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Abstract

Background: Type 2 Diabetes (T2D) and other chronic diseases are caused by a complex combination of many genetic and
environmental factors. Few methods are available to comprehensively associate specific physical environmental factors with
disease. We conducted a pilot Environmental-Wide Association Study (EWAS), in which epidemiological data are
comprehensively and systematically interpreted in a manner analogous to a Genome Wide Association Study (GWAS).

Methods and Findings: We performed multiple cross-sectional analyses associating 266 unique environmental factors with
clinical status for T2D defined by fasting blood sugar (FBG) concentration $126 mg/dL. We utilized available Centers for
Disease Control (CDC) National Health and Nutrition Examination Survey (NHANES) cohorts from years 1999 to 2006. Within
cohort sample numbers ranged from 503 to 3,318. Logistic regression models were adjusted for age, sex, body mass index
(BMI), ethnicity, and an estimate of socioeconomic status (SES). As in GWAS, multiple comparisons were controlled and
significant findings were validated with other cohorts. We discovered significant associations for the pesticide-derivative
heptachlor epoxide (adjusted OR in three combined cohorts of 1.7 for a 1 SD change in exposure amount; p,0.001), and
the vitamin c-tocopherol (adjusted OR 1.5; p,0.001). Higher concentrations of polychlorinated biphenyls (PCBs) such as
PCB170 (adjusted OR 2.2; p,0.001) were also found. Protective factors associated with T2D included b-carotenes (adjusted
OR 0.6; p,0.001).

Conclusions and Significance: Despite difficulty in ascertaining causality, the potential for novel factors of large effect
associated with T2D justify the use of EWAS to create hypotheses regarding the broad contribution of the environment to
disease. Even in this study based on prior collected epidemiological measures, environmental factors can be found with
effect sizes comparable to the best loci yet found by GWAS.
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Introduction

It is becoming clear that most non-communicable diseases are a

result of a complex combination of genetic processes and the

environment [1]. Despite the contribution of both genetics and

environment to disease, many recent studies have emphasized the

genetic components. For example, the Genome-wide Association

Study (GWAS) is a low-cost and popular framework used by

researchers to evaluate genetic factors that correlate with disease

status on a genome-wide scale [2]. As of this writing, 370

publications using this method have been cataloged, with 16 just

for Type 2 Diabetes Mellitus (T2D) [3]. Multiple loci markers have

been found through these studies that heightens risk for T2D when

present [4]. While GWAS has enabled the generation of new

hypotheses regarding the relation of genetics to T2D, the genetic

markers found have poor penetrance [5,6]. Further, these genetic

markers do not explain a significant portion of T2D in context of

other factors [7,8].

Perhaps the lack of impact of GWAS comes from not

comprehensively considering environmental factors in disease.

T2D provides an specific example: while genetics play a large role

[9–11], specific environmental factors are also emerging as risk

factors for the disease [12]. It is clear that we need to measure and

assess both types of factors to better understand complex disease

[1].

The current paradigm to search for the effects of multiple

environmental chemicals utilizes molecular tools and model

systems [13,14]; however, there is a gap between these data and

human disease. Epidemiological searches for environmental

factors associated with disease have been hampered by the lack

of a ‘‘chip’’ or standard bioassays that can broadly survey these

factors. We propose borrowing the GWAS methodology to create
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a model Environmental-Wide Association Study (EWAS), to

search for environmental factors associated with disease on a

broad scale. This type of study is made possible by the use of cross-

sectional epidemiological data, the National Health and Nutrition

Examination Survey (NHANES), a nationally representative,

biannual health survey conducted by the Centers For Disease

Control and Prevention (CDC) [15]. Participants are queried

regarding their health status and an extensive battery of clinical

and laboratory tests are performed on a subset of these individuals.

Specific environmental attributes are assayed, such as chemical

toxicants, pollutants, allergens, bacterial/viral organisms, and

nutrients.

The EWAS consists of two methodological steps that have

analogs in a GWAS. First, we consider a panel of 266 unique

environmental assays, or environmental ‘‘loci’’, measured across

cases of diabetics and controls, yielding several environmental

factors with significantly high association with T2D while

controlling for multiple hypotheses. Second, we validate the

associations by taking advantage of data from other cohorts in

NHANES. With EWAS, we are able to hypothesize about new

associations with T2D and reconfirm others. The results from

EWAS can better inform about environmental factors that need to

be measured in genetic studies to begin to provide us insight in

regards to disease etiology.

Methods

Ethics Statement
The NHANES is a publicly available dataset made available by

the CDC and National Centers for Health Statistics and all

participants have provided written consent.

We associate 266 unique environmental factors with T2D status

from the NHANES. We downloaded the all of the available

NHANES data for 1999–2000, 2001–2002, 2003–2004, and

2005–2006 cohorts and collated corresponding variables across

them. For example, if a variable with symbol LBXVIE from 1999–

2000 described ‘‘A-Tocopherol ug/dL’’ and variable with symbol

LBXATC from 2001–2002 also described ‘‘a-tocopherol ug/dL’’,

we harmonized onto the single symbol for both, LBXATC.

Figure 1 presents a schematic representation of our analysis

methodology. We analyzed all environmental factors from the

NHANES that were a direct measurement of an environmental

attribute, such as the amount of pesticide or heavy metal present in

urine or blood. We did not consider internal biological system

laboratory measures such as red blood cell count, triglyceride level,

cholesterol level, or other physiological measures. By using direct

and quantitative measures of factors, we potentially avoid issues of

self-report bias.

There was a total of 543 factors in our EWAS, but not all factors

were present in all cohorts: 111 factors measured in the 1999–

2000 cohort, 146 from 2001–2002, 211 from 2003–2004, and 75

from 2005–2006. This comprised of 266 unique environmental

factors in total, with 157 factors measured in more than one

cohort. Using NHANES categorization, we binned factors into 21

‘‘class’’ groupings in order to discern patterns among related

groups of factors, analogous to chromosomal units in GWAS

(Figure 1A). Different environmental factors were measured in

varying numbers of participants, ranging from 507 to 3318

individuals over the different environmental factors.

We omitted from our EWAS 73 factors that varied little across

individuals in our sample. Specifically, we omitted those that had a

majority (.90%) of the observations below a detection limit

threshold as defined by in the NHANES codebook. We also

removed factors that targeted a subset of the population, such as

the test for Trichomonas vaginalis, an infectious pathogen found

primarily in women.

T2D cases were individuals who had a fasting blood glucose

(FBG) level greater or equal to 126 mg/dL, as advised by the

American Diabetes Association (ADA) [16] (Figure 1B). We chose

specificity and accuracy of diagnosis over sensitivity, as we

acknowledge this definition ignores those who were previously

diagnosed as diabetic, but now keep their blood glucose under

tight control; in fact, a larger proportion of NHANES respondents

described themselves as diabetics or were taking medications often

used to treat diabetes than were classified by FBG levels. Neither

FBG nor the self-reported diabetes status distinguishes between

Type 1 Diabetes (T1D) and T2D; as T2D has a prevalence rate

more than 40 times higher than T1D, we assumed all our cases

have T2D. This claim is further justified given the average age of

the participants considered were between 41 and 42 years of age

for all cohorts.

We used survey-weighted logistic regression to associate each of

the 543 environmental attributes with diabetes status while

adjusting for age, sex, body mass index (BMI), ethnicity, and an

estimate for SES (Figure 1C). We acknowledge that estimating

SES is difficult; nevertheless, we used the tertile of poverty index,

equivalent to the participant’s household income divided by the

time-adjusted poverty threshold, as the estimate for SES. We used

R with the survey module to conduct all survey-weighted analyses,

and replicated our results with the STATA program [17–19].

Exposures were captured either as continuous or a categorical

variable. Most chemical exposure data arising from mass

spectrometry or absorption measurements occurred within a very

small range and had a right skew; thus, we log transformed these

variables. Further, we applied a z-score transformation (adjusting

each observation to the mean and scaling by the standard

deviation) in order to compare odds ratios from the many

regressions. Similarly, for categorical variables, we made the

definition of the referent consistent, defining them to be the

‘‘negative’’ results of the test.

We calculated the false discovery rate (FDR), the estimated

proportion of false discoveries made versus the number of real

discoveries made at a given significance level, to control for type I

error due to multiple hypotheses testing in associating the factors

to disease status [20]. To estimate the number of false discoveries,

we created a ‘‘null distribution’’ of regression test statistics by

shuffling the diabetes status labels 1000 times and recomputing the

regressions. The FDR was then estimated to be the ratio of the

proportion of results that were called significant at a given level a
in the null distribution and the proportion of results called

significant from our real tests. To choose factors significantly

associated with T2D in the first single-cohort phase, we used a

significance level (a= 0.02), which corresponded to a FDR of 10%

across three out of four cohorts (1999–2000, 2003–2004, and

2005–2006) and 30% for the 2001–2002 cohort.

To improve our power, we used the four independent cohorts to

validate significant findings (Figure 1D). We considered a

significant factor as ‘‘validated’’ if it was found to be significant

(a= 0.02) in more than one cohort, at the expense of having to

drop those factors not measured in a second cohort. We then

assessed the FDR of the multi-cohort validation. We first estimated

the number of false positives by counting the number of factors

found significant at a level a in two or more cohorts from the

permuted datasets. We then estimated the FDR by computing the

ratio between the number of false positives and the number of

validated factors. This value was 2% with a equal to 0.02.

We fit a final logistic regression model with data combined from

multiple NHANES cohorts utilizing all measurements for a

An EWAS to Type 2 Diabetes
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Figure 1. Summary of EWAS Environment Factors and Analytic Method. A.) Summary of the 21 factor classes and the number of factors
within them for each NHANES cohort. B.) Individuals were stratified into T2D status (‘‘cases’’ and ‘‘controls’’) through the ADA FBS threshold for
diabetes diagnosis. 6–7% of the unweighted observations in all cohorts had T2D under this rule. C.) Each of these 75 to 211 factors was tested for
association with T2D status with a logistic regression model (coefficient labeled ‘‘FACTOR’’) adjusted for age, sex, BMI, ethnicity, and SES. Statistical
significance (a= 0.02) was determined by controlling the FDR between 10 to 30%. Between 4 and 23 factors were found to be significant using this
threshold a= 0.02. D.) ‘‘Multi-stage’’ validation. For factors that were deemed significant in C, we deemed a factor validated if the factor was
significant to the a= 0.02 level in one or more of the other cohorts. We found 5 factors to be validated (FDR of 2%).
doi:10.1371/journal.pone.0010746.g001
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specific environmental factor, attaining an overall odds ratio. The

covariates of the final model were age, sex, BMI, ethnicity, SES,

and cohort. We computed new sample weights for the combined

datasets by taking the average of the original sample weights as

described by the NHANES analytic guidelines [21].

We conducted 3 secondary analytic tests for the validity and

sensitivity of our final estimates. We first attempted to check for

reverse causality, or association of exposure due to T2D diagnosis.

Our second test attempted to take into account the lipophilic

characteristics of the environmental factors found. Our last test

attempted to take into account recent food and supplement

consumption as a potential bias for exposure measures. For

adequate sample size and ease of comparison to the final fit model,

we utilized all available data combining multiple NHANES

cohorts as the sample to conduct these three tests, described below.

To attempt to account for reverse causality, we recomputed our

models omitting those individuals who had been diagnosed with

diabetes, defined here as those answering yes answers submitted

on a NHANES health questionnaire (‘‘Doctor told you have

diabetes?’’). We then refit our final models with individuals only

showing biochemical evidence of T2D without actual diagnosis.

Our second test attempted to account for the lipophilic chemical

characteristics of our significant factors. Many of the environmen-

tal factors measured in NHANES absorb readily in fatty tissue;

presence of fatty tissue is also associated with T2D and a potential

confounder. Thus, we recomputed the models taking into account

total triglycerides and cholesterol measured in blood specimen of

participants.

In our third test, we attempted to compare dietary and

supplement consumption of cases or controls gathered from 24-

and 48-hour recall and supplement use questionnaires reasoning

that recent intake may confound exposure-disease association. The

NHANES data contains amount of food components consumed

based on the dietary recall available for all participants examined

above. Specifically, amounts of food components are computed

from the questionnaire using the United States Department of

Agriculture (USDA) Food and Nutrient Database. Some of the

vitamin and nutrient components included vitamin A, vitamin B-

6, vitamin B-12, vitamin C, vitamin E, vitamin K, carotenes,

lycopene, thiamin, riboflavin, niacin, folate, calcium, iron,

magnesium, phosphorus, potassium, sodium, iron, zinc, copper,

and selenium. Other components included macronutrients, such

as protein, carbohydrates, fat, fiber, and cholesterol. The total

amount of food components considered numbered 51 to 63 for the

different cohorts. Further, the 2003–2004 and 2005–2006 cohorts

contained both 24- and 48-hour recall data. Supplement use

included count of consumption of vitamins, minerals, botanicals,

and/or their mixture of them over the past month prior to the

survey. To check for possible confounding by recent consumption,

we added each food and supplement variable to the logistic

regression models specified above and re-evaluated significance

and effect size of the validated environmental factors. We coded

food component content as the logarithm (base 10) of the amount

entered. We coded supplement use as an integer count value. We

acknowledge the potential of bias with the use of questionnaire

data and a pre-determined database of food items but assumed it

was a reliable proxy of consumption and behavioral data in lieu of

other information.

Results

Using GWAS as inspiration, we systematically and comprehen-

sively assessed the association of 266 unique environmental factors

measured in the NHANES with T2D. Further, we validated these

associations by observing the significance of factors in other

NHANES cohorts.

Population characteristics
File S1 describes the baseline and demographic characteristics

of people who were considered as diabetics for our data. Across the

cohorts, the total non-weighted and weighted numbers of those

who were diabetic compared to non-diabetic were similar.

However, we did see significant differences with demographic

factors such as sex, age, and socioeconomic status between cases

and controls. T2D occurred in higher age groups in all cohorts

(p,0.001, two-sided t-test). There were significantly more male

participants than females in all cohorts (p,0.001, 0.02, 0.03, x2

test) except for 2005–2006. Furthermore, there was a significant

association between lowest SES (first tertile of poverty index) and

T2D (p = 0.006, 0.03, 0.04, logistic regression) in for the 1999–

2000, 2001–2002, and 2005–2006 cohorts respectively. While we

did not see a univariate association between ethnicity and T2D as

diagnosed by FBG, we did confirm previously reported associa-

tions of ethnicity with T2D when stratifying by age and sex [22].

As expected, BMI was significantly associated with T2D status

(p,0.001, t-test) for all cohorts. Given these differences between

the cases and controls, we adjusted our logistic regression models

described below accordingly.

Environment Associations with T2D
Figure 2 shows the distribution of p-values of association for

each environmental factor and class, adjusted for sex, age, BMI,

ethnicity, and the estimate for SES, plotted in a ‘‘Manhattan plot’’

analogous to the association results from a GWAS study. The 37

significant or notable factors are annotated in the figure. Specific

categories show association with T2D, such as organochlorine

pesticides, nutrients/vitamins, polychlorinated biphenyls, and

dioxins (Figure 2 and Table S1), having between 10 to 30% of

the factors in the class with p-values less than 0.02. Many positive

(low p-values) and negative (high p-values) associations replicated

well among the different cohorts.

Table 1 shows those factors that were validated as being

significant in two or more of the independent cohorts (multi-cohort

validation FDR of 2%). Predicted probabilities of having T2D

were computed for a prototype participant, a 45 year old white

male with BMI of 27 (middle of the range for non-diabetics in the

NHANES sample) and from the middle SES, at high and low

exposure levels. For combined cohorts, the predicted probability

applies to a prototype participant from the 2005–2006 cohort. We

also computed the overall estimate by combining NHANES

cohort data in a final model additionally adjusted for cohort; the

predicted probabilities for these models were computed for a

prototype participant as defined above. We defined low exposure

as having a log transformed exposure level one standard deviation

lower than the transformed mean, and high exposure as having a

log transformed exposure level one standard deviation higher than

the transformed mean. For example, a 45-year-old male from the

1999–2000 cohort with high levels (0.09 ng/g) of heptachlor

epoxide has a 6% likelihood of being in our diabetes subset.

Figures S1, S2, S3, S4, and S5 show the distributions of raw

exposure levels per diabetes status.

Nutrients and Vitamins: Carotenes and c-tocopherol
Several vitamins were found to have levels inversely associated

with T2D. The first type included an antioxidant in the isoforms of

b-carotene (final adjusted odds ratio (OR) of 0.6; 95% confidence

interval (CI) 0.5–0.7; p,0.001). For the prototypical participant,

high levels of trans or cis b-carotene equated to a 9%

An EWAS to Type 2 Diabetes
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improvement in risk (15 vs. 6%) for T2D status. We were able to

confirm the inverse association of b-carotenes seen in multiple

epidemiological studies in Saudi Arabia [23], among older people

[24], among Swedish men [25], and in an earlier NHANES III

cohort (pre-1999) [26], as well as another small study that showed

an inverse response between fasting glucose level and b-carotene

[27]. However, in a prospective case-control study b-carotene was

not significantly inversely associated with T2D [28]. Because T2D

is associated with reduced anti-oxidant defense, anti-oxidants, such

as carotenes, have been occasionally recommended as a therapy

[29]. However, the evidence of mitigation of T2D with these

vitamins as therapies has been negligible in clinical trials, including

women who are high risk of cardiovascular disease [30] or male

smokers [31].

We discovered a vitamin that increased risk for T2D.

Surprisingly, c-tocopherol, a form of vitamin E, was highly

significantly and positively associated with T2D (final adjusted OR

1.5; 95% CI 1.3–1.7; p,0.001) in two cohorts (adjusted OR of 1.8

Figure 2. ‘‘Manhattan plot’’ style graphic showing the environment-wide association with T2D. Y-axis indicates 2log10(p-value) of the
adjusted logistic regression coefficient for each of the environmental factors. Colors represent different environmental classes as represented in
Figure 1A. Within each environmental class, factors are arranged left to right in order from lowest to highest odds ratio (OR). Plot symbols represent
different cohorts: 1999–2000 (diamonds), 2001–2002 (square), filled dot (2003–2004), circle (2005–2006). Red horizontal line is 2log10(a) = 1.8
(a= 0.02). Validated factors significant in 2 or more NHANES cohorts are in bold face (a= 0.02 in two or more cohorts, FDR of 2%) with larger plot
points. Other significant factors (a= 0.02) are annotated with numeric label corresponding to the environmental factor class color key on the right.
Figure abbreviations: Validated factors: t-b-carotene: trans b-carotene; c-b-carotene: cis b-carotene; PCB170: 2,29,3,39,4,49,5-Heptachlorobiphenyl.
Group 1 (dioxins): 1-hxcdd: 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin; 2-hxcdd: 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin. Group 2 (furans): OCDF:
1,2,3,4,6,7,8,9-Octachlorodibenzofuran. Group 3 (heavy metals): Ur: uranium; Sb: antimony; Pb: Lead. Group 4 (nutrients): tot-b-car: total b-carotene; a-
car: alpha-carotene; retnl: retinol; Vita. D: vitamin D; d-t: delta-tocopherol. Group 5 (organochlorine pestcides): DDE: dichlorodiphenyltrichlor-
oethylene. Group 6 (PCB): PCB169: 3,39,4,49,5,59-hexachlorobiphenyl; PCB138: 2,29,3,4,49,49,5-Hexachlorobiphenyl; PCB195: 2,29,3,39,4,49,5,6-
Octachlorobiphenyl; PCB183: 2,29,3,4,49,59,6-Heptachlorobiphenyl; PCB199: 2,29,3,39,4,5,59,69-Octachlorobiphenyl; PCB178: 2,29,3,39,5,59,6-Heptachlor-
obiphenyl; PCB187: 2,29,3,49,5,59,6-Heptachlorobiphenyl; PCB180: 2,29,3,4,49,5,59-Heptachlorobiphenyl; PCB146: 2,29,3,49,5,59-Hexachlorobiphenyl;
PCB196: 2,29,3,4,49,5,59,6-Octachlorobiphenyl. Group 7 (bacteria): H2: Herpes Simplex 2; HSBA: Hepatitis B Surface Antibody.
doi:10.1371/journal.pone.0010746.g002
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and 1.6; p = 0.02 and 0.01 for 1999–2000 and 2001–2002 cohorts)

and nearly significant in the two others (adjusted OR of 1.3 and

1.6; p = 0.06 and 0.04 for 2001–2002 and 2005–2006 cohorts). For

the prototypical participant, low levels of the c-tocopherol equated

to a 7% improvement in risk (13% vs. 6%). To our knowledge, this

is a novel association between c-tocopherol and T2D.

Persistent Pollutants: Polychlorinated Biphenyls and
Organochlorine Pesticides

We found organochlorinated pesticides and polychlorinated

biphenyls (PCBs), both related pollutant factors, to be a highly

positively associated with T2D. Among the PCBs, we specifically

discovered PCB170 (2,29,3,39,4,49,5-Heptachlorobiphenyl; final

adjusted OR of 2.2; 95% CI 1.6–3.2; p,0.001). The effect sizes in

the individual cohorts for PCB170 were large (adjusted OR 2.3

and 4.5; p = 0.02 and 0.01 for 1999–2000 and 2003–2004

cohorts). The models predicted up to 15% T2D risk for the

prototype participant, more than double the risk of those with low

concentrations of PCB170. The association between the class of

PCBs with T2D has been well described within Native American

[32], Japanese [33], Swedish [34], and Taiwanese [35] cohorts.

Heptachlor epoxide, an oxidation product of the organochlo-

rine pesticide heptachlor, was among the most highly associated

factor (final adjusted OR 1.7; 95% CI 1.3–2.1; p,0.001) in our

EWAS. The effect sizes in the individual cohorts were also large

(adjusted OR 3.2 and 1.9; p = 0.002 and 0.01 for 1999–2000 and

2003–2004 cohorts). The predicted probability for the prototypical

participant with high levels of the pollutant was 7%, more than 2

times greater than those who had lower levels of this pollutant.

Secondary analysis to test validity of the final estimates
We then attempted to test the validity of our final estimates by

conducting 3 additional analytic tests. In the first test, we

attempted to consider the possibility of ‘‘reverse causality’’ or

differential exposure status due to T2D diagnosis. Second, we

attempted to assess the effect of potential confounding bias due to

the lipophilic characteristics on our final environmental factor

effect estimates. Third, we attempted to assess the effect of recent

nutrient and supplement consumption on our final effect estimates.

To consider T2D diagnosis as a modulator of exposure, we

removed all individuals who answered yes when questioned about

a past history of diabetes in the NHANES health questionnaire

(‘‘Doctor told you have diabetes?’’). We then recomputed the effect

of exposure, adjusted for age, sex, SES, ethnicity, BMI, and cohort

using the remaining individuals who showed biochemical evidence

of T2D, but not carrying a diagnosis of T2D (Table S2). For all

validated factors significant in more than 2 cohorts above (Table 1),

the estimates remained stable and statistically significant. The

effect size for Heptachlor Epoxide was marginally smaller with an

adjusted OR of 1.6 (95% CI 1.1–2.1; p = 0.008). The adjusted OR

for PCB170 was also marginally smaller, 2.1 (95% CI 1.2–3.9;

p = 0.02). The effect of c-tocopherol was larger, with an adjusted

OR of 1.8 (95% CI 1.3–2.2; p,0.001) and there was no change to

effect sizes of the carotenes (adjusted OR 0.6; 95% CI 0.5–0.7;

p,0.001). We concluded that there was not enough evidence to

support the phenomenon of reverse causality based on the effect

sizes estimated for those who were at risk for T2D.

We next attempted to account for potential confounding bias of

lipid levels. To assess the degree of possible confounding we refit

Table 1. Highly statistically significant environmental factors associated with T2D found in more than one NHANES cohort.

Environmental class
Environment
Factor Cohort

N{ T2D,
No T2D P OR (95% CI)

Factor Level
(Lo-Hi)

Predicted
Probability
(Lo-Hi)

Nutrients cis-b-carotene 2001–2002 211, 2852 0.01 0.6 (0.5–0.8) 0.4–1.4 ug/dL 0.12–0.05

2003–2004 207, 2698 0.002 0.63 (0.5–0.7) 0.4–1.9 0.13–0.06

2005–2006 186, 2425 0.02 0.6 (0.5–0.8) 0.4–1.6 0.15–0.06

2001–2006* 604, 7975 ,0.001 0.6 (0.5–0.7) 0.4–1.7 0.15–0.06

trans-b-carotene 2001–2002 211, 2854 0.01 0.6 (0.5–0.8) 5.1–27.2 ug/dL 0.13–0.05

2003–2004 207, 2698 0.002 0.7 (0.6–0.8) 4.8–24.7 0.13–0.06

2005–2006 203, 2701 0.004 0.6 (0.4–0.7) 4.8–29.0 0.16–0.06

2001–2006 * 621, 8253 ,0.001 0.6 (0.5–0.7) 4.9–27.0 0.15–0.06

c-tocopherol 1999–2000 146, 2091 0.02 1.8 (1.3–2.4) 107–360 ug/dL 0.03–0.09

2003–2004 207, 2698 0.01 1.6 (1.3–2.0) 103–356 0.06–0.13

1999–2006* 767, 10307 ,0.001 1.5 (1.3–1.7) 107–352 0.06–0.13

Organochlorine Pesticides Heptachlor Epoxide 1999–2000 46, 635 0.002 3.2 (2.4–4.4) 0.02–0.09 ng/g 0.01–0.06

2003–2004 67, 809 0.01 1.9 (1.3–2.6) 0.01–0.07 0.02–0.07

1999–2004* 178, 2367 ,0.001 1.7 (1.3–2.1) 0.02–0.08 0.03–0.07

Polychlorinated Biphenyls PCB170 1999–2000 45, 716 0.02 2.3 (1.5–3.6) 0.03–0.12 ng/g 0.01–0.06

2003–2004 53, 773 0.01 4.5 (2.1–9.9) 0.01–0.12 0.03–0.42

1999–2004* 165, 2426 ,0.001 2.2 (1.6–3.2) 0.02–0.13 0.04–0.15

Odds ratio for each exposure, adjusted for BMI, age, sex, ethnicity, and SES is calculated for a change in the log exposure level by one standard deviation, along with the
95% confidence interval. Factor level is the amount of exposure defined by the low (1 SD lower than the average logged exposure level) and high range (1 SD higher
than the average logged exposure level). The predicted probability range is an estimate for a 45-year-old white male with BMI of 27 kg/m2 from the middle SES to
develop the disease in the low to high range of exposure.
* denotes analysis using combined NHANES cohorts; models adjusted for age, sex, ethnicity, BMI, SES, and cohort; predicted probabilities for combined cohorts applies
to an individual from the 2005–2006 cohort.
{denotes unweighted number.
doi:10.1371/journal.pone.0010746.t001
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the logistic regression adjusting for the logarithm (base 10) of total

triglyceride and cholesterol levels in addition to age, sex, BMI,

SES, ethnicity, and cohort (Table S3). We did not observe a great

change in effect sizes estimates for the environmental factors after

this further adjustment for total triglycerides and cholesterol. The

odds ratio after adjusting for lipid levels for carotenes was 14%

higher, 0.7 (95% CI 0.6–0.8; p,0.001) compared to 0.6 (Table 1).

Similarly, the odds ratio for c-tocopherol was attenuated by 7%,

1.4 (95% CI 1.2–1.6; p,0.001) compared to 1.5 (Table 1). For the

pesticide factor, the odds ratio was smaller by 6%, 1.6 (95% CI

1.3–2.0; p,0.001) versus 1.7 (Table 1). Lastly, for PCB factor, we

observed a 3% higher odds ratio of 2.3 (95% CI 1.4–3.7,

p = 0.002) versus 2.2 (Table 1). Consistent with this secondary

analysis, we observed a similar degree of effect size differences

when using the ‘‘Lipid Adjusted’’ NHANES environmental

factors, which are only provided for few of the pollutant factors

(not shown). We concluded that the effect sizes of the

environmental factors were affected by lipid levels, but not

substantially biased by them.

We then searched for differences in food and supplement

consumption patterns between diabetics and non-diabetics for all 4

cohorts close to the time of survey derived from dietary recall and

supplement use questionnaires. In comparing dietary nutrients, we

did not observe a difference for any dietary nutrient except one

between cases and controls. This exception included a lower total

carbohydrate intake for diabetics versus controls, confirming that

many diabetics may have known about their disease; specifically,

the adjusted OR was 0.7 (95% CI 0.6–0.8; p = 0.001) for a 10%

increase in total carbohydrate consumption, adjusted for sex, age,

ethnicity, SES, and cohort. We also observed an inverse

association between any supplement use and T2D, with an

adjusted OR of 0.6 (95% CI 0.5–0.8, p,0.001), also consistent

with our expectation of increased health awareness for those with

T2D. However, we specifically could find no difference in

consumption of carotenes or tocopherol (p = 0.85 and 0.2

respectively) between cases and controls, two of the validated

nutrient factors found in our EWAS (Table 1).

Having observed some difference in consumption behavior

between cases and controls, we then attempted to assess the

influence of recalled dietary consumption on the environmental

associations by recomputing the logistic regression models in

presence of dietary and supplement use variables. Adding the new

dietary or supplementary vitamin consumption variables did not

attenuate the odds ratios (maximum change of 1–2%), nor did

they lessen the strength of the associations for all of the 5 validated

environmental factors described in Table 1. Thus, we did not have

evidence to support that recent consumption influenced the factor-

disease effect sizes for the validated factors found in our EWAS.

We took a further step in assessing the strength of the

environmental associations, adjusting for total triglycerides and

cholesterol, any supplement use, and food intake simultaneously

(Table S4). Specifically, the odds ratio for a SD increase in c-

tocopherol levels was 1.3 (95% CI 1.1–1.5; p = 0.004) when

adjusting for logarithm base 10 of triglycerides, cholesterol, total

vitamin E consumption, beta carotene consumption, total

carbohydrate consumption, and any supplement use along with

age, sex, ethnicity, BMI, and SES. The analogous models for the

cis and trans b-carotene resulted in adjusted OR of 0.7 (95% CI

0.6–0.8; p,0.001). Odds ratios were consistently high and

significant for the pollutant factors Heptachlor Epoxide and

PCB170 after further analogous adjustment of recent consumption

and total lipid levels, with odds ratios of 1.6 (95% CI 1.3–2.1;

p,0.001) and 2.2 (95% CI 1.4–3.5; p = 0.003) respectively (Table

S4). We concluded that recent consumption as encoded by the

dietary recall questionnaire in conjunction with lipid levels did not

alter the validity of the associations of the 5 environmental factors

found.

To summarize of our secondary tests for validity, we concluded

that reverse causality, recent food and supplement consumption,

and total lipid levels did not substantially bias our effect estimates

for the 5 validated factors. These tests were made possible by the

extensive list of co-variates available in the NHANES.

Discussion

We have described a prototype Environmental-Wide Associa-

tion Study (EWAS) and applied it to the study of Type 2 Diabetes

(T2D), and validated many of our significant findings across

independent cohorts and confirmed some of them through the

literature. This pilot study is made possible by the examination of

multiple cohorts present in the nationally representative NHANES

dataset. We have rediscovered factors such as carotenes and PCBs

with previously known association with T2D. Unexpectedly, we

found higher levels of c-tocopherol were associated with higher

likelihood of T2D, independent of dietary intake. Of the

components of Vitamin E, c-tocopherol is the most abundant

form in the US diet [36], and makes up to 50% of the total vitamin

E in human muscle and adipose tissue [37], two known insulin-

target tissues. As c-tocopherol has been previously suggested as a

preventive agent against colon cancer [38], any potential adverse

metabolic effects for this vitamin should be studied closely.

Another novel finding was in the significant association between

heptachlor epoxide levels and T2D. Heptachlor is a pesticide;

most uses of heptachlor were discontinued in the late 1980s [39].

The main source of heptachlor and its breakdown product,

heptachlor epoxide, is from food, but heptachlor epoxide is

persistent in the environment and can even be passed in breast

milk [40]. While a significant association with T2D has been

reported across thirty-thousand pesticide applicators who used the

pesticide heptachlor [41], to our knowledge, this broad association

between heptachlor epoxide and T2D in the general public, as

surveyed by NHANES, is novel.

While this study successfully demonstrates a prototype EWAS

for T2D, this methodology can be reconfigured to measure the

relationship between environmental factors and other disorders,

such as obesity, lipid level abnormalities, hypertension, and/or

cardiovascular disease. Methodologically, the EWAS takes inspi-

ration from GWAS, which have been used to assess the correlation

between genome-wide variability and disease.

Like GWAS, the utility of EWAS lies in two types of hypothesis

generation. First, the EWAS framework can be used to propose

targets for further study. For example, many factors are correlated;

some are similar structurally, such as the isomers of b-carotene, or

co-occur in the environment, such as the PCBs and organochlo-

rine pesticides. As we extend the GWAS analogy, these and other

environmental factors could be said to be in ‘‘linkage disequilib-

rium’’ with each other. Just as is done for preliminary GWAS

findings, EWAS findings can and should be used to identify further

factors that may be in ‘‘disequilibrium,’’ for further detailed

measurement and causal identification.

We acknowledge that the measurement of 266 environmental

factors is hardly a comprehensive study of the environment, but

this is still a greater number of factors measured than the 30

microsatellite markers [42], or 100 single nucleotide polymor-

phisms (SNPs) in some of the earliest implementations of GWAS

[43]. We suggest that measurement technologies for the

environment can and will improve in resolution, as novel

associations are made using even few measurements in these
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prototype studies. Measurement of the panel of environmental

factors used here, most of which are performed by mass

spectrometry, currently costs an estimated $40,000 per individual

[44], or close to the current pricing for whole-genome sequencing.

Another type of hypothesis we may generate is regarding the

complex cause of disease. For example, we can now use an EWAS

to hypothesize about ‘‘gene-environment’’ interactions and their

relation to disease etiology. A future study addressing gene-

environment interactions might be designed as a combination of

both a GWAS and EWAS, where genetic variability is assessed

simultaneously along with key environmental factors. While

marginally more resource intensive, this type of study design

could perhaps facilitate an explanation of disease causation that

has eluded genomic-wide scans in addition and provide more

accurate estimates of attributable risk.

The EWAS allows for comprehensive and systematic analysis of

the effects of the environment in association with disease on a

broad scale. While many investigators have already utilized the

NHANES to address the effect of a limited number of factors on

disease, they do not provide a global view of these associations

[45,46]. Further, while arriving at similar results, the previous

studies use differing definitions of T2D status (medical question-

naire), exposure coding (discretization or log transformation), and

lack methods for multiple comparison control [47–49]. It is the

well-established toolkit of the GWAS that has provided us with

methods to overcome these limitations and to enable us to

postulate about environment-wide association with disease.

Limitations of this study remind us that measuring environ-

ment-wide aspects in relation to phenotypic states such as disease

will be a difficult undertaking [50]. Unlike genetic loci, the

environment is boundless. While the NHANES provides a large

number of factors to study, a comprehensive assessment will

require precise definition over a broader dimension (more factors).

While laboratory measurements are collected during a baseline

fasting state for all participants in NHANES, we will still have to

account for the dynamic and heterogeneous nature of different

exposures and their associated responses by taking replicate

measurements at different physiological states. Further, this study

utilizes cross-sectional data and can only show correlation between

exposure and disease prevalence. To ascertain causality, we would

need to perform prospective EWAS over the life course, consider

incident cases, and/or consider randomization methods [51] as

additional validation. Due to the number of hypotheses generated,

we would need to integrate more evidence from large-scale

collaborative studies in order to confirm (or refute) etiological

aspects of these factors while being as comprehensive as possible in

the observation of potential confounding variables. For example,

additional factors such as behavior (food consumption, drug use,

and/or exercise patterns), geographic location, and occupation

must also be ascertained to account for associated risk factors and

reverse causality.

While GWAS has allowed us to find novel variants associated

with T2D of possible mechanistic importance and provided a

model for a comprehensive study of the environment described

here, associated variants have had only moderate effect sizes to

date. Most of the risk loci identified with GWAS have small

individual odds ratios, generally less than 1.3 [52–54] and the

highest has been reported to be 1.71, belonging to a variant in the

TCF7L2 gene [55,56]. Albeit from different populations and

analytical scenarios, the effect sizes of our validated environmental

factors on T2D were comparable to the highest odds ratios seen in

GWAS.

However, the correlated and dynamic nature of a multitude of

environmental factors will hinder causal inference to a greater

degree than GWAS [50]. Nevertheless, similar biases do influence

GWAS interpretation. For example, the statistical association of a

variant of FTO with T2D was nullified by accounting for BMI

[57]. However, despite these hindrances, we view EWAS similarly

to GWAS, a step towards learning about a component that plays a

large role in complex disease.

It is imperative not only for epidemiologists and geneticists but

also physicians and their patients to understand how multiple

environmental factors may influence disease in a systematic

fashion. Individuals are already demanding information regarding

their ‘‘body burdens’’, or the number and amount of chemicals

present in their system, as evidenced by the ‘‘Human Toxome

Project’’ [44,58]. We must learn how all these factors might

contribute to disease in context of other common risk factors to

inform our health care practitioners and individuals appropriately.

We must conduct our analyses in a non-selective fashion.

In conclusion, the EWAS is a promising way to search and

consider potential environmental factors as associated with disease

or other clinical phenotypes. These results demand a rethinking

and restructuring of studies that study disease in the genomics

context. The time is ripe to usher in ‘‘enviromics’’ [59], the study

of a wide array of environmental factors in relation to health and

biology.

Supporting Information

File S1 The tables in this file describe the baseline demographics

of the NHANES cohorts (1999–2000, 2001–2002, 2003–2004,

2005–2006) per T2D status (Fasting Plasma Glucose .125 mg/

dL). T2D cases were determined by a clinical threshold of

$126 mg/dL fasting blood glucose. Unweighted total samples

were similar across cohorts. Age and BMI were significantly

different between each of groups and the proportion of sex was

significantly different in 3 of the 4 cohorts (male referent group).

Low, medium, and high estimates of SES were computed by tertile

of poverty index. Low SES (lowest tertile of poverty index) is also

associated with T2D status in 3 of the 4 cohorts (3rd tertile SES

referent group). Ethnicity was not seen to be associated with T2D

status (‘‘white’’ ethnicity referent group). * denotes unweighted

number. All other statistics are weighted.

Found at: doi:10.1371/journal.pone.0010746.s001 (0.09 MB

DOC)

Figure S1 Trans-b-carotene vs. Diabetes Status for 2001–2002,

2003–2004, and 2005–2006 cohorts. Raw exposure data (log-

scale) versus T2D Status (Fasting Plasma Glucose .125 mg/dL)

for validated environmental factors. Horizontal line represents the

weighted median of the group. Cohort plot symbols consistent

with Figure 2 (square: 2001–2002; filled bullet: 2003–2004; circle:

2005–2006).

Found at: doi:10.1371/journal.pone.0010746.s002 (1.17 MB

DOC)

Figure S2 Cis-b-carotene vs. Diabetes Status for 2001–2002,

2003–2004, 2005–2006 cohorts. Raw exposure data (log-scale)

versus T2D Status (Fasting Plasma Glucose .125 mg/dL) for

validated environmental factors. Horizontal line represents the

weighted median of the group. Cohort plot symbols consistent

with Figure 2 (square: 2001–2002; filled bullet: 2003–2004; circle:

2005–2006).

Found at: doi:10.1371/journal.pone.0010746.s003 (1.01 MB

DOC)

Figure S3 c-tocopherol vs. Diabetes Status for 1999–2000 and

2003–2004 cohorts. Raw exposure data (log-scale) versus T2D

Status (Fasting Plasma Glucose .125 mg/dL) for validated
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environmental factors. Horizontal line represents the weighted

median of the group. Cohort plot symbols consistent with Figure 2

(diamond: 1999–2000; filled bullet: 2003–2004).

Found at: doi:10.1371/journal.pone.0010746.s004 (0.83 MB

DOC)

Figure S4 Heptachlor Epoxide vs. Diabetes Status for 1999–

2000 and 2003–2004 cohorts. Raw exposure data (log-scale) versus

T2D Status (Fasting Plasma Glucose .125 mg/dL) for validated

environmental factors. Horizontal line represents the weighted

median of the group. Cohort plot symbols consistent with Figure 2

(diamond: 1999–2000; filled bullet: 2003–2004).

Found at: doi:10.1371/journal.pone.0010746.s005 (0.49 MB

DOC)

Figure S5 PCB170 vs. Diabetes Status for 1999–2000 and

2003–2004 cohorts. Raw exposure data (log-scale) versus T2D

Status (Fasting Plasma Glucose .125 mg/dL) for validated

environmental factors. Horizontal line represents the weighted

median of the group. Cohort plot symbols consistent with Figure 2

(diamond: 1999–2000; filled bullet: 2003–2004).

Found at: doi:10.1371/journal.pone.0010746.s006 (0.50 MB

DOC)

Table S1 Percent of significant (p,0.02, FDR between 10 to

30%) environmental factors found by environmental class and

cohort in first stage of T2D association. Number found of total per

class is also shown in parentheses. * denotes that there were no

factors measured for that particular environmental class as of this

writing. There were a total of 21 environmental classes explored.

Found at: doi:10.1371/journal.pone.0010746.s007 (0.05 MB

DOC)

Table S2 Adjusted odds ratios for validated factors for

individuals at risk for T2D diagnosis. Individuals who answered

yes to having T2D in the NHANES questionnaire (‘‘Doctor told

you have diabetes?’’) were omitted from the sample, leaving only

those who were at risk for T2D diagnosis. Estimates were adjusted

for age, sex, BMI, SES, ethnicity, and cohort. Odds ratios are for a

change in 1SD of the logarithm of exposure in association with

T2D diagnosis risk.

Found at: doi:10.1371/journal.pone.0010746.s008 (0.03 MB

DOC)

Table S3 Adjusted odds ratios for validated factors, adjusting for

age, sex, BMI, SES, ethnicity, cohort, log10(total triglycerides),

log10(total cholesterol). Odds ratios are for a change in 1SD of the

logarithm of exposure in association with T2D.

Found at: doi:10.1371/journal.pone.0010746.s009 (0.03 MB

DOC)

Table S4 Adjusted odds ratios for validated factors, adjusting for

age, sex, BMI, SES, ethnicity, cohort, log10(triglycerides),

log10(total cholesterol), log10(total vitamin E consumption recall),

log10(total b-carotene consumption recall), log10(total carbohy-

drate consumption recall), supplement use (yes/no) . Odds ratios

are for a change in 1 SD of the logarithm of exposure in

association with T2D. * denotes models did not include b-carotene

as these data were not available for the 1999–2000 cohort.

Found at: doi:10.1371/journal.pone.0010746.s010 (0.03 MB

DOC)
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