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Abstract

Background: MicroRNAs (miRNAs) are small, single stranded RNAs with a key role in post-transcriptional regulation of
thousands of genes across numerous species. While several computational methods are currently available for identifying
miRNA genes, accurate prediction of the mature miRNA remains a challenge. Existing approaches fall short in predicting the
location of mature miRNAs but also in finding the functional strand(s) of miRNA precursors.

Methodology/Principal Findings: Here, we present a computational tool that incorporates a Naive Bayes classifier to
identify mature miRNA candidates based on sequence and secondary structure information of their miRNA precursors. We
take into account both positive (true mature miRNAs) and negative (same-size non-mature miRNA sequences) examples to
optimize sensitivity as well as specificity. Our method can accurately predict the start position of experimentally verified
mature miRNAs for both human and mouse, achieving a significantly larger (often double) performance accuracy compared
with two existing methods. Moreover, the method exhibits a very high generalization performance on miRNAs from two
other organisms. More importantly, our method provides direct evidence about the features of miRNA precursors which
may determine the location of the mature miRNA. We find that the triplet of positions 7, 8 and 9 from the mature miRNA
end towards the closest hairpin have the largest discriminatory power, are relatively conserved in terms of sequence
composition (mostly contain a Uracil) and are located within or in very close proximity to the hairpin loop, suggesting the
existence of a possible recognition site for Dicer and associated proteins.

Conclusions: This work describes a novel algorithm for identifying the start position of mature miRNA(s) produced by
miRNA precursors. Our tool has significantly better (often double) performance than two existing approaches and provides
new insights about the potential use of specific sequence/structural information as recognition signals for Dicer processing.
Web Tool available at: http://mirna.imbb.forth.gr/MatureBayes.html
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Introduction

MicroRNAs (miRNAs) are small, usually 19–27 nucleotides

long, single-stranded RNAs that are generated from endogenous

hairpin shaped transcripts [1]. MicroRNAs function as regulatory

molecules in post-transcriptional gene silencing by base pairing

with target mRNAs, leading to mRNA cleavage or translational

repression, depending on the degree of complementarity between

the miRNA and its target transcript.

Although miRNAs are functionally similar to short interfering

RNAs (siRNAs), they are unique in terms of their biogenesis.

MicroRNA genes are most likely transcribed by RNA polymerase

II into pri-miRNAs which are long, double-stranded, unstructured

precursors with a cap on the 59 end and a Poly(A) tail on the 39

end [2,3]. In most cases, the pri-miRNA is enzymatically

processed by the Microprocessor complex (Drosha and cofactor

DGCR8/Pasha) into the precursor miRNA (or pre-miRNA), a

stem-loop structure of about 60–100 nucleotides with a 2

nucleotide overhang on the 39 end [4].

In mammals, pre-miRNAs are transported to the cytoplasm by

Exportin-5, a nucleus export factor, in a Ran-GTP dependent

manner [5,6]. After being exported from the nucleus, pre-

miRNAs are processed into approximately 22 nucleotide long

miRNA duplexes with a 39 2 nucleotide overhang by the

cytoplasmic RNase III, Dicer [7]. Dicer is a highly conserved

protein that is found in almost all eukaryotic organisms.

Following the pre-miRNA processing by Dicer into a miRNA:

miRNA* duplex, one (or both) of the RNA strands is

incorporated into RISC for target recognition. RISC is composed

of Dicer, Argonaute (AGO) and other non-specified proteins. The

functional (or mature) miRNAs base-pair with their mRNA

targets, leading either to mRNA degradation, if there is sufficient

complementarity between the miRNA and the target mRNA, or

to translational repression [8,9].
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A large body of experimental findings indicates that the

regulatory action of miRNAs is essential for most organisms as

these tiny molecules play a central role in processes like

developmental timing [10], apoptosis [11], cell proliferation and

differentiation [12,13], as well as numerous diseases (for a review

see [14]) and anti–viral defense [15]. Thus, over the last decade,

significant amount of effort has been devoted to finding and

characterizing the function of miRNAs across multiple organisms

[16–20].

The main experimental approaches for the identification of

mature miRNAs include forward genetics (traditional cloning) and

the use of small RNA libraries [16–20], both of which suffer from

numerous shortcomings. A common limitation of all cloning

approaches is the difficulty to find miRNAs that are expressed at

low levels and/or specific tissues or developmental stages.

Moreover, certain miRNAs may be hard to clone due to physical

properties such as sequence composition, or to post-transcriptional

modifications, such as editing or methylation [16]. Forward

genetic approaches on the other hand are relatively inefficient due

to the small size of miRNAs and their potential tolerance to

mutations that do not affect the ‘‘seed’’ region. Such mutations

make miRNA genes difficult-to-hit targets in spontaneous or

induced mutagenesis. Since the seed region (positions 2{8 of the

miRNA) is critical for finding respective gene targets, accurate

identification of the start position of the mature miRNA within a

miRNA precursor is of major importance.

A number of computational methods have recently been

developed to counteract these limitations and complement

experimental approaches (for a review see [20]). Most of these

methods, however, focus on the discovery of either novel miRNA

genes in the genomes of various species or possible mRNA targets

of the known miRNAs [19,21]. On the contrary, few attempts

have been made to computationally predict the functional part of

the miRNA precursor, namely the mature miRNA [22–26]. More

importantly, existing tools suffer from a number of shortcomings

which limit their applicability. These include inaccurate hypoth-

eses, such as the assumption that every hairpin structure produces

just a single mature miRNA [22,23] or that pri–miRNAs are

always processed by the Drosha complex, whose cleavage cite

determines the start position of the mature miRNA [24,27].

Evaluation of performance is also problematic as it is often

measured in terms of true positive rate alone, ignoring the number

of false positives [25,26].

In this work we introduce a computational method, called

MatureBayes, that uses a Naive Bayes Classifier (NBC) to predict the

start position of the mature miRNA on human and mouse miRNA

precursors. The generalization ability of the model on experimen-

tally verified miRNAs from two other species (Drosophila melanogaster

and Zebrafish) is also assessed. It should be noted that precursors

downloaded from miRBase do not necessarily correspond to the

actual miRNA precursors. Specifically, each entry in the miRBase

Sequence database represents a predicted hairpin portion of a

miRNA transcript, with information on the location and sequence

of the mature miRNA sequence. In this work we use only

experimentally verified mature miRNAs and their corresponding

precursors. The model utilizes information about the sequence

and structure of miRNA precursors and takes into account both

positive and negative examples in order to identify the start

position of either the mature miRNA(s) (assuming the functional

strand is known) and/or the miRNA:miRNA* duplex. The

importance of specific positions along the miRNA precursor

sequence as predictive features and their potential role in Dicer

processing is also investigated. Comparison with existing tools is

performed on a common blind set by contrasting the respective

distance distributions of the computational predictions from true

mature miRNAs.

Materials and Methods

Datasets
Experimentally verified human and mouse mature miRNAs

from the miRBase database (version 14) (http://www.mirbase.org)

were used to train and evaluate our model. Human and mouse

data were combined in order to generate a large enough dataset

for optimizing the model’s performance. The training set consisted

of 533 human precursors producing 729 mature miRNAs and 422

mouse precursors producing 530 mature miRNAs, respectively

(miRBase database version 10.1). The evaluation dataset (hereby

termed Test Set I) consisted of 188 human precursors producing

197 mature miRNAs and 141 mouse precursors producing 148

mature miRNAs, respectively. There was no overlap between the

evaluation and training sets as the latter contained miRNAs added

in versions 11–14 of miRBase database. Moreover, precursor

sequences in the evaluation set had low similarity (on average

32:9%+8%) with the sequences used in the training set, in an

attempt to avoid over-fitting. To test our model’s generalization

performance on other species, a second evaluation data set (hereby

termed Test set II) was also used, consisting of 218 Zebrafish

precursors producing 253 mature miRNAs and 51 Drosophila

melanogaster precursors producing 54 mature miRNAs, respectively.

This dataset consisted of miRNAs (mirBase database version 14)

whose mature sequences have been experimentally verified in the

species of interest (Zebrafish or Drosophila melanogaster) and at least

one other organism listed in miRBase, using the search algorithm

blastn with evalue ƒ0:0001 as a similarity criterion.

Overall, only experimentally verified mature miRNAs were

used to form the positive class in both training and evaluation

datasets. Negative examples were generated from the respective

precursor sequences based on the observation that known miRNA

precursors do not produce multiple overlapping mature miRNAs

from the same arm of the fold-back precursor [28]. Specifically, for

each verified mature miRNA, we used a same-size sliding window

and selected all possible sequences which could be created by

sliding 1 base pair towards either direction from the verified

mature miRNA over the precursor sequence, excluding any

hairpin loops. This procedure resulted in a very large negative set,

where each mature miRNA had a variable number of corre-

sponding negatives, depending on the number of precursors that

produce this miRNA and their length. To reduce execution time

while maintaining a good representation of the negative class, we

decided to use a randomly selected subset of negative examples for

each mature miRNA. Specifically, we used a ratio of 1 positive to

10 negative examples, as this was the largest ratio for which there

was no change in the estimated probability distributions for the

negative class features (see section Representation of Biological

Features used in the Classifier).

Naive Bayes Classifier
Naive Bayes is a simple probabilistic classifier which is based on

the application of the Bayesian theorem with strong (naive)

independence assumptions. Classification is performed by assign-

ing each sample to the a posteriori most probable class, considering

that the input features of a sample of any given class are

conditionally independent given the class [29]. Specifically, the

output of NBC is the ratio between the posterior probabilities of a

sequence for belonging to the positive class versus the negative

class. In this work, we primarily exploit the ranking capabilities of

naive Bayes classifiers [30] rather than the classification ones, in

Mature miRNA Prediction
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order to provide the most probable mature miRNA candidate(s)

within a miRNA precursor sequence. This is achieved by ranking

all sliding window sequences within a precursor according to the

NBC output and selecting the top ranking candidate (i.e. the Top

Scorer) as the predicted mature miRNA (i.e. the computational

truth).

The classification performance of the naive Bayes model is

optimized according to the Area Under the Receiver Operating

Characteristic (ROC) curve (AUC), using the threshold averaging

algorithm introduced by Fawcett [31] during the cross-validation

procedure. We use AUC as a measure of classification perfor-

mance as it is insensitive to both skewed class distributions and

unequal classification error costs [31] while it is not limited by a

specific threshold for the classification of the data, thus enabling a

better exploration of the ranking capabilities of the naive Bayes

classifier [30]. AUC is used primarily for optimizing the various

model parameters, while the prediction performance of the

algorithm with respect to correct identification of the mature

miRNA start position is evaluated using distance distributions

between the predicted and actual mature miRNAs on all miRNA

precursors. Distance distributions are generated by measuring the

difference between the predicted and the actual start position of

each mature miRNA in the test sets.

Model Outputs
MatureBayes offers two alternatives for computing the most

probable start position of the mature miRNA(s) in any given

miRNA precursor. If the stem that produces a mature miRNA (or

functional stem) is known, then the proposed computational truth

is the top scoring candidate produced by the classifier for that

specific stem. The complementary stem is not considered in this

case. Alternatively, if the functional stem is not known, the

proposed computational truth is the duplex formed by the top

scoring candidate estimated over both stems, along with its

miRNA*. A miRNA* is defined as the same-size mature miRNA

candidate that lies on the opposite strand and starts 2 nucleotides

away from the matching position of the mature miRNA candidate

ending position, towards the 39 end of the precursor, according to

existing biological evidence [20]. Although there is evidence that

miRNA* does not always conform to this definition, it is currently

the most widely accepted definition that corresponds to the

majority of miRNA duplexes. Note that the top scoring candidate

of the entire precursor does not necessarily correspond to the top

scorer of the functional stem or its miRNA*. It could be a

completely different molecule. Thus, the two types of model

outputs can generate different predictions.

The classifier’s prediction accuracy for the two types of model

outputs, i.e. the predicted mature miRNA and/or the predicted

miRNA:miRNA* duplex is evaluated by generating distance

distributions of the predicted start position from that of the closest

actual mature miRNA on each precursor sequence. For the

mature miRNA prediction, the distance distribution is estimated

over the known functional stems, i.e. the stems known to produce a

mature miRNA. For the miRNA:miRNA* duplex prediction,

distances are calculated between the actual mature miRNA and

the predicted mature miRNA or its miRNA*, depending on which

one is located on the functional stem. If a precursor produces two

mature miRNAs, both distances are calculated.

Representation of Biological Features used in the
Classifier

The proposed model considers two types of biological features,

namely sequence and structure of miRNA precursors, as

illustrated in Figure 1. Specifically, each mature miRNA is

represented as a 2-dimensional character array containing

information about the base composition (Adenine, Cytosine,

Uracil and Guanine represented as A, C, U and G, respectively)

and structure (match or mismatch represented as M and L,

respectively) for each position along the mature miRNA sequence.

The same position-specific information is also considered for a

flanking region of 9 nucleotides that extends symmetrically along

both sides of the mature miRNA in the precursor sequence, where

the size of the flanking region is selected to optimize classification

performance on the training set (see Supplementary Table S1).

The same representation is used to describe negative samples

(which are generated by sliding along the precursor). In other

words, each position along the input sequence (positive or

negative) is represented by one of the following 9 pairs,

corresponding to the 8 possible combinations of sequence and

structure and the ‘‘noValue’’ pair

f(A, M), (A, L), (C, M), (C, L), (U , M), (U , L), (G, M),

(G, L), (noValue, noValue)g

The ‘‘noValue’’ pair is used to indicate the lack of information on

positions within the flanking region that may be located outside

the limits of the precursor. For example, if positions ‘0–4’ of a

Figure 1. Illustration of the features used to describe positive and negative miRNA samples. The figure shows a 59 mature miRNA sample
(in red) and the associated flanking regions (in green). Examples of sequence and structural information for certain positions in the mature miRNA as
well as the flanking regions are also depicted. The distance feature, measuring the number of nucleotides from the start position of the mature
miRNA until the start of the closest hairpin is indicated on top.
doi:10.1371/journal.pone.0011843.g001
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given mature miRNA contain A,C,G,A and U , respectively and

their structural information is M,L,L,M,L, they would be

represented as

f(A, M), (C, L), (G, L), (A, M), (U , L)g

These features are termed position-specific features as they provide

information about the sequence and structural characteristics of a

given position along the mature miRNA within a miRNA precursor.

The contribution of sequence versus structural information to the

model’s performance was investigated earlier, indicating that a

combination of both is most informative for the specific problem [32].

In addition to the above position-specific features, the distance of the

start position of each mature miRNA (and its respective negatives)

from the closest hairpin of the precursor is also used as a characteristic

input feature to the classifier.

Parameter Optimization
There is a total of three free parameters in the model: (1) the size of

the flanking region surrounding the mature miRNA N, (2) the size of

the scanning window W which is used to identify the mature miRNA

candidates and (3) the number of position-specific features K used to

represent the positive and negative examples. The values for these

parameters were optimized using 10-fold cross validation [33] over

the training set and recording the AUC of each trained classifier.

Specifically, all precursors in the training set were partitioned into 10

equal subsets, 9 of which were used for training the classifier, while

the left out subset was used for validation. Performance on the

validation set was estimated by producing and classifying negative

and positive examples as in the training set, from the left-out miRNA

precursors. This process was repeated iteratively until all data were

used for both training and validation. It is important to note that the

AUC is estimated based on exact match between the start position of

the predicted versus the actual mature miRNA(s). Even 1nt deviations

are considered as negative examples.

Six flanking region sizes (N[f0, 3, 5, 7, 9, 12g) and four

scanning window lengths (W[f18, 20, 22, 24g) along with all

possible position-specific features, were investigated. Note that 18
was the size of the smallest mature miRNA in our training set, and

22 was the average size. Supplementary Table S1 shows that

classification performance was maximized for a window of W~22
nucleotides and a flanking region of N~9 nucleotides while

Supplementary Table S2 shows that a number of 37 position

features resulted in maximum classification performance.

Feature Selection
In order to identify the positions within the input sequence which

contain significant discriminatory information between positive and

negative examples, we generate mass probability functions for each

position-specific feature over the positive and negative classes and use

the symmetric Kullback-Leibler divergence metric [34] to measure

the difference between the respective distributions.

The Kullback-Leibler divergence (K-L divergence) is a measure

of the difference between two probability distributions [35]. For

Probability Mass Functions (PMFs) P and Q of a discrete random

variable, the K-L divergence of Q from P is defined as:

DK L(PDDQ)~
X

i

P(i) log2

P(i)

Q(i)
ð1Þ

Note that the K-L divergence is not a true metric since it is not

symmetric, namely DK L(PDDQ)=DK L(QDDP). To overcome this

problem we use the symmetric and non-negative Kullback-Leibler

divergence [34], which is defined as:

D
sym
K L(PDDQ)~

1

2
(DK L(PDDQ)zDK L(QDDP)) ð2Þ

and is commonly used in classification problems.

Feature selection in MatureBayes is performed according to the

following procedure.

1. For each position-specific feature we generate the probability

mass functions for both positive and negative examples in the

training set.

2. Using the symmetric K-L divergence metric, we measure the

difference between the probability mass functions for all

position-specific features.

3. We rank the position-specific features according to the K-L

score whereby large distances are considered more informative.

4. We then train the classifier using the top K features. Each

feature is incorporated sequentially only if it improves the

performance of the classifier measured as the Area Under the

ROC curve.

Representative examples of the class conditional probability

distributions taken over the training set for the two most important

features are shown in Figure 2. Figure 2A shows the respective

distributions for the distance between the start position of a mature

miRNA sample and the closest hairpin. Distances were estimated

separately for 39 and 59 samples and results were pooled together

to form the combined distribution. As evident from the figure, this

distance ranges within a small set of values in the positive class

while for the negative class it can be described by a uniform

distribution. The former suggests that true mature miRNAs are

located within a close distance from the nearest hairpin, as

previously suggested [5]. Note that the uniform distribution of

negative data results from their generation process (see ‘Datasets’).

Figure 2B shows an example of the respective class distributions

for the top-scoring position-specific feature located 8 nucleotides

prior to the start of the mature miRNA (position 8 in the 59

flanking region). The specific feature ranked first according to the

Kullback-Leibler metric during the feature selection process. As

evident from the figure, the positive and negative class distribu-

tions are very similar, even for the top-scoring position-specific

feature, making discrimination a very challenging task.

Results

Classification Performance
The model’s classification performance is optimized using a 10-

fold cross validation procedure in which the classifier is iteratively

trained on positive and negative mature samples and evaluated

against the precursors corresponding to the left-out mature

miRNAs. Generalization performance is then assessed using two

blind test sets. Specifically, a total of 955 human and mouse

precursors generating 1259 mature miRNAs are used for training

(cross-validation), while 329 human and mouse precursors

corresponding to 345 mature miRNAs are used for testing (Test

set I). An additional set of 269 Zebrafish and Drosophila melanogaster

precursors generating 307 mature miRNAs with multiple

experimental support (see ‘Datasets’) are used to test our method’s

generalization performance with respect to other species (Test set

II). Performance is estimated using an optimized sliding window of

22 nucleotides (see ‘Parameter Optimization’ in the Materials and

Methods section), whereby all possible mature miRNA candidates,

Mature miRNA Prediction

PLoS ONE | www.plosone.org 4 August 2010 | Volume 5 | Issue 8 | e11843



generated by sliding the window one base pair in both stems of

each queried precursor apart from the hairpin loop(s), are assigned

with a Bayesian score. The Bayesian score corresponds to the ratio

between the mature miRNA candidate’s posterior probabilities for

belonging to the positive versus the negative class. A ranking

procedure is performed based on the assigned Bayesian score for

the mature miRNAs candidates and only the top scoring candidate

on each stem is assigned to the positive class.

It is important to note that classification performance is estimated

based on exact match of the predicted compared to the actual mature

miRNA start position. Even 1 nucleotide deviations are considered as

negative examples. Figure 3 shows the Receiver Operating

Characteristic (ROC) curves of the classifier for both cross validation

(green) and blind test sets (purple, black). For the cross-validation

curve, the standard deviation for both false and true positive rate (red

and blue bars, respectively) is also provided. The Area Under the

Curve (AUC) values for the cross validation (average ROC curve)

and the two blind test sets are *0:88, *0:80 and *0:91,

respectively. These findings show that MatureBayes achieves a good

classification accuracy on both the training as well as the blind test set

for human/mouse miRNAs and an even better performance on

miRNAs from the two other species. It should be emphasized

however that AUC may not be the best measure for assessing the

performance of a naive Bayes classifier since the probabilities

produced for negative versus positive examples can vary significantly

between different precursor sequences. Thus, while positive examples

may rank higher than negative examples for each precursor, the

respective absolute scores which are used to generate the ROC curves

do not necessarily rank higher for all positive compared to all negative

examples. To address this limitation we assess our model’s

performance using distance distributions between the predicted and

true mature miRNAs for each precursor sequence, as detailed below.

Figure 2. Class conditional probability distributions of the two top ranking input features. A. Combined distance-from-the-hairpin
distribution for 39 and 59 miRNAs. Note that for 59 miRNAs the distribution is shifted by approximately 22 nucleotides (average length of the mature
miRNA) as the mature miRNA is located between the hairpin and the miRNA start position. This is not the case for the 39 samples. Note that in both
cases, the distribution of actual mature miRNAs is quite narrow indicating that mature miRNAs are located within a short distance from the hairpin. B.
Distribution of the position-specific feature located 8 nucleotides prior to the start of the mature miRNA sample. Note that differences between
positive and negative data are small, even for the top scoring position-specific feature, indicating that the two classes are hard to distinguish. All
distributions are estimated over the training set.
doi:10.1371/journal.pone.0011843.g002
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Identification of the mature miRNA and/or the
miRNA:miRNA* duplex

Although very popular, the computational discovery of novel

miRNA genes is usually limited to the identification of miRNA

precursor sequences [21,36] leaving the functional part, namely

the mature miRNA, unknown. To address this limitation

MatureBayes offers the option of predicting either the strand-

specific mature miRNA candidate and/or the miRNA:miRNA*

duplex of each queried miRNA precursor. Prediction of strand-

specific miRNA candidates is more suitable for cases where the

functional strand is known a priori, while prediction of the

miRNA:miRNA* duplex can be applied in all cases. The first is

achieved by providing the top scoring mature miRNA candidate

which is located on the functional strand while the latter is

achieved by providing the top scoring mature miRNA candidate

of the entire precursor (considering both strands) with its miRNA*.

The miRNA* is defined according to [20] as the complementary,

same-size mature miRNA candidate that lies on the opposite

strand of the top scoring candidate with a 2 nucleotide overhang in

the 39 end. For duplex prediction, the classifier’s performance is

assessed assuming that the actual mature miRNA corresponds to

either the predicted mature miRNA or the predicted mature

miRNA*, without explicitly specifying the functional strand.

In order to assess the classifier’s performance accuracy in

identifying the mature miRNA and/or the miRNA:miRNA* duplex,

we generate distance distributions showing the percentage of

predicted candidates that are located within a specific distance from

the respective actual mature miRNAs. Figure 4A shows the average

distance distribution of the top scoring candidates from the actual

mature miRNAs (estimated over the known functional strands)

during the 10-fold cross validation procedure. The average mean of

the distribution is 0:2337nt, while the average standard deviation is

6:586nt. It should be noted that 27:89% of the computational

predictions match the actual miRNA start positions, while 64:59%
and 86:88% are within +2 and +6 nucleotides, respectively, from

the truth (see Table 1). Figure 4B shows the same distribution for the

top scoring miRNA:miRNA* duplex over all precursors in the cross-

validation set. The distance is measured from the start position of the

actual mature miRNA, irrespectively of whether it corresponds to the

predicted mature miRNA or its miRNA* candidate. If the precursor

produces two mature miRNAs, both distances are calculated. The

average mean of the distribution is 0:0505nt and the average

standard deviation 5:8127nt. Moreover, 22:89% of the candidates

match the actual miRNA start positions, while 64:5% and 87:83%
are within +2 and +6 nucleotides, respectively, form the truth (see

Table 1). Note that the classifier’s accuracy in terms of predicting the

start position of either the strand-specific mature miRNA or the

miRNA:miRNA* duplex is quite similar on the cross-validation

dataset.

To assess the generalization performance of our classifier, the

same distributions are also estimated for the two blind test sets as

illustrated in Figure 5. Note that while the Top Scorer and Top

Scoring duplex distributions are quite similar for the human/

mouse test set (Test Set I), this is not the case for the Zebrafish/

Drosophila melanogaster test set (Test Set II). In the latter, the Top

Scorer has a much better prediction accuracy than the Top

Scoring Duplex (see Table 2), which is also significantly larger than

the performance of the classifier on the human/mouse test set.

Specifically, 37% of the Top Scorer computational predictions in

the Zebrafish/Drosophila melanogaster set match the actual miRNA

start positions, while 74% and 92:6% are within +2 and +4
nucleotides, respectively, from the truth. The respective values for

the human/mouse test set are 14:8%, 40:6% and 63:8%. This

increase in performance is probably due to the fact that the

Figure 3. Training and generalization performance of MatureBayes. The average ROC curve over the 10–fold cross validation is shown in
green. The standard deviation of the true positive rate (TPR) is depicted in blue while the standard deviation of the false positive rate (FPR) is shown
in red. The ROC curve for the human/mouse blind test set is shown in black, while the ROC curve for the Zebrafish/Drosophila melanogaster blind test
set is shown in purple. The average AUC for cross validation is 0:88, while the AUC for the human/mouse blind test set and the Zebrafish/Drosophila
melanogaster blind test set are 0:80 and 0:91, respectively.
doi:10.1371/journal.pone.0011843.g003
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Zebrafish/Drosophila melanogaster set consists of mature miRNAs

which have been experimentally verified in more than one species,

thus forming a higher-confidence data set.

Comparison with other methods
To characterize our method’s performance in comparison with

existing approaches, we use a common blind test set and contrast

our findings with those of two previously developed tools, namely

ProMiR [23] and BayesMiRNAfind [22]. Comparison is performed

separately for each tool, using the combined 329 human/mouse

miRNA precursors contained in the first blind test set (Test Set I).

Note that the human/mouse blind set contains precursors that

were added in later versions of miRBase database (versions 11–14)

and were not used to train any of the compared tools. This is not

necessarily true for the second test set, thus it was not used for

comparison purposes. Moreover, the similarity between the

precursors in Test Set I and the ones contained in the training/

validation sets is on average less than 40%. Performances are

estimated only on those precursors that have been computationally

predicted to contain a mature miRNA by each one of the tools,

respectively. At least three more studies use computational

methods to identify the mature miRNA from a miRNA precursor

[24–26]. However, we have not been able to use those tools in our

comparison analysis due to source code and data unavailability. It

should also be noted that ProMiR and BayesMiRNAfind were

developed with a different task in mind, specifically that of

identifying the functional stem of the miRNA precursor. We

compare our method against these tools to demonstrate that trivial

adaptations of existing methods cannot address the problem of

mature miRNA identification better than MatureBayes.

Comparison with ProMiR
ProMiR [23] implements Hidden Markov Models (HMMs) for

the identification of novel miRNA precursors. Comparison with

our method was performed on 301=329 precursors which were

found to contain a miRNA by ProMiR. Correct identification of

the functional stem(s) was successful for 172=301 precursors by

ProMiR versus 134=301 precursors by MatureBayes. Note that stem

prediction by MatureBayes was achieved by selecting the stem which

contained the highest scoring mature miRNA candidate. Distance

distributions between the predicted and actual mature miRNA

start positions were calculated for each tool, using the 172 and 134
correctly predicted functional stems, respectively (see Figure 6). As

shown in Figure 6 and detailed in Table 3, the start position of

only 5:23% of the predicted candidates by ProMiR coincided with

that of the respective actual miRNAs, while 25% and 58:72% of

the predictions were located within +2 and +6 nucleotides from

the truth. The respective values for MatureBayes were 14:18%,

43:28% and 79:1%, corresponding to a more than 60% increase in

performance accuracy. The statistical difference between the two

distributions shown in Figure 6 was evaluated using the

Kolmogorov-Smirnov Test, confirming that the two datasets

Figure 4. Average distance distributions of Top Scorer and Top Scoring Duplex over the 10-fold cross validation. A. The average
distance distribution of the Top Scorer is estimated separately for each stem of the miRNA precursors, using only the stems that contain an actual
miRNA. This approach assumes prior knowledge of the functional stem(s). B. The average distance distribution of the Top Scoring Duplex is estimated
over both stems of the miRNA precursors. The distribution is generated by calculating for each precursor the distance of the actual mature miRNA(s)
from the predicted candidate (miRNA or miRNA*) that is located on the same stem.
doi:10.1371/journal.pone.0011843.g004

Table 1. Distance distributions corresponding to Figure 4.

Distance from Truth 0 ++1 ++2 ++3 ++4 ++5 ++6 ++7 Precursors

Top Scorer (%) 27:89 48:91 64:59 73:92 81:18 84:48 86:88 89:28 955

Top Scoring Duplex (%) 22:89 48:97 64:35 74:71 82:17 85:87 87:83 90:30 955

Table illustrating the percentages of predicted candidates that are located within 0–7 nucleotides from the start for the actual mature miRNAs for the top scoring
candidate (Top Scorer) and its duplex (Top Scoring Duplex). Note that the two distributions are quite similar.
doi:10.1371/journal.pone.0011843.t001
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belong to different distributions (p-value&0:0004). As evident

from the above findings, MatureBayes significantly outperforms

ProMiR in terms of predicting the start position of mature

miRNA(s) within a given precursor, especially when the functional

strand is known a priori.

Comparison with BayesMiRNAfind
BayesMiRNAfind [22] is more similar to our approach as it uses a

naive Bayes classifier to predict miRNA precursors. However, it

only incorporates mature miRNA prediction as a means for

increasing the gene prediction performance. Comparison with our

Figure 5. Average distance distributions of Top Scorer and Top Scoring Duplex over the two blind test sets. The distributions are
generated as described in Figure 4. A,B. Human/mouse data set (Test Set I). C,D. Zebrafish/Drosophila melanogaster data set (Test Set II).
doi:10.1371/journal.pone.0011843.g005

Table 2. Distance distributions corresponding to Figure 5.

Distance from Truth 0 ++1 ++2 ++3 ++4 ++5 ++6 ++7 Precursors

Human and Mouse set Top Scorer (%) 14:84 32:26 40:65 52:9 63:87 72:26 76:13 80:0 329

Human and Mouse set Top Scoring Duplex (%) 12:75 34:2 45:51 59:13 66:67 74:2 78:26 81:16 329

Zebrafish and Drosophila set Top Scorer (%) 37:0 56:3 74:07 85:19 92:59 96:3 98:52 98:52 269

Zebrafish and Drosophila Top Scoring Duplex (%) 27:68 51:9 68:86 79:93 88:93 92:39 95:16 96:89 269

Table illustrating the percentages of predicted candidates that are located within 0–7 nucleotides from the start for the actual mature miRNAs for the top scoring
candidate (Top Scorer) and its duplex (Top Scoring Duplex) on the two blind test sets. Note that the performance on the Zebrafish/Drosophila melanogaster data set is
significantly larger, with more than 90% of the miRNA Top Scorer predictions located within +4 nucleotides.
doi:10.1371/journal.pone.0011843.t002
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method was performed using 181=329 precursors in the blind test

set which were found to contain a miRNA by BayesMiRNAfind.

Correct identification of the functional stem(s) was successful for

104=181 precursors by BayesMiRNAfind versus 85=181 precursors

by MatureBayes. Distance distributions between the predicted and

actual mature miRNA start positions were calculated for each tool,

using the 104 and 85 correctly predicted functional stems,

respectively (see Figure 7). As shown in Figure 7 and detailed in

Table 4, the start position of only 10:58% of the predicted

candidates provided by BayesMiRNAfind coincided with that of the

respective actual miRNAs, while 29:81% and 48:08% of the

predictions were located within +2 and +6 nucleotides from the

truth. The corresponding values for MatureBayes were 18:82%,

54:12% and 85:88%, corresponding to nearly a 90% increase in

performance accuracy. The statistical difference between the two

distributions shown in Figure 7 was also assessed using the

Kolmogorov-Smirnov Test, confirming that the two datasets come

from different distributions (p-value&0:0001).

Taken together, our comparison analysis shows that (1) all three

methods have a similar, poor, performance in terms of predicting

the functional strand of miRNA precursors (around 50{60%) and

that (2) MatureBayes significantly outperforms both ProMiR and

BayesMiRNAfind in terms of accurately predicting the start position

of a mature miRNA once the functional strand is identified.

Specifically, for all deviations between 0 and 6 nucleotides,

MatureBayes correctly identifies at least 50% more (often double the

number of) miRNAs predicted by the other tools. It should be

noted that prediction of the miRNA:miRNA* duplex is an

important advantage of MatureBayes as it avoids the problem of

identifying the functional strand when this is not known a priori

while maintaining a very similar prediction accuracy for the start

position of either the mature miRNA or its miRNA*.

Position-specific features may define Dicer recognition
sites

As with all classification methods, high performance is most

likely to result from the high discriminatory power of specific input

features representing key sequence and structural characteristics of

miRNA precursors. Moreover, such features may represent a

recognition signal for mature miRNA cleavage by the Dicer

complex. To investigate this hypothesis we further analyze the 38

features utilized by the optimal MatureBayes classifier. These

Figure 6. Comparison with ProMiR. Average distance distributions for the Top Scoring candidates provided by MatureBayes (red) and ProMiR
(blue) on a common human/mouse blind test set. The set consisted of 301 miRNA precursors which were correctly predicted by ProMiR to contain a
mature miRNA.ProMiR correctly identified the functional stem for 172/301, which were used for the respective distance distribution. The distance
distribution for MatureBayes is generated using 134/301 precursors for which the correct stem was predicted, using the Top Scorer procedure. The
statistical difference between the two distributions was evaluated using the Kolmogorov-Smirnov Test, confirming that the two datasets come from
different distributions (p-value&0:0004).
doi:10.1371/journal.pone.0011843.g006

Table 3. Distance distributions corresponding to Figure 6.

Distance from Truth 0 ++1 ++2 ++3 ++4 ++5 ++6 ++7 Precursors

ProMiR (%) 5:23 14:53 25:00 34:88 43:02 56:65 58:72 66:86 172

MatureBayes (%) 14:18 35:07 43:28 56:72 67:16 72:63 79:10 82:09 134

Table illustrating the percentage of predicted candidates which are located within a specific nucleotide distance from the actual mature miRNAs, according to the
distributions shown in Figure 6.
doi:10.1371/journal.pone.0011843.t003
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include: (a) 37 position-specific features containing combined

sequence and structure information of each position and (b) the

distance between the start position of the mature sample and the

closest end of the nearest precursor hairpin as it folds into a

secondary structure. The K-L score distributions for all selected

position-specific features along with the sequence probabilities for

the top 10 of these features are shown in Figure 8. Figures 8A and

8B show the distributions over the 39 and 59 mature miRNA

samples respectively, while Figure 8C shows the combined

distribution estimated over all mature miRNAs in the training

set. As evident from the individual distributions, the most

informative features tend to cluster in positions 7–9 nucleotides

before the start position of the mature miRNA for 39 samples and

after the 22nd nucleotide (corresponding to the average end

position) of the mature miRNA for 59 samples. Since we use the

combined set of both 39 and 59 samples for feature selection, the

most informative position-specific features as shown in Figure 8C

lie symmetrically in both ends of the flanking regions surrounding

the mature miRNA. Importantly, all of the 10 top scoring features

in the combined dataset are very likely to contain a U base.

Moreover, the 7–9 nucleotide triplets in both 39 and 59 samples are

also very likely to consist of Uracil (except the 7th position in 39

samples where the probability of containing Adenine is slightly

higher). Statistical comparison between the sequence composition

distributions of true miRNAs and negatives for these positions was

inconclusive (only position 8 after the end of the mature miRNA

had a p value larger than 0.001), suggesting that a larger dataset is

needed to verify the possible existence of a ‘UUU’ signal.

To further investigate the potential role of position f7,8,9g
triplets in determining the mature miRNA start position, we

generate distance distributions of the respective triplets in both 39

and 59 mature samples. For 39 mature miRNAs, we use the triplet

located prior to the start position, while for 59 samples we use the

triplet located after the 22nd position. Figure 9 shows the distance

distributions of each triplet from the two ends of the closest hairpin

loop. Distance 0 denotes that the triplet is part of the loop while a

distance of +M nucleotides denotes that the triplet starts/ends at

M nucleotides from the start (or the end, for the opposite strand) of

the loop. As evident from the figure, position f7,8,9g triplets are

located within or very close to the adjacent hairpin loop.

Table 4. Distance distributions corresponding to Figure 7.

Distance from Truth 0 ++1 ++2 ++3 ++4 ++5 ++6 ++7 Precursors

BayesMiRNAfind (%) 10:58 19:23 29:81 34:62 39:42 43:27 48:08 56:73 104

MatureBayes (%) 18:82 45:88 54:12 69:41 77:65 83:53 85:88 89:41 85

Table illustrating the percentage of predicted candidates which are located within a specific nucleotide distance from the actual mature miRNAs according to the
distributions shown in Figure 7.
doi:10.1371/journal.pone.0011843.t004

Figure 7. Comparison with BayesMiRNAfind. Average distance distributions for the Top Scoring candidates provided by MatureBayes (red) and
BayesMiRNAfind (blue) on a common human/mouse blind test set. The set consisted of 181 miRNA precursors which were correctly predicted by
BayesMiRNAfind to contain a mature miRNA. BayesMiRNAfind correctly identified the functional stem for 104/181, which were used for the respective
distance distribution. The distance distribution for MatureBayes was generated using 85/181 precursors for which the correct stem was predicted,
using the Top Scorer procedure. The statistical difference between the two distributions was evaluated using the Kolmogorov-Smirnov Test,
confirming that the two datasets come from different distributions (p-value&0:0001).
doi:10.1371/journal.pone.0011843.g007
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Specifically, approximately 60% of the triplets are located inside

the hairpin for both 39 (63%) and 59 (58%) mature miRNA

samples, while 81% and 83% of the triplets are located within 2

nucleotides from the hairpin and 91% and 94% of the triplets are

located within 5 nucleotides from the hairpin for 39 and 59

samples, respectively. Moreover, statistical analysis of the (a)

combined structure and sequence distributions as well as (b) the

structure distributions alone between the positive and negative

classes showed that position f7,8,9g triplets are significantly

different (Smirnov-Kolmogorov test, 6e{11
vpv0:006) between

the two classes, further supporting their discriminatory role.

Taken together, our findings show that positions 7,8, and 9 from

the start (for 39 samples or the end for 59 samples) of the mature

miRNA appear to be relatively conserved in terms of their base

composition (likely to contain Uracil) as well as their structural

characteristics (all three are most likely to be inside the hairpin

loop). These findings suggest that the first few bases within or in

close proximity the hairpin may serve as a recognition signal for

Dicer and associated proteins, thus determining the start position

for both 39 and 59 mature miRNAs. Interestingly, this feature

appears to also be present in miRNAs from the two other species

tested. As shown in Figure 10, a similar pattern of sequence

composition is observed in positions 7–9 nucleotides before the start

position of the mature miRNA for 39 samples, after the 22nd

nucleotide of the mature miRNA for 59 samples and symmetrically

in both ends of the mature miRNAs for the combined set. In all

cases their is a relatively high probability that position f7,8,9g
triplets in miRNAs from Zebrafish and Drosophila melanogaster

contain a Uracil. While this suggest the possible existence of a

general rule for Dicer processing that applies for multiple

organisms and not just mammalian precursors, a larger dataset

is needed to verify that sequence composition at positions 7–9

nucleotides serves as the primary recognition signal for Dicer. On

the other hand, the statistically significant difference between the

positive and negative structure distributions for the same positions,

along with their presence inside or in close proximity to the

Figure 8. Position-specific feature distributions. All distributions are estimated according to the Kullback–Leibler divergence score over the
training set. Red indicates positions within the mature miRNA while blue indicates positions surrounding the mature miRNA. A, B. Feature
distributions for the 39 and 59 mature miRNAs respectively. C. Feature distributions for the combined data set, including both 39 and 59 mature
miRNAs. Sequence composition information is also provided for the 10 top scoring position-specific features. Note that top scoring features tend to
cluster in positions 7–9 nucleotides before the start position of the mature miRNA for 39 samples and after the 22nd nucleotide (representing the
average end position) of the mature miRNA for 59 samples. For the combined data set shown in C, the most informative position-specific features lie
symmetrically in both ends of the mature miRNA flanking regions. All of the above features are most likely to contain a U base except the 7th position
in 39 samples where the probability of containing Adenine is slightly higher.
doi:10.1371/journal.pone.0011843.g008
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Figure 9. Distance distributions for position f7,8,9g triplets for the 39 and 59 mature miRNAs, respectively. For 39 mature miRNAs, the
triplet located at positions 7,8 and 9 nucleotides after the 22nd position is used. All distributions are estimated over the training set. A distance equal
to 0 denotes that the triplet is part of the loop while a distance of +M nucleotides denotes that the triplet starts/ends at M nucleotides from the
start (or the end, for the opposite strand) of the loop. Note that in both cases, position f7,8,9g triplets are located inside the hairpin (&60% of the
triplets) or in very close proximity to the start of the hairpin (w80% of the triplets is within +2 nucleotides from the hairpin).
doi:10.1371/journal.pone.0011843.g009

Figure 10. Sequence composition information of the Zebrafish/Drosophila melanogaster test set. The sequence composition is along the
mature miRNAs and their flanking regions. A, B. Sequence composition for the 39 and 59 mature miRNAs, respectively. C. Sequence composition for
the combined data set, including both 39 and 59 mature miRNAs. Note that position f7,8,9g triplets (prior to the mature miRNA for 39 samples, after
the mature miRNA for 59 samples and symmetrically at both ends of the mature miRNA for all samples) in this dataset are also very likely to contain
Uracil, as was the case with the human/mouse training set shown in Figure 8.
doi:10.1371/journal.pone.0011843.g010
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hairpin loop, indicates that the recognition signal for Dicer

processing may be the lack of base pairing upstream of the mature

sequence, and not so much the sequence composition.

Discussion

In this work we address the problem of identifying the starting

nucleotide of mature miRNA(s) that are produced by mamma-

lian (human and mouse) miRNA precursors. Using a simple

statistical classifier, namely the Naive Bayes Classifier (NBC),

and taking into account sequence as well as structural

information of miRNA precursors, our tool can predict the

start position of the mature miRNA and/or the miRNA:

miRNA* duplex with high accuracy, significantly outperforming

two existing methods. Important advantages of our method in

addition to high performance include the requirement of

relatively small amounts of training data to estimate the

classifiers parameters as well as a direct intuition about the

importance of the features used. Our tool is provided both as a

user friendly trainable interface as well as a web-based scanning

application (http://mirna.imbb.forth.gr/MatureBayes.html)

which can either be used independently or as part of a pipeline

when querying novel miRNA precursors provided by the sister

software SSCprofiler [37] found at http://mirna.imbb.forth.gr/

SSCprofiler.html. In all cases, the user has a large degree of

flexibility in terms of dataset specification and parameter tuning.

Our method works by combining information about the

sequence and structure of each nucleotide position along the

entire length of mammalian miRNA precursors. We show that the

integration of such biological features with previously identified

characteristics of mature miRNAs such as the distance from the

closest hairpin [24,27], can significantly enhance prediction

accuracy. Interestingly, we find that the most informative

position-specific features are located in the flanking region

surrounding the mature miRNA. Specifically, the highest scoring

features are consistently found in positions 7–9 nucleotides from

the start (for 39 samples) or the end (for 59 samples) of the mature

miRNA, which are either inside or in very close proximity to the

closest hairpin loop. Moreover, these triplets have a relatively high

probability of containing a U base, in both 39 and 59 samples and

their secondary structure characteristics are significantly different

between the positive and negative classes, suggesting that they may

serve as a recognition signal for accurate cleavage by Dicer.

Importantly this position-specific ‘UUU’ feature is also present in

the miRNAs from Zebrafish and Drosophila melanogaster, indicating

the possible existence of a more general rule for Dicer processing.

Finally, the distance between the start position of the mature

miRNA and the closest hairpin is also very important for accurate

miRNA identification, suggesting that true mature miRNAs are

located in specific positions independently of their length or the

actual size of the precursor.

An important advantage of our method compared to existing

tools is the use of negative data which are generated from the

same precursors that contain the true mature miRNAs. This

process was selected as it closely resembles the challenges faced

by experimentalists when discovering a new miRNA gene. Most

of the computational tools that can be used to predict the

functional part of the miRNA precursor estimate their

performance accuracy in terms of true positive rate alone,

ignoring entirely the false positive rate [25,26]. It is a matter of

semantics as well as a great challenge to define a true negative

example when it comes to mature miRNAs. However, a major

issue in such a classification task is not only to maximize the

tool’s ability to identify true positives but also to minimize the

false positive rate. In an effort to combine both of these criteria,

we use experimentally verified human and mouse miRNA

precursors to generate positive and negative examples and then

train and evaluate the performance of our classifier measured as

both the Area Under the ROC Curve (AUC) and the distance of

the predicted miRNA start position from the truth.

The effectiveness of MatureBayes in recognizing mature

miRNAs in both human and mouse precursors was demon-

strated using a blind set of 329 recently identified precursors

added in versions 11–14 of miRBase. The method reached a

prediction accuracy of 0:80 measured as the Area Under the

ROC Curve (AUC). More importantly, we show that our tool’s

performance, measured as the distance of the predicted from the

actual mature miRNA, significantly outperforms two existing

tools. The percentage of mature miRNA candidates provided by

MatureBayes that are located within 0, +2 and +6 nucleotides

from the truth is approximately double compared to that of

BayesMiRNAfind and over 50% larger than ProMiR predictions

for the same distance. Overall, in comparison to both methods,

a significantly larger portion of our predicted candidates is

located within a few nucleotides from the actual mature

miRNA(s). Moreover, our tool can avoid the problem of

identifying the functional strand in novel miRNA precursors,

where the performance accuracy of all compared tools is very

poor, by providing as computational truth the miRNA:miRNA*

duplex while maintaining the same high accuracy in terms of

start nucleotide prediction.

The ability of our method to identify the start position of

mature miRNAs from other organisms was assessed using a

high-confidence blind test set of 269 precursors from Zebrafish

and Drosophila melanogaster in which all mature miRNAs have

been experimentally verified in more than one organism. The

method reached a prediction accuracy of 0:91 measured as the

Area Under the ROC Curve (AUC), which is significantly

larger than the respective performance on human/mouse

miRNAs. Moreover, the tool’s performance, measured as the

distance of the predicted (Top Scorer) from the actual mature

miRNA, was also significantly larger on this data set. These

findings show that although trained on human/mouse miR-

NAs, our method has a very good generalization performance

on data from at least two other species (Zebrafish and Drosophila

melanogaster).

In conclusion, our findings suggest that position specific

sequence and structure information and the distance of the

starting position from the hairpin combined with a simple Bayes

classifier achieve a very good performance on the challenging task

of mature miRNA identification. More importantly, we suggest

the possible existence of a recognition signal for accurate cleavage

which is located within the hairpin loop, in close proximity for the

mature miRNA sample.

Supporting Information

Table S1 The AUC of the average ROC curve, over the 10-fold

cross validation, of the best naive bayes classifiers for every

combination of flanking region and scanning window.

Found at: doi:10.1371/journal.pone.0011843.s001 (0.03 MB

PDF)

Table S2 The AUC of the average ROC curve, over the 10-fold

cross validation procedure, for naive bayes classifiers trained with

flanking region 9nt.

Found at: doi:10.1371/journal.pone.0011843.s002 (0.04 MB

PDF)
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