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Abstract

Background: Genomic tiling arrays have been described in the scientific literature since 2003, yet there is a shortage of user-
friendly applications available for their analysis.

Methodology/Principal Findings: Tiling Array Analyzer (TiArA) is a software program that provides a user-friendly graphical
interface for the background subtraction, normalization, and summarization of data acquired through the Affymetrix tiling
array platform. The background signal is empirically measured using a group of nonspecific probes with varying levels of GC
content and normalization is performed to enforce a common dynamic range.

Conclusions/Significance: TiArA is implemented as a standalone program for Linux systems and is available as a cross-
platform virtual machine that will run under most modern operating systems using virtualization software such as Sun
VirtualBox or VMware. The software is available as a Debian package or a virtual appliance at http://purl.org/NET/tiara.
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Introduction

Tiled microarrays have become increasingly ubiquitous in

recent years, used in experiments ranging from Chromatin

Immunoprecipitation on a chip (ChIP-chip) analysis to transcript

identification. In contrast to traditional microarrays, which

contain a relatively low number of probes, tiling arrays include

probes that are spaced at regular intervals along a DNA sequence,

often overlapping, providing the user with a continuous hybrid-

ization signal along the entire length of a DNA molecule (often an

entire genome).

To date, only a handful of user-friendly software tools have been

published for the analysis of tiled microarray data [1,2,3]. These

tools focus on the identification of transcriptionally active regions,

while TiArA’s main focus is the summarization of transcription

data based upon previously existing annotations. Additionally, the

array platforms supported by the currently available methods are

limited to the publically available chips, while many tiling arrays

have custom, non-standard designs. TiArA aims to be an

integrative platform upon which the user can perform the

background subtraction, data normalization, and generate a

summary report all in one application for any Affymetrix chip

including customized designs.

TiArA was developed as a disparate collection of Perl and R [4]

scripts written on Ubuntu Linux. To allow end users that are not

comfortable with command-line script execution, the scripts were

tied together with a GIMP Toolkit (GTK) graphical user interface

(GUI). In planning its distribution, we have exploited the ability of

the modern desktop computer to run multiple operating systems in

parallel (i.e. virtual machines). This permits us to distribute the

program together with all libraries and applications, including a

MySQL backend, required for its execution in a single file to users

of Windows and MacOS. This packaging of machine-specific code

into a virtual appliance (a virtual machine developed for a highly

specific use), provides a completely new avenue of software

distribution that is particularly useful in the field of bioinformatics.

We present here TiArA, a user-friendly software platform for

tiling array analysis. We describe the empirical background

estimation and subtraction processes, data normalization, data

summarization, and a general method for distribution of complex

bioinformatics software packages.

Results and Discussion

Scope and functionality
TiArA was originally developed for the analysis of vaccinia virus

whole-genome tiling array data [5]. This was the first study of its

kind, analyzing the gene expression of a complex virus upon

infection of a host cell. TiArA provides the user with an intuitive

interface for preprocessing and summarization of Affymetrix tiling

array data. Moreover, any Affymetrix tiling array is amenable to

analysis using TiArA, including customized arrays using their

array layout as described in the Affymetrix TPMAP file format.

Specifically, TiArA performs a background subtraction based

upon an empirical measurement of the background signal,

normalizes the dynamic range of signals, performs quantile
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normalization over multiple arrays, and produces a summary of

expression levels and associated P-values based upon a given

genome annotation file. Additionally, the user is able to export the

probe signal intensity data in WIG file format for viewing in

genome browser applications. The user also has the option to save

the data for further processing and/or exploration in R. A detailed

description of its use, including screenshots, can be found in the

help manual which is included in the Supporting Information

(Text S1).

Background subtraction and data normalization
The unique aspect of our technique involves the selection of

probes used for background subtraction and normalization. In a

typical Affymetrix microarray analysis, the background signal is

estimated using a set of mismatch probes [6]. That is, every probe

on the array has a corresponding probe that is identical except for

its central nucleotide. This paradigm has several drawbacks. Most

apparent is that this instantly doubles the size requirement of the

chip, limiting the number of interesting probes and adding

significant monetary cost. In addition, we found that the probe

expression levels, typically expressed as fold difference between

probe and mismatch probe are problematic to compare between

ORFs with differing GC content. Our approach specifically

addresses these deficiencies while maintaining a robust method-

ology. It is based upon the observed correlation between probe

signal intensity and its GC content. Specifically, our approach

requires a set of nonspecific randomized sequences with varying

GC content (3–25 per 25-mer probe) to be synthesized on the

array. In the analysis, these probes are grouped by their GC

content and their median signal intensity is calculated. A similar

methodology is described on the Affymetrix website related to

exon array background correction [7], but is not available in the

Tiling Analysis Software package [1]. As can be seen in Figure 1A,

probes with higher GC content have both a higher signal, and a

larger dynamic range.

We correct for this bias in a two-step procedure. First, the

background signal for probes of a given GC content is estimated to

be the median value of the nonspecific probes of the same GC

content. Figures 1C and 1D show the background subtracted

nonspecific and vaccinia-specific probes. Second, to adjust for

differences in the dynamic ranges of the signals, the distributions

were mapped to the distribution of probes with the best

representation (i.e. the set of probes with the highest population).

For the vaccinia array, there were 16,007 probes with a GC

content of 8, more than for any other probe set. The mapping was

accomplished using R’s built in ‘‘quantile’’ and ‘‘ecdf’’ functions

which essentially rank the value of each point within each

distribution, and assign them their correspondingly ranked value

in another distribution. Figure 2 illustrates the effect of this

normalization process. More details on its implementation can be

found in the Materials & Methods section.

In Fig. 2, the distributions of signal intensities for all probes

within ORF VACWR144 are plotted after background subtrac-

tion (2A & C) and subsequent normalization (2B & D). After

background subtraction, a dependence on the GC content of the

probe signal is still clearly observed, with probes of a higher GC

content giving a stronger signal. As all of the probes in this plot are

specific for the same transcript, we assume that this variance

cannot be due to true differences in transcript abundance, but to

an artifact of sequence differences. In Fig. 2C & D, the probes with

high GC content are colored in red, low GC content are blue, and

average GC content are grey. Note that before normalization (2C)

the majority of probes with a high GC content have a very high

signal intensity, while those with a low GC content have a

correspondingly low signal intensity. After normalization (2D), the

intensities of probes at both extremes are brought into a common

range, allowing for direct comparison among the signal intensities

of probes of divergent composition.

The methodology described here has several advantages over

the canonical mismatch probe subtraction. Perhaps its greatest is

the need for a much smaller set of probes for subtraction, saving

precious space on the array for more interesting probes. For

example, on our vaccinia tiling array, there are 97,344 vaccinia-

specific probes and the same number of mismatch probes.

However, with a set of only 12,192 randomized sequence probes,

we are able to perform a robust background subtraction and

normalization. This potentially saves 85,152 spots on the array for

additional probes and affords the possibility of cutting costs by

moving to a smaller platform altogether. As the number of

mismatch probes required for background subtraction scales

linearly with the number of probes of interest on the array, the

amount of space saved by this method becomes more pronounced

as the number of features on the chip increases. Further, it is

possible that a smaller set of background probes is sufficient for

performing a robust normalization, but this remains to be tested.

Additionally, the randomized sequence probes have little

sequence similarity to the probes of interest, making the

calculation truly a measure of nonspecific background and

minimizing the risk of over-estimation.

Data summarization and significance testing
TiArA gives the user the option to summarize the probe-level

data at the genomic annotation level (e.g. ORFs, CDS, genes, etc.).

This is accomplished by pooling all probes that lie completely

within each annotation, as denoted in a given Genbank file. The

mean and median probe signals within each annotation are

calculated and the significance of expression is assessed using the

binomial distribution, as in [8]. The data are then summarized in

tabular format and are exported to an Excel spreadsheet.

Comparison with PM-MM background subtraction
An analysis comparing the probe intensity levels and expression

p-values obtained through this method and the canonical perfect

match minus mismatch (PM-MM) method was performed. Table 1

summarizes the results of the probe intensity correlation between

the two methods. Overall, the methods are very highly correlated,

with an average Pearson correlation coefficient among the 4

samples of 0.95. Figure 3 illustrates the probe intensity

distributions for the TAS-normalized and TiArA-normalized

samples. Although the absolute values obtained with either

method differ, the relative intensities among the samples are

similar. Further, if we extrapolate to the ORF-level as opposed to

the probe level, the binary classification of ‘‘expressed’’ or ‘‘not

expressed’’ are nearly identical (Table 2, Dataset S1).

Virtual machine packaging and distribution
As many bioinformaticians tend to code in different languages,

using varying libraries, the code can become highly fragmented

and machine-specific. Distributing these programs among several

different machines could require hours of manual setup and

troubleshooting. As an example, TiArA depends directly upon 18

other software packages. TiArA is available as a .deb package that

can be installed on Ubuntu 8.04 or later. However, we have

developed a virtual machine for its distribution which circumvents

many of the installation issues and enables a great deal of

customization. Alternatively, distribution as a Bioconductor [9]

package was considered. However, the tight integration between

R, Perl, and the MySQL database backend is more readily

TiArA Virtual Appliance
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Figure 1. Correlation of signal intensity with GC content. RNA from vaccinia-infected cells was hybridized to the chip. Each boxplot shows the
signal intensity of probes on the chip grouped by their GC content. The boxes are drawn extending from the 25th to the 75th percentile with the medians
marked by horizontal lines. The whiskers extend to the minima and maxima of the distributions. A. Nonspecific background probes (12,192) prior to
subtraction. B. Vaccinia-specific probes (97,344) prior to subtraction. C. Nonspecific background probes after subtraction of median GC signal. D. Vaccinia-
specific probes after subtraction of median background signal. E. Nonspecific background probes after background subtraction and distribution mapping
to a GC content level of 8. F. Vaccinia-specific probes after background subtraction and distribution mapping to a GC content level of 8.
doi:10.1371/journal.pone.0009993.g001

TiArA Virtual Appliance
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achieved through the development of a customized virtual

machine.

A virtual machine (VM) can be configured precisely as needed

by the developer and distributed to users of the application. This

allows the application to be executed on any computer capable of

running virtualization software, such as the open source Sun

VirtualBox or the proprietary VMware Player/Server/Fusion.

This includes all major platforms: Windows, MacOS, *NIX. The

TiArA VM is distributed in Open Virtualization Format (OVF)

and can be imported into Virtualbox or VMware.

The TiArA virtual machine runs the Ubuntu 8.04 operating

system. The application itself is packaged as a .deb file, allowing us

to take advantage of Ubuntu’s native package manager and to

automatically push updates to users of the software. The desktop is

also highly customized with links to help files and the ability to

email the developers.

The main downside in distributing a virtual appliance is the

increased download size, which is 1.6 GB for TiArA. However, as

broadband internet connections have become ubiquitous, this is

no longer prohibitive. Moreover, this should cause far less traffic as

compared to hosting TiArA as a server where users would

regularly upload and download large data files.

Summary
We have developed a program for the analysis of tiling array

data, TiArA, which is packaged as a virtual appliance and uses an

Figure 2. Removal of GC-dependant signal intensity. A. Probes that hybridize to a transcript of VACWR144 (N = 867) are grouped by their GC content
and presented as a boxplot as in Figure 1. The dashed, red lines indicate 10th and 90th percentiles of probe signal intensity for a GC content of 8. All probes are
normalized to this probe distribution in B, forcing the distributions into a common range and eliminating the signal GC dependence. C. The background-
subtracted signal intensities of all probes that hybridize to VACWR144 are plotted along their genomic coordinates. Probes are colored according to their GC
content (high = red, low = blue, medium = grey). D. The normalized signal intensities of the probes plotted in C, with the same color scheme.
doi:10.1371/journal.pone.0009993.g002

Table 1. Pearson correlation between TAS-processed and
TiArA-processed probe signal intensity data.

Sample Correlation

1 hr 0.90

2 hr 0.96

4 hr 0.96

8 hr 0.96

Average 0.95

doi:10.1371/journal.pone.0009993.t001

TiArA Virtual Appliance
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empirical estimation of background based upon probe GC

content. The background subtraction methodology nearly doubles

the space available on the array for probes of interest while

producing intensity values that are consistent with those of the

PM-MM method. The virtual appliance distribution schema

ensures that the software is configured correctly and allows the

program to run on almost any modern computer system.

Materials and Methods

Background subtraction and data normalization
All expression data were first log2 transformed. A total of 12,192

nonspecific probes were grouped according to their GC content,

ranging from 3 to 25. The median signal intensity from each group

was calculated and subtracted from all of the probes on the array

with the same GC content. The process can be summarized as

follows:

Si~Ri{~RRGCi

where Si is the background-subtracted signal intensity of probe i,

Ri is the raw signal intensity of probe i, and ~RRGCi
is the median raw

signal intensity for all nonspecific probes with the same GC

content as probe i.

After this nonspecific background subtraction, a specific

component of GC-dependant signal was observed (Fig. 2A). This

effect was minimized by normalizing the probe signals onto the

probe signal distribution of the most well-represented GC content.

For example, on the vaccinia array there are 16,007 vaccinia-

specific probes with a GC content of 8, which is more than for any

other level of GC content. The following R pseudo-code illustrates

how this process is performed for mapping the signal intensity of

probes with a GC content 4 to the signal intensity of probes with a

GC content of 8:

subtracted_ecdf [gc_content = = 4] ,-

ecdf(subtracted_signal [gc_content = = 4]);

normalized_signal [gc_content = = 4] ,-

quantile(subtracted_signal [gc_content = = 8],

subtracted_ecdf(subtracted_signal [gc_content

= = 4]));

The resulting probe signals are quantile normalized against the

other arrays in the data set as in [10].

R/Perl communication
TiArA uses a Perl subroutine to read in the user’s data files and

perform the background subtraction. Data are passed to an R

socket server that is launched at program startup.

Virtual machine configuration and customization
The virtual machine was created as described in the Sun

Virtualbox User Manual [11]. Ubuntu 8.04 was installed as

the operating system and a Debian package file (.deb) was created

(tiara-desktop.deb) to act as a meta-package. Updates to the meta-

package could include additional dependencies which would

automatically be installed on the users’ machine. A custom Debian

repository, maintained at La Jolla Institute for Allergy and

Immunology, is listed in the/etc/apt/sources.list file, allowing

seamless upgrades in the background. The meta-package file also

includes a set of maintenance scripts allowing for reconfiguring the

virtual machine to its original state, connecting the host system

disk to the virtual machine, and creating user profiles.

Figure 3. Distribution of TAS- and TiArA-processed signal intensities. A. The distributions of probe signal intensities are shown for each
sample of TAS-processed (A) and TiArA-processed (B) data.
doi:10.1371/journal.pone.0009993.g003

Table 2. Number of ORFs detected as significantly expressed
with TAS- and TiArA-processed data.

TAS TiArA

Sample ORFs expressed (P,1e-4) ORFs expressed (P,1e-4)

1 hr 73 76

2 hr 138 137

3 hr 139 138

4 hr 132 131

doi:10.1371/journal.pone.0009993.t002

TiArA Virtual Appliance
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Source code
All Perl and R source code is available on the virtual machine or

after installation of the Debian package in the path ‘/opt/tiara’.

Supporting Information

Text S1 TiArA User Guide. This is a comprehensive manual

detailing the installation and use of TiArA.

Found at: doi:10.1371/journal.pone.0009993.s001 (0.64 MB

PDF)

Dataset S1 ORF expression comparison for TAS- and TiArA-

processed data. Each sample was processed with both TiArA and

TAS. The resulting median and mean intensities per ORF are

listed here. Additionally, a P value for expression above

background is reported for each ORF.

Found at: doi:10.1371/journal.pone.0009993.s002 (0.18 MB

XLS)
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