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Abstract

Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of
genomic data typically produced in modern-day genomic experiments, automated computational methods for protein
function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but
those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput
biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer
interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic
approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a
Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model
parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more
accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov
Random Fields method. We tested our method using a high quality S.cereviciae validation network with 1622 proteins
against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction
methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein
interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to
physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170
unannotated proteins and we evaluate the predictions using the available literature.
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Introduction

Functional annotation of proteins is an important goal in post-

genomics research. However, despite the many recent technolog-

ical advances that have allowed the production of various types of

molecular data at a genome-wide scale, the function of large

numbers of proteins in fully sequenced genomes still remains

unknown. This is true even for six of the most-studied model

species, in which the proportion of unannotated proteins varies

between 10% and 75% [1]. The general problem is that on the

one hand, large-scale experimental approaches give only indirect

information about the function of proteins, whereas on the other

hand small-scale experiments provide more direct evidence but are

labor intensive. The development of accurate computational

methods for protein function prediction can therefore aid in

reducing the gap between the speed of whole-genome sequencing

and the functional annotation of their encoded proteomes.

The most common approach in computational prediction of

protein function is to use sequence or structure similarity to

transfer functional information between proteins [2]. Blast [3] and

InterPro [4] searches are popular methods for such predictions.

However, sequence similarity does not necessary imply functional

equivalence and thus Blast based annotation transfers can be

erroneous e.g. proteins from gene duplication may have high

sequence similarity but different functions. Also, homology based

annotation transfers lead to the percolation of misannotations in

databases. Furthermore, sequence data do not provide informa-

tion on the biological context of protein functions, e.g. the

metabolic pathway or biological process that the protein is

involved in. Such contextual information can be derived from

large-scale data on interactions (i.e. physical, genetic, co-expres-

sion) between genes or gene-products, such as proteins. These data

are commonly represented as networks, with nodes representing

proteins and edges representing the detected interactions

(Figure 1).

In a review of the existing computational methods that exploit

network data for function prediction, Sharan et. al. [1] distin-

guished direct and indirect methods. Direct methods predict the

function of a protein from the known functions of its neighbors (the

proteins it interacts with) [5–9]. Indirect methods first identify

functional modules in the network and subsequently assign

overrepresented (enriched) functions in the module to their
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unannotated components [10–12]. Sharan et. al. [1] judged the

direct methods as slightly superior to the indirect ones.

A pioneering direct method is the binary Markov Random

Fields (MRF) method proposed by Deng et. al. [7] (hereafter

referred to as ‘‘MRF-Deng’’). In MRF-Deng, the probability that a

protein performs a particular function depends on two numbers,

namely the number of its direct neighbors in the network that

perform the function and the number of those that do not. The

parameters of this relationship are learned from a training set by

logistic regression [13] using these numbers as predictors. Then,

Gibbs sampling is employed for functional inference of the

proteins with unknown function (‘‘unannotated proteins’’). Le-

tovsky and Kasif (LK) [5] developed an approach that is similar to

MRF-Deng, but with another parameter estimation method and

with Gibbs sampling replaced by belief propagation for the

prediction step. GeneMania [9] is based on a Gaussian (instead of

a binary) MRF and leads to a relatively easy to solve quadratic

program for making predictions.

Lanckriet et. al. [14] proposed an approach based on Support

Vector Machines (SVM). In this approach, a similarity kernel

between the proteins is computed and then a classifier is built by

maximizing the margin between the proteins that perform a

particular function and those that do not. The authors showed that

the SVM approach leads to improved performance compared to

MRF-Deng. One extension of this method is the Multi-Label

Hierarchical Classification method (MLHC) [15,16] where

predictions are first made by SVM, independently per Gene

Ontology (GO) [17] term, which are then made consistent with

the GO hierarchy by using a Bayesian Network.

Lee et. al. [18] combined the appealing properties of MRF and

SVM methods into Kernel Logistic Regression (KLR). Whereas

the predictors in MRF-Deng are derived from the adjacency

matrix that represents the network, they are derived from a

similarity kernel in KLR. Parameter estimation and predictions

are made by logistic regression instead of by SVM, because logistic

regression is much faster. Lee et. al. used a diffusion kernel [19],

whereby the protein neighborhoods are expanded or pruned

depending on the diffusion parameter, and showed that diffusion

based KLR outperforms MRF-Deng and performs comparably to

diffusion kernel based SVM. In the recent experiment of [20],

several state of art methods were assessed using Mus musculus

genomic datasets leading to the conclusion that Genemania,

MLHC and KLR showed appealing performance.

The application of diffusion kernel based KLR or SVM to large

networks is difficult or even impossible because of the huge

computational cost of the required matrix exponentiation. In this

paper we therefore try to improve the original MRF-Deng method

without introduction of diffusion kernels.

We discovered an important potential problem with MRF-

Deng. The parameter estimation step of MRF-Deng is problem-

atic in that proteins with known function (‘‘annotated proteins’’)

have unannotated proteins as neighbors so that the predictors used

in the logistic regression carry uncertainty due to the unannotated

proteins (Figure 1). This problem increases with increasing

numbers of unannotated proteins. MRF-Deng neglects this

problem by disregarding the unannotated proteins in the first

step. By this strategy, the neighborhood counts of a large number

of proteins are reduced and therefore the parameter estimates tend

to take larger absolute values [13]. During the Gibbs sampling, the

unannotated proteins are taken into account, but the model

parameters are those estimated from the pruned neighborhoods.

Here we amend the MRF-Deng method, by performing joint

parameter estimation and prediction (Figure 1) as suggested by

[18,21] i.e. in a way that the computational cost is still modest

compared to diffusion kernel based KLR. Joint analysis is a

standard approach to deal with missing data in the context of

Figure 1. Bayesian Markov Random Fields analysis (BMRF) for protein function prediction in a nutshell. A. The topology of the
interaction network is given. B. Functional annotations of proteins using a set of Gene Ontology terms. C. A partially annotated network. D–E. BMRF
analysis.
doi:10.1371/journal.pone.0009293.g001
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semi-supervised learning and can be performed by iteratively

estimating the parameters by maximizing the PseudoLikelihood

Function (PLF) using logistic regression as a first step and

estimating the unknown function by optimizing the objective

function of the MRF in the second step, till convergence is met

[22]. If there are many unannotated proteins in a given dataset

then there are so many unknowns (in the second step), that

optimizing them leads to a loss of statistical consistency in

parameter estimation. In such cases it is much better to allow for

the uncertainty therein and ‘‘average across’’ the unknowns [23].

We do so by taking a Bayesian approach. We model the joint

posterior distribution of the model parameters and the functional

states of the unannotated proteins and sample from this joint

distribution by a Markov Chain Monte Carlo (MCMC) algorithm

(Figure 1). We name the new method Bayesian Markov Random

Field analysis (BMRF) and evaluate its performance under severe

conditions, i.e. when half of the proteins in a network is

unannotated. We show that BMRF outperforms MRF-Deng,

and is competitive to diffusion KLR. Using a high quality protein-

protein interaction data set of [24] we provide functional

predictions for 1170 unannotated S. cerevisiae proteins in terms of

340 nodes (‘‘GO terms’’) of the biological process ontology of The

Gene Ontology Consortium [17] and we evaluate a subset of these

predictions using available literature.

Results

Performance Evaluation
We compared the prediction performance of BMRF with three

other protein function prediction methods, i.e. MRF-Deng, LK [5]

and KLR on 90 GO terms (Figure 2), by treating 800 randomly

chosen proteins (out of 1622) as unannotated and using the AUC

score as an indicator of the prediction performance. The AUC

score denotes the probability that a randomly chosen protein that

performs the function is given a higher posterior mean by the

predictor than a randomly chosen protein that does not [25]. The

mean AUC values for the 90 GO terms were: 0.8195 for KLR,

0.8137 for the BMRF, 0.7867 for LK and 0.7578 for MRF-Deng.

BMRF performed better than LK and MRF-Deng, that served as

its basis, but slightly underperformed compared to KLR

(Figure 3A). The improvement of BMRF over MRF-Deng is

due to the fact that BMRF estimated the interaction parameters

much better. Figure 4 illustrates the parameter values based on the

simulation for GO term GO:0042592 (homeostatic process). Both

methods estimate the intercept parameter reasonably well

(Figure 4C) but the interaction parameters (b0 and b1) as

estimated in MRF-Deng deviate far more from the true values

than those of BMRF (Figure 4 AB). This led to the improvement in

the prediction performance (Figure 4D). A further explanation is

that the neighborhood counts of a large number of proteins are

reduced in the MRF-Deng method because it disregards

interactions with unannotated proteins and therefore the param-

eter estimates take larger absolute values. During the Gibbs

sampling, the unannotated proteins are taken into account, but the

model parameters are estimated from the pruned neighborhoods.

This discrepancy explains the reduced performance of MRF-Deng

compared to BMRF. This trend was observed for the majority of

GO terms that we tested. The maximum improvement in the

AUC score was 0.31 while the maximum deterioration was 0.1.

We further calculated the precision when the recall is set to 20%

(PR20R). The mean PR20R across all the GO terms was 0.70 for

KLR, 0.62 for BMRF, 0.54 for LK and 0.31 for MRF-Deng.

Another important aspect of our comparison is the computa-

tional cost of the methods. BMRF has by definition larger

computational cost than MRF-Deng, since it uses MRF-Deng for

labelling initialization and also involves the additional parameter

updating step, but the improvement in prediction performance

compensates this increased cost. We did not compare with LK

because our R implementation of this method was not sufficiently

optimized for the speed. We compared KLR and BMRF in five

networks of different sizes, constructed from the Collins et. al. data

[24] by setting different PE score cut-offs (PE = 0.65, 1.29, 1.92,

2.55, 3.19). BMRF shows much better scaling properties and

therefore is more suitable for large networks (Figure 5). The

dominant factor of the computational cost of KLR is the

computation of the diffusion kernel. In our implementation of

KLR the diffusion kernel is obtained by scaling and squaring

method with Padé approximation which is considered to be one of

most competitive method currently [26]. Still, matrix exponenti-

ation is an active field of research in Numerical Analysis and

therefore faster methods or implementations may exist (i.e. the

power iteration method).

Novel Predictions for Unannotated Proteins
We applied the BMRF method for 340 GO terms, aiming to

predict the functions of 1170 unannotated S. cerevisiae proteins.

Lists of protein names, GO terms probabilities and ranks per GO

term are provided as supplementary material (Table S1). We

checked for further information concerning the unannotated

proteins in the literature and in the Saccharomyces Genome

Database (SGD, accessed during December 2008). When

functional information was found, we compared it with our

predictions. In the majority of cases, existing information was in

accordance with our predictions (Table 1). Below we give a

number of examples of these predictions and evaluations.

YNR024W is involved in the degradation of ‘‘cryptic’’ non

coding RNA [27], on the basis of which it is now annotated in

SGD with a number of GO terms, including the term ‘‘nuclear-

transcribed mRNA catabolic process’’. In our prediction,

YNR024W is indeed predicted top ranking (1st) for GO term

‘‘mRNA catabolic process’’ (GO:0006402) which is the parent

term of the previously assigned GO term.

There is evidence that protein YDL176W is involved in

glycolysis and glucoleogenesis [12,28]. We predict this protein

as top ranking (1st) in the GO term ‘‘Glucose metabolic

process’’ (GO:0006006), which is in agreement with the existing

information.

YMR233W is a Small Ubiquitin-like Modifier (SUMO)

substrate [29] and in mammals is involved pre-mRNA 39-end

processing [30]. We predict the protein YMR233W to be top

ranking (1st) for the GO term ‘‘RNA 39-end processing’’

(GO:0031123). Targeted experiments are needed to provide more

direct evidence for the role of YMR233W in mRNA processing in

yeast.

YOR093C is related to increased stress levels caused by the

accumulation of unfolded proteins in the endoplasmic reticulum

[31]. YOR093C ranked first in ‘‘protein folding’’ (GO:0006457) in

our predictions.

Information from SGD, based on the work of [32], reveals that

YLR315W and YDR383C are non-essential subunits of the Ctf19

central kinetochore complex. The kinetochore complex is known

to have a central role in chromosome segregation. In our

predictions YLR315W and YDR383C ranked 1st and 2nd

respectively for the term ‘‘chromosome segregation’’

(GO:0007059) which is in accordance with the experimental

evidence.

Proteins YGL128C (1st), YBL104C (2nd), YHR156C (3rd),

were co-predicted to four hierarchically dependent GO terms

Protein Function Prediction
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Figure 2. AUC scores for 90 GO terms, where the performances of the BMRF, MRF-Deng, LK and KLR was evaluated.
doi:10.1371/journal.pone.0009293.g002
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concerning the nuclear spliceosome mRNA splicing. They interact

with proteins related to mRNA splicing in a very dense

neighborhood of the protein interaction network. Information

from SGD suggests that YGL156C is located in the snRNP U5

compartment and probably linked to mRNA splicing. This

compartment is known to be connected with spliceosome

complexes that are involved in mRNA splicing. YGL128C is

annotated in SGD as putatively involved in pre-mRNA splicing,

while there is an IEA annotation (Inferred from Electronic

Annotation) to the RNA splicing GO term. This is a parent node

of our prediction and thus we provide a more detailed prediction.

Also, this protein is located in the spliceosome and therefore in

principle associated with the splicing processes. SGD does not

provide information on the protein YBL104C. However, using

BLAST we found the protein YPR178W (e-value = 0.043) to be a

distant homologue. This protein is assigned to the GO term

nuclear mRNA splicing, via spliceosome and contains a splicing

factor motif in its sequence. The region of similarity with

YBL104C is however located outside of this motif.

YOR227W is involved in the organization of the endoplasmic

reticulum [33], on the basis of which it is now annotated in SGD

with the GO term endoplasmic reticulum organization. This

protein ranked 4th for the GO term organelle organization

(GO:0006996) which is the parent of the GO term assigned by

SGD. According to SGD, YKR021W is proposed to regulate the

endocytosis of the plasma membrane. This protein is top ranking

for the GO term Cellular localization, which is related to the

proposed function.

SGD states that YBR227C is possibly a mitochondrial

chaperone with non-proteolytic function while our predictions

place this protein as first ranking for cation transport. This

mismatch does not necessarily imply that our prediction is false,

since functional evidence from SGD can be still weak and also it is

rather common that proteins have multiple functions.

Discussion

Development of computational methods for protein function

prediction based on interaction data is a challenging problem in

bioinformatics. Here, we present a method to tackle this problem

based on MRF. We followed the seminal work by Deng et al.

(2003) in formulating the problem but we solved it in a

significantly improved way. Our MCMC algorithm samples the

MRF parameter values jointly with functional inference, whereas

these are estimated in a single, questionable, training step in the

work of [7]. Our method outperforms Dengs MRF method in

efficiency of both parameter estimation and prediction perfor-

mance. Also, we showed that our method performs better than the

method proposed by Letovsky and Kasif [5]. The Kernel Logistic

Regression (KLR) method [18] performed slightly better than

BMRF, but this method involves an expensive matrix exponen-

tiation operation, that is needed to compute the diffusion kernel.

This makes KLR impractical for large networks.

In this study we focused on the methodological aspect and limit

our experiments to a single data source. In this way, we could

clearly show that our method is more powerful than its

predecessor. Our method can handle multiple data sources such

as expression correlation datasets, co-occurrence of protein names

in literature obtained via text-mining, or cross-species sequence

comparisons (e.g. orthology networks [34,35]). The datasets can

then either be merged into a single network (e.g. [36]), or used

separately, leading to additional terms in the energy function and

additional parameters ([37]) which can then be treated in the

Bayesian way as proposed here. Also, protein networks for most of

the species are far from complete and therefore dealing with the

uncertainty of the network topology is another direction for future

research.

Importantly, we showed that our approach is suitable for

networks in which a large proportion of the proteins is

unannotated. Our method can be applied for protein function

prediction in species for which large-scale interaction datasets are

available. We provided Gene Ontology predictions for 1,170

unannotated yeast proteins and for many high-ranking predictions

we found supporting information in the literature.

Methods

Markov Random Fields
MRF methods provide the framework for probabilistic

modeling of dependent random variables. They are widely applied

to a variety of problems with spatial dependencies, such as image

analysis [38], where a picture is considered as a square grid of

pixels (i.e an undirected graph) and each pixel corresponds to a

variable whose value (i.e color) depends on the values of its

neighborhood pixels. In image restoration problems, MRF

methods are used to restore the missing parts of the images. The

most probable coloring configurations of the missing pixels can be

inferred from the full joint probability distribution. The colors of

Figure 3. Performance comparison for 90 GO terms, using the Area Under the ROC Curve (AUC). The points above the diagonal denote
improved performance of BMRF against A. MRF-Deng B. LK C. KLR. BMRF performs better for the majority of the tests compared to MRF-Deng and
LK. KLR performs slightly better, but it is difficult to be applied in large datasets.
doi:10.1371/journal.pone.0009293.g003
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the missing pixels thereby are predicted simultaneously, allowing

prediction in cases where the entire neighborhoods of pixels have

to be predicted. MRF is thus particularly suited for a guilt-by-

association approach.

The framework for protein function prediction based on MRF

was originally proposed by [7]. Given a set of N proteins and a set

E of pair-wise interactions, we construct a network where nodes

represent proteins and edges represent the interactions between

them. Next each node is colored depending on whether the

corresponding protein performs or does not perform a particular

function (e.g. one GO term), where the coloring nodes of

unannotated proteins remains unknown (Figure 1). The coloring

is encoded in an N-dimensional binary vector x, i.e. xi~1 if the ith

protein performs a particular function, xi~0, if it does not. Our

aim is to assign each unannotated protein to one of the two

possible states. In fact, this problem is similar to the image

restoration problem described above. The MRF model entails that

the probability of state x of the network given a vector h of model

parameters (discussed below) is

P(xDh)~
1

Z(h)
exp(U(x,h)), ð1Þ

where {U is known as the energy function and Z(h) is a

normalizing constant that depends on h. In a homogeneous second

order MRF, U can be written as ([1,22])

U(x,h)~
XN

i~1

G1(xi)z
XN

i~1

XN

j~iz1

G2(xi,xj), ð2Þ

where G1 and G2 are problem-dependent functions. G1 takes one

value per state, without considering the interactions of the protein,

i.e. G1(1)~a and G1(0)~0. The function G2 is equal to zero if

Figure 4. Comparison of parameter estimation and prediction performance between BMRF and MRF-Deng for the GO term
‘‘ homeostatic process’’. A–B. In BMRF the parameters b0 and b1 are sampled closeby to the true parameter values, in contrast to MRF-Deng
where the parameters are estimated using only the annotated part of the network and lead to overestimated values. C. Both methods estimate the
intercept reasonably well. D. ROC curves for the prediction performance of the two methods.The AUC value for BMRF is 0.79 and for MRF-Deng is
0.71.
doi:10.1371/journal.pone.0009293.g004
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proteins i and j do not interact. For interacting proteins Deng et. al.

(2003) used three classes of interactions. If both of the interacting

proteins perform the function of interest then G2(1,1)~b11. If

only one of them performs the function then then G2(1,0)~

G2(0,1)~b10, and when none of them performs the function

G2(0,0)~b00. We denote the number of protein pairs in these three

classes by N11, N10 and N00, respectively. The energy function of this

MRF is then a
PN

i~1 xizb11N11zb10N00zb00N00, which can be

rewritten in terms of the elements of x as

U(x,h)~a
XN

i~1

xizb11
X

(i, j)[E

xixjzb10
X

(i, j)[E

½xi(1{xj)

z(1{xi)xj �zb00
X

(i, j)[E

(1{xi)(1{xj),

with h~(a,b11,b10,b00). We now compare two ways of coloring the

network that differ only in the value of the ith protein. By inserting

equation (2) in (1) and setting b1~(b11{b10) and b0~(b10{b00),
the log-odds (the logarithm of their probabilities) can be shown to be:

log
P(xi~1Dx{i,a,b1,b0)

P(xi~0Dx{i,a,b1,b0)
~azb1

X
j[Si

xjzb0
X
j[Si

(1{xj)

~azb1Mi1zb0Mi0,

ð3Þ

where x{i denotes x without the ith element and Si the set of proteins

that interact with protein i. This equation is known from logistic

regression. It has two predictors Mi1 and Mi0 counting the number of

neighboring proteins of protein i that do and do not perform the

function, respectively, and three unknown parameters, whereas the

function U had four parameters. This is no surprise when noting that

one parameter in U is redundant, because the sum of N11, N10 and

N00 is a constant that is independent of x. When the right-hand side

of the logistic equation is a known value vi, the conditional probability

that unannotated protein i performs the function is given by the

logistic function (1zexp({vi))
{1. In this way we can sample the

state of each unannotated protein when we know the parameters and

the states of its neighbors. The problem that some or all neighbors

have an unknown state can be circumvented by repeated sampling of

states, starting from an initial configuration, until convergence. This

process is called Gibbs sampling [38] and is performed across all

unannotated proteins. Finally, the PseudoLikelihood Function (PLF)

is the product of the conditional probabilities across nodes

([39])

Figure 5. Running times for KLR and BMRF. The horizontal axis
represents the size of the network and the vertical the time (in seconds)
needed by each method. The computations were performed using the
same hardware i.e. a Pentium 4 with dual core processor with 4GB of
RAM and Linux operating system. The crosses denote the network size
where the running times were evaluated. For BMRF the running time
grows linearly with the network size while for KLR it grows
polynomially.
doi:10.1371/journal.pone.0009293.g005

Table 1. Manually evaluated predictions of protein functions.

ORF Protein function [[reference]] Predicted GO term definition RP Score Rank

YNR024W Nuclear transcribed mRNA catabolic process [27] mRNA catabolic process 56.87 1

YDL176W Glycolysis and gluconeogenesis [12,28] Glucose metabolic process 22.91 1

YMR233W pre-mRNA 39-end processing [29,30] RNA 39-end processing 31.01 1

YOR093C Increased levels of unfolded proteins [31] Protein folding 28.71 1

YLR315W Ctf19 central kinetochore complex [32] Chromosome segregation 32.78 1

YDR383C Ctf19 central kinetochore complex [32] Chromosome segregation 31.68 2

YGL128C putatively involved in pre-mRNA splicing (SGD) Nuclear mRNA splicing, via spliceosome 43.47 1

YBL104C nuclear mRNA splicing, via spliceosome (Blast hit) Nuclear mRNA splicing, via spliceosome 42.68 2

YHR156C putatively involved in pre-mRNA splicing (SGD) Nuclear mRNA splicing, via spliceosome 41.15 3

YOR227W endoplasmic reticulum [33] organization Organelle organization 1.63 4

YPR003C Transporter activity (SGD) Ion transport 6.53 8

YKR021W Ubiquitin-mediated endocytosis (SGD) Cellular localization 3.65 3

YBR227C possibly a mitochondrial chaperone (SGD) Cation transport 8.86 1

doi:10.1371/journal.pone.0009293.t001
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PLF (xDa,b1,b0)~ P
N

i~1
P(xi Dx{i,a,b1,b0):

MRF-Deng
MRF-Deng [7] consists of two tasks. In the first task, the

parameters are estimated by maximizing the PLF ([39]). This can

be achieved by logistic regression, in which each protein is a

statistical unit, the response variable is the value of xi and two

predictors are the numbers of neighbors of protein that do and do

not perform the function. Unannotated proteins give rise to units

with missing response (which are simply deleted from the

regression) and to uncertain values of predictors for neighboring

units (Figure 1). Thus, the two predictors cannot be precisely

calculated when the neighborhood of a protein contains

unannotated proteins. Consequently, the logistic regression can

no longer be carried out. The authors overcame this problem by

simply ignoring the unannotated proteins. In the second task,

MRF-Deng makes functional inferences by Gibbs sampling across

all unannotated proteins, as described above.

In summary, MRF-Deng disregards the neighborhood uncer-

tainty in the parameter estimation step, but takes it into account

during the labeling step. By disregarding unannotated proteins in

the first task, neighborhoods are pruned compared to the full

network. We expected that this strategy will work worse as the

proportion of unannotated proteins in the network is large.

BMRF
In this study we develop a Bayesian strategy and draw from the

joint posterior density of x,a,b0,b1 using an MCMC algorithm

and starting from an initial configuration. As in [7], we will use the

PLF rather than the full likelihood, as the latter has an intractable

normalizing constant. A uniform prior is used as a joint prior

distribution of the model parameters. The outline of our method is

given in Figure 1. It is Gibbs sampling in which, at iteration, t, the

elements of x(t) corresponding to unannotated proteins are

updated conditionally on the values of the parameters a,b0,b1,

as described above, and the parameters are updated conditionally

on x(t). The parameter update uses the adaptive MCMC

algorithm called the Differential Evolution Markov Chain

(DEMC) [40] as follows. A candidate point h�~(a�,b0�,b1�) is

obtained using the equation:

h�~hzc(ZR1{ZR2)ze,

where h denotes the current state of the parameter vector,

c*U(c�=2,c�) is the scaling parameter and c�~
2:38ffiffiffiffiffiffi

2d
p is the

optimal step size [41], where d is the parameter dimension. In our

problem, d~3 and therefore c�~0:97. ZR1, ZR2 are uniformly

selected from past samples of the Markov Chain as stored in a

matrix Z and e*MVN(0,10{4). h� is accepted using a

Metropolis step, with probability:

r~min 1,
PLF (x(t)Dh�)
PLF (x(t)Dh)

� �
:

The labelling vector x is initialized using the output of the

MRF-Deng. The Z matrix is initialized in the following way.

First, the Maximum Penalized Pseudolikelihood Estimates of h,

m̂m and ŜS are obtained by logistic regression. We used the

penalization to reduce the bias of the parameter estimates due to

the small number of positive examples in the specific GO terms.

Those parameter estimates were obtained using the brglm R

package [42]. Then m~10d parameter values are sampled from

N(m̂m,ŜS) and stored in Z, where d is the dimension of the

parameter vector (eq 3). During the simulation, the state of h is

appended to Z in every iteration [41]. DEMC gave near

optimal acceptance rates (0.23). Convergence was tested by

performing multiple independent runs from dispersed starting

points. We found, by visual comparison of the posterior means

of multiple runs that 2,000 iterations were sufficient to achieve

convergence. The time needed for each run was around

20 seconds. The posterior probability that a protein performed

the function under study was calculated by averaging the

conditional probabilities that the protein performed the

function, (1zexp({vi))
{1, across iterations. Note that vi varies

across iterations because parameter values and states of

neighboring unannotated proteins may vary across iterations.

Receiving Operating Characteristic (ROC) curves were con-

structed from the resulting posterior probabilities. The predic-

tion performance was measured using the Area Under the ROC

Curve (AUC) [25]. The R code of BMRF is freely available at

the website: https://gforge.nbic.nl/projects/bmrf/.

Datasets
We constructed a S. cerevisiae interaction network using the

physical protein-protein interaction dataset of [24]. They used a

scoring system called purification enrichment (PE) to evaluate

each interaction. According to their study, selecting the

interactions with PE score larger than 3.19 leads to a high

quality network. This network contains 1,622 proteins (from

which 84 are unannotated, corresponding to 5% of the total)

and 9,074 interactions (Figure 6). We used this set of proteins

and this topology as validation network for evaluating the

performance of our method. Since the network provides

information on the cellular process of the proteins, we used

the set of GO terms that belong to the Biological Process (BP)

ontology.

Performance Evaluation
To evaluate the prediction performance of our method, we

selected by stratified sampling 800 out of 1622 proteins and

treated them as unannotated. This masks the annotation of

about half of the proteins in the network. Such a proportion of

unannotated proteins is common even for the most well studied

species [1]. The originally unannotated proteins were excluded

from masking, but were kept in the network. MRF-Deng and

BMRF were applied to the obtained data (i.e. a partially labelled

network, containing the masked, the unmasked proteins and

unannotated proteins), resulting in posterior probabilities for

each protein and for each method. The masked proteins

constituted the test set and their corresponding probabilities

were used to construct ROC curves and to calculate the AUC

score (Figure 3). We performed ‘‘out-of-bag’’ evaluation on 90

GO terms (Figure 2), selected by stratified sampling across

different levels of abstraction of the GO Directed Acyclic

Graph. The most sparse GO term contained 21 annotated

proteins, while the most general 789. We considered the

parameter values as estimated from the data prior to masking

as the true ones (Figure 4).

Function Predictions for Unannotated Proteins
For actual prediction purposes we constructed an expanded

network using the Collins et. al. [24] dataset. Figure 6, shows that

for PE threshold of 0.65, most of the low confidence edges of the
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network are excluded while the majority of the proteins with

unknown functions are included. We considered this network as

suitable for protein function prediction purposes. It contained

5,419 proteins (1,170 of which were unannotated) and 89,685

interactions. The proteins assigned to the GO term biological

process unknown were treated as unannotated. We applied our

method to 340 GO terms from the BP ontology.

Comparison with Other Methods
Besides MRF-Deng, we compared the performance of BMRF

with two other methods for protein function prediction i.e.

diffusion based KLR [18] and the method proposed by Letovsky

and Kasif (LK) [5]. KLR performs logistic regression on the

diffusion kernel of the protein interaction network.First the

diffusion kernel K~etL is computed, where t is the diffusion

constant and L is the opposite Laplacian of the adjacency matrix

of the protein interaction network. We computed K using the

‘‘expm’’ function of the ‘‘Matrix’’ R package that uses the squaring

and scaling with Padé approximation. Predictions are made from

the model of eq (3) using the diffusion matrix K (instead of the

original adjacency matrix) to define protein neighborhoods and

the annotated proteins only, that is, KLR uses:

Mi1~
X
j[S
0
i

K(i, j)xj

Mi0~
X
j[S
0
i

K(i, j)(1{xj)

in eq (3), where S
0
i denotes the set of neighbors of protein i that

have known function. Therefore, KLR ignores the neighborhood

uncertainty in both parameter estimation and prediction, and also

involves one more parameter, t. As in [18], we used a range of

values for t~(0:1,0:5,1:0,3:0) and found that the best perfor-

mance was achieved for t~0:1 and therefore performed further

computations using this value. Parameters were estimated by

logistic regression. The motivation behind LK is that the number

neighbors of protein i that are in state 1 is binomially distributed,

conditioned on the state of the protein xi. The derived model can

be expressed in similar manner as eq (3). In LK inferences for the

unannotated proteins of the network are made by a heuristic

algorithm based on belief propagation.

Function Predictions for Unannotated Proteins
For actual prediction purposes we constructed an expanded

network using the Collins dataset ([24]). Figure 6, shows that for

PE threshold of 0.65, most of the low confidence edges of the

network are excluded while the majority of the proteins with

unknown functions are included. We considered this network as

suitable for protein function prediction purposes. It contained

5,419 proteins (1,170 of which were unannotated) and 89,685

interactions. The proteins assigned to the GO term biological

process unknown were treated as unannotated. We applied our

method to 340 GO terms from the BP ontology.

Supporting Information

Table S1 Predictions of functions of unannotated proteins on a

set of 346 Gene Ontology (GO) terms. The top ten ranking

proteins per GO term are shown

Found at: doi:10.1371/journal.pone.0009293.s001 (0.14 MB

TXT)
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