and t values between 2.605 and 4.24 (Table 6),

our estimates of the range expansion for jungle cat in India dates

to the mid Pleistocene (166,709 to 271,342 years ago).

Figure 2. Phylogenetic tree of Indian populations of jungle cat and leopard cat. Phylogenetic relationships using mtDNA sequences of 55
jungle cats (Felis chaus) and 40 leopard cats (Prionailurus bengalensis) (303 bp NADH5, 141 bp cytochrome b) from India. The trees are rooted with
fishing cat (Prionailurus viverrinus). The Maximum-Likelihood (-ln L = 970.60524) tree was constructed using PAUP*, heuristic search with 500
replicates, the GTR+G (General Time Reversible with Gamma distribution) model and empirically derived nucleotide frequencies. The Neighbor-
Joining tree was constructed with PAUP* using Jukes-Cantor distances and 1000 bootstrap replicates. The tree presented is the Maximum Likelihood
tree. The Neighbor-Joining tree showed an identical topology. Numbers indicate bootstrap support in percent (ML/NJ).
doi:10.1371/journal.pone.0013724.g002
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Jungle cats showed significant isolation by distance for both the

biogeographic (6 groups, r = 0.59, p,0.05) and taxonomic (4

groups, r = 0.95, p,0.05) groupings. Only the taxonomic

grouping could be used for leopard cats for testing isolation by

distance since there were only two groups in the biogeographic

grouping for this species. The taxonomic grouping showed a very

high correlation but the results were not significant (3 groups,

r = 0.99).

Niche model analysis
Both approaches, BIOCLIM and MaxEnt had similar outputs

for leopard cat and predicted the Central Indian region to be

unsuitable habitat for the species, implying a break in geographical

distribution (Figure 7). The mean value of the Area Under Curve

(AUC) of the Receiver Operating Characteristic (ROC) for the test

data of ten models using BIOCLIM was 71.2% (range: 62.8% to

75.2%). For the ten MaxEnt models the mean AUC for the

training data was 88.5% (range: 87.7% to 90.2%) while for the test

data, mean AUC was 83.8% (range: 79.8% to 87.1%).

Since BIOCLIM does not have a variable weighting function

(since all variables are given equal weights), variable importance

could only be determined from MaxEnt. The highest percentage

contribution towards model fitting was from the variable, annual

temperature range which had a contribution of 44.9% followed by

the precipitation of the warmest quarter (14.7%), precipitation of

the wettest month (13.9%), maximum temperature of the warmest

month (8.3%), precipitation of the coldest quarter (7.8%), mean

temperature of the coldest quarter (4.8%), precipitation seasonality

(3.5%) and mean temperature of the driest quarter (2%).Jackknife

tests showed Bio 7 to have the most useful information and Bio 18

to have information that other variables do not have. Bio 7 also

contributed maximally towards the AUC estimate for the test data.

Marginal response curves (models constructed using one variable

at a time) were sharper for temperature variables as compared to

precipitation (Figure 8). Both Bio 7 and Bio 5 showed sharp

declines in marginal response curves at higher values (Bio 7 at

temperature ranges above 15 and Bio 5 at approximately

temperatures above 32uC However, a comparison of marginal

response curves with response curves (models constructed by

altering each variable at a time while keeping all others at their

average values) reveals correlations and interactions between

variables (Figure 8).

Maps of various climatic variables with leopard cat locations

show that the maximum temperature in the warmest month (Bio

5) explained leopard cat distribution most unambiguously and

matched the predictions of the niche model best. An upper

threshold of 35uC for the maximum temperatures in the warmest

month was inferred from this map, beyond which leopard cat

Figure 3. Haplotype networks. 3A Biogeographic regions of India corresponding to haplotypes. 3B. Median Joining haplotype network for 55
jungle cats (Felis chaus) with 460 bp NADH5 and 141 bp cytochrome b. 3C. Median Joining haplotype network for 40 leopard cats (Prionailurus
bengalensis) with 362 bp NADH5, 202 bp cytochrome b. Bars on branches denote number of substitutions between connected haplotypes. Size of
circle denotes number of individuals in the haplotype. Small circles are missing haplotypes.
doi:10.1371/journal.pone.0013724.g003
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locations were very sparse (Figure 9). The mean value for Bio 5

associated with presence points was 29.47uC (95% Confidence

Interval: 28.65uC to 30.29uC, n = 140). There are no records of

leopard cats in regions where summer temperatures exceed 38uC.

None of the other maps of climatic variables explained the

distribution pattern as well.

Discussion

Given their recent evolutionary history, broad distribution,

vagile nature, and relatively similar ecologies, we expected that

leopard cats and jungle cats would have similar patterns of genetic

variation across the Indian subcontinent. However, our analyses

revealed a stark difference in genetic variation and population

structure between the two species. While the jungle cat, as

predicted, shows high variation and significant but relatively low

structure, the leopard cat is deeply structured into two populations.

Most importantly, our results resolved the ambiguity surrounding

leopard cat distribution in India by showing that the North and

South Indian populations are not connected. Although the niche

models show some very small patches of suitable habitat (albeit

with very low suitability) for leopard cat in Central India, in and

around Kanha Tiger Reserve, our sampling in Kanha did not

yield any positive result for this species. Moreover, though some

reports suggest the occurrence of leopard cat in Kanha, these are

unauthenticated and there is no photographic evidence of the

presence of this species there. Suitable habitats not occupied by the

species can be explained by the inability of the species to reach or

persist there due to barriers or inter-specific competition [49].

However, reports of the possible absence of leopard cats from

Central and Western India do exist [15–17]. Despite the

hypothesized absence, there was no mention of the two

populations being disjunct and Pocock (1939) [16] even clumped

the North-East Indian and South Indian populations as one,

stating its distribution within India as ‘Peninsular India’. However,

conventional field surveys cannot confirm absence since the

Figure 4. Maximum Likelihood tree of cytochrome b for leopard cats, rooted with fishing cat. Phylogenetic relationships of the global
population of leopard cats (Prionailurus bengalensis) using 575 bp of cytochrome b sequence. The tree is rooted with fishing cat (Prionailurus
viverrinus). The Maximum-Likelihood (-ln L = 1148.87045) tree was constructed using PAUP* and heuristic search with 500 replicates and the GTR+I
(General Time Reversible with Invariable sites) model and empirically derived nucleotide frequencies. The Neighbor-Joining tree was constructed with
PAUP* using Jukes-Cantor distances and 1000 bootstrap replicates. The tree presented is the Maximum Likelihood tree. The Neighbor-Joining tree
showed an identical topology. Numbers indicate bootstrap support in percent (ML/NJ). Sequences outside India were generated by Tamada et al.
(2008) [20].
doi:10.1371/journal.pone.0013724.g004
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inability to obtain positive records need not prove absence and the

current distribution map provided by the Red List of Threatened

Species [17] shows connectivity. Although we could not sample

the Central Indian region intensively, we sampled areas that

covered a wide range of habitats and climatic conditions (e.g.

Kuno-Palpur to the west which was predominantly dry deciduous,

Kanha which has a range of habitats from moist and dry

deciduous forests to meadows, Nannaj which is predominantly

agriculture and grassland). Leopard cats occupy a large range of

habitats [13,15,41] and hence we believe our sampling was not

biased against the species. We believe that the lack of specificity of

habitat led many researchers and naturalists to extrapolate their

range across peninsular India without any substantial evidence for

doing so. Our results support earlier inferences of possible absence

of leopard cats from Central India and further show the limits of

distribution for this species within India with the Himalayan and

the North-East Indian populations being more similar to each

other than either of them is to the Western Ghats one. An

additional support of our hypothesis comes from the total absence

of any museum records of leopard cats from that region of India.

Although the FST values for jungle cat were relatively low (as

compared to the leopard cat) they were significant and showed a

low level of structuring which was not at all captured in the very

shallow and unresolved phylogenetic tree and this could be a

consequence of short and insufficient sequence lengths. On the

other hand this was a comparative study and similar regions of

DNA for leopard cat showed a contrasting pattern with strong

phylogenetic separation between populations and significant

population structuring. The pitfalls of using only mtDNA include

effects of social organization such as female philopatry that could

impact phylogeographic patterns, [50–52]. The occurrence of

female philopatry in solitary, polygynous species has been

documented and discussed widely [53–55], and has been

demonstrated empirically in some cats [15,56,57] though not

specifically in leopard cats and jungle cats. Leopard cat social

organization follows the typical felid, polygynous system of one

male holding a large territory encompassing several smaller female

territories [15]. The jungle cat has not been studied from that

perspective but since its close relatives (wild cat: Felis silvestris and

black footed cat: Felis nigripes) [15,56] follow the pattern it is very

likely that jungle cat social organization adheres to the typical felid

one, with no reason to believe otherwise. The expected similarity

in social organization and dispersal along with similar body sizes

for the two species discussed in our paper enables comparison

despite using a one linked, maternally inherited marker.

Morphological plasticity or convergence in traits could possibly

be the reason why the classical taxonomic grouping (which largely

relied on morphological traits) did not perform as well in

predicting genetic variation for the leopard cat. However, a

combination of the three approaches explained the jungle cat

pattern well.

In the case of the jungle cat, the biogeographic and taxonomic

groupings showed similar results of significant but relatively low

differentiation between populations (Tables 3 and 4). The desert

population (Thar in the biogeographic approach or F. c. prateri in

the taxonomic approach) and Upper Gangetic Plains/North East

populations (F. c. affinis) showed high differentiation with all other

groups. All three (biogeographic, taxonomic and latitudinal)

approaches showed high differentiation between the Southern

Indian (F. c. kelaarti, S. Deccan, latitudinal range: 10–19.9o N) and

Figure 5. Median-Joining haplotype network for leopard cats (Prionailurus bengalensis) with cytochrome b (575 bp). Bars on branches
denote number of substitutions between connected haplotypes. Size of circle denotes number of individuals in the haplotype. Small circles are
missing haplotypes.
doi:10.1371/journal.pone.0013724.g005

Table 3. AMOVA results for both species given different
explanatory variables.

Species Biogeographic/ecoregion Taxonomic
Latitudinal
ranges

Jungle cat
(n = 55)

0.12* 0.11 * 0.1 *

Leopard cat
(n = 40)

0.86 * 0.32 * -

*significance at P,0.05.
doi:10.1371/journal.pone.0013724.t003
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the Upper Gangetic Plains/North East (F. c. affinis, Upper

Gangetic Plains/North East, latitudinal range: 20–28.9o) popula-

tions, suggesting isolation by distance. From the biogeographic/

ecoregion and the taxonomic approach it appears that the Central

Indian population or F. c. kutas (which occurs throughout Central

India) separates the Thar (F. c. prateri) from the rest and also the

South Indian (F. c. kelaarti) populations from the Upper Gangetic

Plains/North East (F. c. affinis). The Central Indian populations

are genetically closer to the southern populations than to the

northern, Upper Gangetic Plains/North East populations as

shown by all the approaches.

Relatively low population structure, a shallow phylogenetic tree

despite high genetic variation, a star-like network, hs.hp, high

negative and significant values of Fu’s F and Tajima’s D, and the

unimodal mismatch fit (Figure 2, Figure 3 and Figure 6; Table 2

and Table 6) implicate population expansion for the jungle cat,

which we suggest corresponds to a range expansion within India.

This range expansion dates to the mid Pleistocene (166,709 to

271,342 years ago) based on the mismatch distribution. It is

possible that the jungle cat colonized India from a dry, hot region

to the west, and as suggested by the genetics does not face (either

in the past or in present time) many barriers to its dispersal within

the country (except in the higher altitudes of the Himalayas).

However, FST values though relatively low are significant and

some structuring is apparent, following an isolation by distance

pattern. A study at finer scales and at the population level, using

larger sequence lengths and nuclear data are required to identify

factors contributing to this structure (social organization, compe-

tition, prey distribution, adaptation or physical barriers to

dispersal) [58]. From natural history notes on its habitat and

habits, it appears that this cat is limited by the combined

availability of open habitats and water in the form of perennial

water bodies [13,15,59]. Other ecological parameters such as

competition from similar sized cats, along with genetic information

from across its global range could perhaps further explain limits to

its distribution.

In contrast, the leopard cat shows strong population structure,

with the North Indian population separated from the Western

Ghats one almost completely with an FST of 0.86 (Table 3). Such

strong genetic difference suggests a break in their spatial

distribution implying a barrier to their dispersal. From MaxEnt

results and a visual interpretation of maps and response curves, the

barrier appears to be influenced more by temperature than

precipitation. MaxEnt picked out the annual temperature range

(Bio 7) as the most influential variable describing leopard cat

distribution while maps of each climatic variable showed

maximum summer temperatures to be highly correlated to

distribution limits. Although at the onset we selected variables

that were not highly correlated to each other, a closer look at

response curves (Figure 8) shows considerable interaction between

variables and the effect of precipitation on distribution cannot be

totally ignored. Maximum summer temperatures show a stable

probability of presence that suddenly drops after around 32uC.

Despite annual temperature ranges being very high in the higher

latitudes (e.g. along the Himalayas), leopard cats do occur there

and both models show the region to be suitable habitat. On the

contrary, similar temperature ranges in lower latitudes around

Central India show unsuitable habitat. Seemingly, leopard cats are

less tolerant of wide annual temperature ranges especially in

regions where summer temperatures are high. There are no

records of leopard cats in regions that have summer temperatures

above 38uC.Nevertheless, our results are correlational and

hypothetical and there are likely to be other ecological variables

such as competition and habitat alterations that could have a

larger causal role in explaining leopard cat distribution.

These results have very strong conservation implications for the

leopard cat. The IUCN currently recognizes the Indian popula-

tion as one that is contiguous with the Asian mainland population

and has categorized it as Least Concern, although it is listed in

Appendix I of CITES due to the large illegal trade for its pelt [17].

The phylogenetic trees show the two populations within India to

be reciprocally monophyletic. Since the leopard cat is also absent

from Sri Lanka [15–17] our genetic data suggest that the Western

Ghats population is effectively an island population, separated by a

large geographic distance from any other leopard cat population.

Further analyses with autosomal markers (microsatellites) are

required to authenticate these inferences. The haplotype network

reveals only two haplotypes for this island population. This

‘‘pruned’’ genetic variation could be the result of a bottleneck due

to climatic change and extinctions (invoking vicariance) or a

founder effect (dispersal and colonization). Irrespective of what

caused low variation in this population, the fact that it is

geographically isolated and harbors low variation strongly

advocates special conservation attention for southern Indian

leopard cats.

Table 4. AMOVA results: jungle cat with the Biogeographic/ecoregion approach.

Biogeographic region
W Ghats
(n = 7)

S. Deccan
(n = 8)

C. Deccan-Lower Gangetic
Plain (n = 13) Semi Arid(n = 8)

Upper Gangetic Plain
North-East(n = 10)

S. Deccan 0.09

C. Deccan-Lower Gangetic Plain -0.01 0.03

Semi Arid 0.06 0.23* 0.08

Upper Gangetic Plain-North East 0.09 0.29* 0.17* 0.04

Thar (n = 9) 0.12* 0.19* 0.10* 0.03 0.16*

*significance at P,0.05.
doi:10.1371/journal.pone.0013724.t004

Table 5. AMOVA results: leopard cat with Biogeographic/
ecoregion approach.

Biogeographic region
Himalaya
(n = 19)

North East
(n = 9)

North East 0.30*

Western Ghats
(n = 12)

0.90* 0.91*

*significance at P,0.05.
doi:10.1371/journal.pone.0013724.t005
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Although the niche-modelling now allows us to hypothesize a

currently disjunct distribution for the leopard cat, it is still not

known when, where and why the break came about. Through

vegetation studies it has been inferred that during the Last Glacial

Maximum (LGM: approximately 23,000 to 18,000 years BP) large

parts of India and Pakistan became more arid and hot [60–64],

suggesting a role for this climatic event in the genetic pattern we

observe for leopard cats.

Based on our results and inferences from niche modeling, we

attempt to explain our genetic data on leopard cats through

vicariance. The leopard cat may have come into India from the

east and in the past would have occurred all through the cooler

parts of India. The phylogenetic tree and haplotype network for

the global population of leopard cat, though unresolved, show a

link between the Thailand and Indian populations. However, due

to the effects of the Quaternary glaciations (drying and heating up

of the subcontinent) they might have retreated to refugia,

explaining the current distribution. Though debatable, this

explanation has been offered for many mammalian species that

have distributions restricted to the Himalayas and Western Ghats,

such as the tahr (Himalayan: Hemitragus jemlahicus, Nilgiri:

Nilgiritragus hylocrius) and marten (Himalayan: Martes foina, Nilgiri:

Martes gwatkinsii) [10]. Such a historical scenario would also suggest

that leopard cats moved into South India after the bridge between

Figure 6. Mismatch distribution analysis of mitochondrial DNA. 6A. Jungle cat (Felis chaus) (n = 55 individuals, 601 bp consisting of 460 bp
of NADH 5 and 141 bp of cytochrome b). 6B. Leopard cat. (Prionailurus bengalensis) (n = 40 individuals, 564 bp consisting of 362 bp of NADH 5 and
202 bp of cytochrome b).
doi:10.1371/journal.pone.0013724.g006

Table 6. Fitting of mismatch distribution to a sudden expansion model.

Taxon Mismatch mean
SSD
(P)

t
(95% CI)

h0

(95% CI)
h1

(95% CI)
Harpending’s
raggedness index (P)

Jungle cat 3.452 0.004
(0.136)

3.543
(2.605–4.240)

0.000
(0.000–0.693)

99999.0
(20.133–99999)

0.037
(0.094)

Leopard cat North
India

0.942 0.015
(0.146)

1.084
(0.492–2.291)

0.000
(0.000–0.028)

99999.0
(1.874–99999)

0.138
(0.100)

Leopard cat
South India

0.303 0.236
(0.142)

2.982
(0.000–7.982)

0.900
(0.000–6.589)

3.600
(0.908–99999)

0.247
(0.402)

doi:10.1371/journal.pone.0013724.t006
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Sri Lanka and India ceased to exist, approximately 15,000 years

ago [16] and hence could not cross over to Sri Lanka. The

divergence between the North Indian and South Indian leopard

cat clades would then have to be relatively recent (less than 15000

years). However, the observed genetic differences between the

North Indian and South Indian leopard cat populations suggest a

potentially longer-term separation. Greater sequence length and

nuclear markers such as microsatellites and samples from

populations in Orissa (India) [65], Myanmar, South China and

Thailand (that were not covered in the current or past study [23])

and time to most recent common ancestor (TMRCA) calculations

would allow us to quantify the divergence time between these

populations. Alternatively missing haplotypes shown in the

network could have been lost due to evolutionary processes like

lineage sorting or population isolation followed by drift. It is also

possible that the leopard cat did cross over to Sri Lanka but was

not able to establish itself or persist there due to an earlier presence

of other similar sized cats such as the jungle cat and the rusty

spotted cat (Prionailurus rubiginosa).

Several island populations of leopard cats are known to occur

and have been assigned sub-specific status [17,23]. However, the

presence of an island population within a mainland is interesting.

Such distributions have been reported for other felids e.g. fishing

cat (Prionailurus viverrinus) [13]. Vicariance due to topographical

features are often sought to explain breaks in species distributions.

However, for many larger bodied species, barriers may not be

Figure 7. Niche model analysis with climatic data for leopard cats. Niche model analysis for the global population of leopard cats
(Prionailurus bengalensis), predicting suitable versus unsuitable habitats using BIOCLIM and MaxEnt algorithms. Analyses included 140 unique records
of leopard cat locations (black dots) obtained from museum records, literature and current study and 8 variables of temperature (annual range,
maximum summer, mean of the driest and coldest quarter) and precipitation (wettest month, seasonality, warmest and coldest quarter). Climatic
data was obtained from the WORLDCLIM data set [42] for 2.5 min intervals. 7A. BIOCLIM model showing habitat suitability for leopard cats as a
percentile of occurrences. Blue is unsuitable habitat, while red is excellent habitat. 7B. MaxEnt model showing habitat suitability for leopard cats as a
probability of occurrence where blue indicates very low probabilities and red indicates high probability.
doi:10.1371/journal.pone.0013724.g007

Figure 8. Response curves of MaxEnt models of habitat suitability for leopard cat (Prionailurus bengalensis) to predictor variables.
8A. Models constructed by altering each variable at a time while keeping all others at their average values. Response curves presented as means of
10 replicates with standard deviation in blue. 8B. Models constructed using only one variable at a time. Response curves presented as means of 10
replicates with standard deviation in blue.
doi:10.1371/journal.pone.0013724.g008
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obvious unless global distributions are taken into account. In our

study a climatic barrier, suitably explains the adaptive potential,

distribution and genetic variation of an otherwise common species.

Our study reiterates the view that a comparison across related

species with seemingly similar requirements not only brings out the

biogeographic history of the region but also important details of

adaptive thresholds and current barriers to dispersal. Furthermore,

the distribution of the leopard cat in India was not clear until

combined results of historical records, genetic data and niche

modeling showed a clear break in their distribution.

In this paper, we show that two seemingly similar species have

strikingly different phylogeographic patterns. Further, we suggest

that these differences could be due to interactions between habitat

preference and climatic transitions in the past. The Indian

subcontinent supports a variety of habitats with a complex

geological and paleoclimatic history. Our results underscore the

point that given this finding a single paradigm to explain patterns

of genetic diversity in this region, in the manner that the

glaciations have for Europe and North America [4,5,12], might

prove difficult. Our study does indicate that ecological thresholds

(climatic, physiological, habitat) and the strength of these

thresholds in limiting and restricting distributions are perhaps

good predictors of genetic variation and structuring. Although

ecological thresholds are complex and difficult to estimate, proxies

combining climatic and habitat variables (wet/dry, cold/hot,

open/closed) that describe a species range, could perhaps be good

indicators of thresholds, for larger bodied mammals. Additionally,

given India’s location at the confluence of major biogeographic

realms, understanding phylogeographic patterns in this region

might help predict patterns of genetic variation and the impact of

species ecology on such variation for widely distributed species

elsewhere. Such studies will not only enhance our understanding

of specific species, but also contribute to a deeper understanding of

the relative importance of species ecology and evolutionary history

in determining present distributions, and possibly allow prediction

of future responses of species to changing environments.

Supporting Information

Table S1 Sample identities with accession numbers and

localities.

Found at: doi:10.1371/journal.pone.0013724.s001 (0.15 MB

DOC)
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