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Campus Lübeck, Lübeck, Germany, 3 Institute of Epidemiology, HelmholtzZentrum München, München-Neuherberg, Germany

Abstract

Background: Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association
to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for
coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with
participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and
ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the
same genetic polymorphisms were analyzed for association with CAD.

Methods and Findings: A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family
Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA
levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802).
Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study.
SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2,
were associated with gout (p = 5.6*1027, p = 1.1*1027, and p = 1.3*1023, respectively). Other SNPs in the genes PDZK1, GCKR,
LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were
associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls.

Conclusion: SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout.
However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of
gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family
Study.
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Introduction

Gout is mainly caused by elevated serum uric acid (UA) levels

[1]. Several studies showed significant association between single

nucleotide polymorphism (SNP) markers in SLC2A9 gene (solute

carrier family 2, member 9, also known as GLUT9 gene) and

serum UA levels as well as susceptibility to gout [2–6].

Additionally, Dehghgan et al. reported association between

markers in genes ABCG2 and SLC17A3 with both, serum UA

levels and gout in a large cohort [6]. Very recently, Kolz et al.

conducted a meta-analysis of 14 genome-wide association (GWA)

studies on serum UA levels including a total of 28,141 participants

[7]. Nine loci with significant associations to serum UA levels were

found, namely the genes PDZK1, GCKR, LRRC16A, SLC16A9 and

SLC22A11 together with the previously reported findings in

ABCG2, SLC2A9 and SLC17A1-SLC17A3, as well as the intensively

studied SLC22A12 gene encoding for URAT1. Therefore, five

novel loci associated with serum UA levels emerged from this

meta-analysis [7]. The advantage of this GWA-based meta-

analysis is its power to detect novel common variants with

relatively small phenotypic effects on serum UA due to the large

sample size.

We analyzed these new and known loci for their association

with the clinical phenotype gout in a case control study.

Elevated serum UA levels are potentially increasing the risk for

coronary artery disease (CAD) and myocardial infarction (MI) [8–10].

We therefore tested additionally for the influence of these SNP markers

on the susceptibility to CAD in our German MI Family Study.
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Materials and Methods

Ethics Statement
The Ethics committee of the University of Regensburg

approved the study protocol and all participants gave their written

informed consent at the time of inclusion and again at the time of

follow-up investigations. The study was in accordance with the

principles of the current version of the Declaration of Helsinki.

Case-Control Samples and Phenotyping
All individuals of this study participated in the German MI

Family Study (total n = 7,575). Recruitment process, selection

criteria and study details have been reported previously [3]. A total

of n = 683 unrelated individuals (n = 480 males, n = 203 females)

with the diagnosis of gout were selected from the German MI

Family Study. Phenotyping was carried out as reported previously

[3]. In brief, the phenotype gout was established using medical

history readings and self-reported history of gout.

Controls (n = 1,563) were unrelated individuals from our

German MI Family Study who neither had any indication of

gout nor were they medicated with uricostatic or uricosuric agents

at any time during follow-up (n = 871 males, n = 692 females).

Phenotypic details are shown in Table 1.

Furthermore, a large case-control sample was established from

the German MI Family Study including n = 1,473 CAD/MI

unrelated cases (n = 856 males, n = 617 females) and n = 1,241

unrelated CAD/MI-free control individuals (n = 336 males, n = 905

females). MI was diagnosed according to MONICA (Monitoring

Trends and Determinants in Cardiovascular Disease) diagnostic

criteria (http://www.ktl.fi/publications/monica/manual/index.

htm). Severe CAD was defined as prior MI, treatment with

percutaneous coronary intervention or coronary artery bypass graft.

Cardiovascular risk factors and phenotypic details are summarized

in Table 2.

Recent GWA analyses [11,12] using a part of the current study

sample (n = 1,021) revealed no population stratification effects

within unrelated individuals form the German MI Family Study

using the genomic control method [13]. Therefore, no correction

for population stratification was carried out.

SNP Selection and Genetic Analyses
Genomic DNA isolation using the PureGene DNA Blood Kit

(Qiagen, Hilden, Germany) and genotyping with 59 exonuclease

TaqManH technology (Applied Biosystems, Foster City, CA, USA)

was carried out as previously described [3]. SNPs were selected

from a recently published meta-analysis on serum UA levels [7]

and our previous study [3].

Statistical Analyses
To determine whether the SNP genotypes of cases and controls

deviated from Hardy-Weinberg equilibrium (HWE), actual and

predicted genotype counts of both groups were compared by x2-

test. Differences in allele frequencies between dichotomous traits

were calculated employing the same method. Prevalence odds

ratios (OR) with their 95% confidence intervals (CI) were

reported. Continuous parameters were compared by t test for

normally distributed values or otherwise by non-parametric tests.

Logistic regression was used to adjust for covariates differentially

distributed in case-control cohorts. Full adjustment model for gout

included gender, medication with diuretics, lipid lowering and

antihypertensive therapy, high-density lipoprotein cholesterol

(HDL-C), type 2 diabetes, smoking, and BMI. The corresponding

model for CAD case-control sample included gender, age at

inclusion, hypercholesterolemia, hypertension, type 2 diabetes,

smoking, and BMI. Employing a model based on allele dosage,

Table 1. Characteristics of gout case and control study sample.

Variable Gout cases (n = 683) Gout-free controls (n = 1,563) p-value

Gender, % male (n) 70.3 (480) 55.7 (871) ,0.0001

Age, years (range) a 58.369.5 (23–84) 58.568.6 (28–87) n. s.

Medication with diuretics, % (n) 36.1 (221) 22.0 (341) ,0.0001

MI or severe CAD, % (n) 61.1 (417) 58.2 (909) n. s.

Hypercholesterolemia b, % (n) 70.5 (481) 66.9 (1,046) n. s.

Lipid lowering medication, % (n) 50.1 (307) 44.9 (701) 0.03

LDL-C, mg/dl 150.9641.0 147.8638.7 n. s.

HDL-C, mg/dl 50.7614.2 55.3615.7 ,0.0001

Hypertension c, % (n) 86.6 (580) 83.7 (1,269) 0.05

Antihypertensive therapy, % (n) 83.5 (512) 72.6 (1,134) ,0.0001

Systolic blood pressure, mmHg 139.0619.1 135.8618.5 0.0003

Diastolic blood pressure, mmHg 84.0610.3 82.069.8 ,0.0001

Type 2 diabetes d, % (n) 16.3 (111) 10.6 (165) 0.0002

Smoking e, % (n) 66.1 (451) 60.4 (942) 0.009

BMI, kg/m2 28.163.9 26.863.7 ,0.0001

Values denote means6standard deviations unless indicated otherwise. n. s., not significant; CAD, coronary artery disease; MI, myocardial infarction; LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; BMI, body mass index.
aAt inclusion to study.
bDefined as LDL-C $160 mg/dL or intake of lipid lowering medication.
cDefined as blood pressure $140/90 mmHg or ongoing antihypertensive therapy.
dDefined as history of diabetes mellitus or intake of antidiabetic medication.
eFormer or current smoking habit.
doi:10.1371/journal.pone.0007729.t001
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epistasis between SNPs was tested using a logistic regression

analysis with the second SNP as a covariate. A two-sided p-

value#0.05 was considered statistically significant.

Statistical and association analyses were performed using JMP

7.0.2 (SAS Institute Inc, Cary, NC, USA) and PLINK v1.06 [14],

respectively. Power analysis was carried out using G*Power 3.0.10

employing a two-tailed exact test with minor allele frequencies

(MAF) from controls [15].

Results

Population Characteristics
In our first case-control cohort, gout cases (n = 683) were

compared to control individuals (n = 1,563). Prevalence of

cardiovascular risk factors and cardiovascular disease was high

in both, gout cases and gout-free controls. However, we found no

significant difference in number of reported MI or CAD events

between gout cases (61.1% CAD/MI) and gout-free controls

(58.2% CAD/MI). The proportion of women was lower in the

gout group than in the control group. Gout cases were more often

treated with diuretics as compared to controls. In addition and in

concordance to the clinical manifestation of gout cases, the

prevalence of type 2 diabetes and increased body mass index

(BMI) was higher, and gout-free controls showed higher HDL-C

levels, even after adjusting for gender (p,0.001). The prevalence

of hypercholesterolemia was equally distributed between the two

groups, whereas hypertension and smoking were slightly more

prevalent in gout cases (Table 1).

In our second, large case-control sample for CAD/MI the

incidence of established cardiovascular risk factors, such as male

gender, type 2 diabetes, hypercholesterolemia, hypertension and

smoking, as well as increased BMI, was higher in CAD/MI cases

(n = 1,473) as compared to controls (n = 1,241) (Table 2). We also

found more individuals suffering from gout in our CAD/MI cases

compared to CAD/MI-free controls (Table 2).

Genetic Analyses
The cohorts were genotyped for markers listed in Table 3. All

SNPs fulfilled our criteria of at least 98% call rate in all sub-samples,

except for rs734553 with a total call rate = 96.0%. Marker

rs6855911 is in strong LD with rs734553 (r2 = 0.94) and, therefore,

can to some degree be used as a surrogate. Data for rs734553 were

reported for completeness. Strong LD (r2 = 0.967) exits between

rs1183201 (SLC17A1) reported from Kolz et al. [7] and rs1165205

(SLC17A3) described by Dehghan et al. [6]. Therefore, a distinction

between these two genes on association level is not possible.

Association analysis of SNPs in the gout case-control

sample. Genotype distributions and allele frequencies in gout

case-control cohort are shown in Table 4. No deviation from

HWE was observed for the ten genotyped markers in gout-free

controls (p.0.23). However, as previously reported [3], rs6855911

in SLC2A9 gene showed deviation from HWE in gout cases

(p = 0.01). The proximate marker rs734553 also showed nominal

deviation from HWE in gout cases (p = 0.05), whereas the other

markers exhibited p-values.0.18. Significant association with gout

was found for rs734553 and rs6855911 located in intron 7 of

SLC2A9, even after correction for multiple testing (ten SNPs) with

pcorr = 5.6*1026 and pcorr = 1.1*1026, respectively. The ABCG2

polymorphism rs2231142 remained significantly associated with

gout after correction for multiple testing with pcorr = 0.013. The

power to detect nominal association with p = 0.05 and OR = 1.2

for the other SNPs ranged from 32.8% to 50.4% (Table 4).

Interaction between SNPs was analyzed using a model based on

allele dosage. Nominal significance was observed between SNPs in

SLC2A9 (rs734553 and rs6855911) and rs742132 in LRRC16A with

p = 0.038 and p = 0.024, respectively.

Table 2. Characteristics of CAD case and control study sample.

Variable CAD cases (n = 1,473) CAD-free controls (n = 1,241) p-value

Gender, % male (n) 58.1 (856) 27.1 (336) ,0.0001

Age at inclusion, years (range) 60.268.5 (32–90) 56.469.9 (29–84) ,0.0001

Age at first CAD event, years (range) 54.569.1 (24–89) - -

MI, % (n) 75.6 (1,114) - -

Gout, % (n) 15.5 (228) 8.8 (109) ,0.0001

Hypercholesterolemia a, % (n) 83.4 (1,228) 29.3 (363) ,0.0001

Lipid lowering medication, % (n) 66.7 (982) 38.2 (474) ,0.0001

LDL-C, mg/dl 149.4642.6 146.1634.9 0.0313

HDL-C, mg/dl 51.4613.8 61.6615.3 ,0.0001

Hypertension b, % (n) 94.4 (1,390) 53.9 (669) ,0.0001

Antihypertensive therapy, % (n) 89.3 (1,316) 35.0 (434) ,0.0001

Systolic blood pressure, mmHg 140.0620.4 132.6618.2 ,0.0001

Diastolic blood pressure, mmHg 82.6610.4 81.469.8 0.0054

Type 2 diabetes c, % (n) 11.6 (171) 4.2 (52) ,0.0001

Smoking d, % (n) 62.7 (924) 48.1 (597) ,0.0001

BMI, kg/m2 27.363.6 26.564.2 ,0.0001

Values denote means6standard deviations unless indicated otherwise. CAD, coronary artery disease; MI, myocardial infarction; LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol; BMI, body mass index.
aDefined as LDL-C $160 mg/dL or intake of lipid lowering medication.
bDefined as blood pressure $140/90 mmHg or ongoing antihypertensive therapy.
cDefined as history of diabetes mellitus or intake of antidiabetic medication.
dFormer or current smoking habit.
doi:10.1371/journal.pone.0007729.t002
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Furthermore, we had indication for gender interaction, as

separate analyses in females and males revealed association with

gout for both SLC2A9 SNPs, whereas ABCG2 SNP rs2231142 only

showed significant association in males (Table 5), but not in

females (Table 6). Full adjustment for gender, medication with

diuretics, lipid lowering and antihypertensive therapy, HDL-C,

type 2 diabetes, smoking, and BMI did not did not change the

association results substantially (Table 4). The same model without

inclusion of gender was applied in males and females separately

and did not lead to a significant change in p-values (Table 5 and

Table 6, respectively).

Association analysis of SNPs in the CAD/MI case-control

sample. Deviation from HWE was not observed for the

genotyped markers in CAD/MI cases and CAD/MI-free

controls (p.0.05). No association with CAD was found for any

of the analyzed SNPs (Table 7). Again, adjustment for

differentially distributed risk factors between CAD cases and

controls did not alter the results significantly (Table 7). The power

to detect nominal association with CAD was .30.3% for an

assumed OR = 1.2 and .79.6% for an OR = 1.4 (Table 7).

Discussion

In the present case-control association studies, we evaluated the

relationship of common SNPs with gout and their potential

influence on CAD. The variants are located in nine different

genetic regions, four of which are known and the remaining five

loci were only recently identified to be associated with serum UA

levels in a large meta-analysis of GWA studies [7]. We were able to

confirm significant association between gout and SNPs in two

established genes, namely SLC2A9 (rs734553 and rs6855911) and

ABCG2 (rs2231142). However, for markers in the other known and

novel loci, no association with the clinical phenotype gout was

found in our study. Moreover, our results indicate no relevant

influence of the investigated polymorphisms on CAD susceptibility

in our German MI Family Study.

The strongest association signal with gout was detected for

intronic SNPs rs6855911 and rs734553 in the SLC2A9 gene, which

is consistent with previous studies on gout and serum UA levels

[2–6]. SLC2A9 is coding for GLUT9, a high-capacity urate

transporter, which is abundantly expressed in liver and kidney

Table 3. SNP marker used in analysis.

SNP Position a Major allele (1) Minor allele (2) Gene name(s) Function Call rate b

rs12129861 Chr1: 144,437,046 G A PDZK1 59 Intergenic 98.4%

rs780094 Chr2: 27,594,741 C T GCKR Intron 16 99.2%

rs734553 Chr4: 9,532,102 T G SLC2A9 GLUT9 Intron 7 96.0%

rs6855911 Chr4: 9,545,008 A G SLC2A9 GLUT9 Intron 7 99.0%

rs2231142 Chr4: 89,271,347 G T ABCG2 Exon 5 Q141K 99.2%

rs742132 Chr6: 25,715,550 A G LRRC16A Intron 34 99.4%

rs1183201 Chr6: 25,931,423 T A SLC17A1 Intron 3 98.2%

rs12356193 Chr10: 61,083,359 A G SLC16A9 Intron 5 98.7%

rs17300741 Chr11: 64,088,038 G A SLC22A11 Intron 4 98.2%

rs505802 Chr11: 64,113,648 T C SLC22A12 URAT1 59 Intergenic 99.3%

aon human genome build 18.
bin total sample (n = 4,960).
doi:10.1371/journal.pone.0007729.t003

Table 4. Association analysis results in gout case-control sample.

Gout case genotypes Gout-free control genotypes Allelic Allelic OR Adjusted
a

Power
b

Power
b

SNP 11 12 22 MAF 11 12 22 MAF p-value (95% CI) p-value OR = 1.2 OR = 1.4

rs12129861 187 334 149 0.472 394 752 394 0.500 0.083 0.89 (0.78–1.02) 0.090 0.504 0.953

rs780094 240 325 112 0.406 558 747 247 0.400 0.723 1.02 (0.90–1.17) 0.472 0.490 0.950

rs734553 429 211 14 0.183 846 553 103 0.253 5.6*1027 0.66 (0.56–0.78) 3.7*1026 0.418 0.909

rs6855911 429 233 15 0.194 829 603 114 0.269 1.1*1027 0.66 (0.56–0.77) 1.3*1026 0.430 0.918

rs2231142 500 168 9 0.137 1,241 299 12 0.104 1.3*1023 1.37 (1.13–1.66) 2.2*1023 0.239 0.663

rs742132 330 276 73 0.311 764 644 145 0.301 0.502 1.05 (0.91–1.20) 0.996 0.452 0.932

rs1183201 187 320 161 0.481 393 791 354 0.487 0.679 0.97 (0.86–1.11) 0.691 0.504 0.953

rs12356193 475 182 14 0.157 1,069 436 40 0.167 0.385 0.93 (0.78–1.10) 0.427 0.328 0.819

rs17300741 176 337 158 0.487 409 770 355 0.482 0.798 1.02 (0.89–1.16) 0.981 0.504 0.953

rs505802 317 298 64 0.314 721 682 148 0.315 0.917 0.99 (0.87–1.14) 0.783 0.459 0.936

Numbers of genotypes (11, 12, 22) according to alleles from Table 3.
aModel including gender, medication with diuretics, lipid lowering and antihypertensive therapy, HDL-C, type 2 diabetes, smoking, and BMI.
bPower was calculated for the given OR using the respective MAF in controls and a two-tailed p = 0.05.
doi:10.1371/journal.pone.0007729.t004
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tissues [16–18]. It is noteworthy that both SNPs located in SLC2A9

gene showed deviation from HWE in gout cases, which can in

some degree support a true association [19,20].

In addition, we found a significant association between the

exonic SNP rs2231142 in ABCG2 and gout, again supporting the

results of a prior GWA on serum UA levels and gout [6]. This is

the only marker examined that leads to a missense mutation with

an amino acid exchange from glutamine to lysine at position 141

in ABCG2 transporter and therefore could have a direct and

causal influence on development of the disease [6]. It is notable,

however, that the effect of this variant on susceptibility to gout is

only present in our male subcohort.

A recent meta-analysis documented an additional locus on

chromosome 6p23-p21.3 encompassing three members of the

solute carrier family 17 (SLC17A1, SLC17A3 and SLC17A4) to

be associated with serum UA levels [7]. Interestingly, their top

marker rs1183201 in the SLC17A1 gene did not show significant

association with the qualitative trait of gout in our study. Another

SNP marker, rs1165205 in SLC17A3, which is in strong LD with

rs1183201 in SLC17A1 was previously found to be related to serum

UA levels and also representing a risk factor for gout [6]. A

possible explanation for these discrepancies may lie in the different

recruitment strategies of the study populations and the distinct

definition of the phenotype ‘‘gout’’. While Kolz et al. [7] in their

meta-analysis examined participants of European ancestry from 14

different study cohorts with widely varying initial inclusion criteria

– potentially concealing a substructure which could lead to false

positive results – our ascertainment approach was to recruit

individuals with a strong familial history of CAD from all over

Germany with a concomitant accumulation of cardiometabolic

risk factors, such as gout. On the other hand, Deghan et al. [6]

included participants from three large population-based studies

(Framingham cohort, Rotterdam cohort and the Atherosclerosis

Risk in Communities (ARIC) study) with different definitions of

gout in each of the study cohorts. It is important to notice, that the

allele frequencies between Deghan et al. (rs1165205) [6], Kolz et

al. [7] and our present study (both rs1183201) did not differ

substantially (47%, 48% and 48%, respectively).

Table 5. Association analysis results in male gout case-control sample.

Gout case genotypes Gout-free control genotypes Allelic Allelic OR Adjusted a

SNP 11 12 22 MAF 11 12 22 MAF p-value (95% CI) p-value

rs12129861 135 232 104 0.467 218 415 228 0.506 0.056 0.86 (0.73–1.00) 0.145

rs780094 164 225 87 0.419 315 411 138 0.398 0.277 1.09 (0.93–1.28) 0.293

rs734553 289 159 12 0.199 453 318 64 0.267 1.1*1024 0.68 (0.56–0.83) 6.0*1024

rs6855911 291 174 12 0.208 445 349 69 0.282 2.2*1025 0.67 (0.55–0.80) 3.0*1024

rs2231142 345 124 7 0.145 686 172 7 0.108 4.4*1023 1.41 (1.11–1.78) 3.3*1023

rs742132 224 203 50 0.318 438 354 73 0.289 0.122 1.15 (0.96–1.36) 0.511

rs1183201 126 232 109 0.482 230 440 188 0.476 0.757 1.03 (0.87–1.20) 0.991

rs12356193 334 127 9 0.154 586 252 22 0.172 0.237 0.88 (0.71–1.09) 0.334

rs17300741 116 236 120 0.504 228 426 199 0.483 0.295 1.09 (0.93–1.28) 0.421

rs505802 215 214 48 0.325 386 384 92 0.330 0.812 0.98 (0.83–1.16) 0.781

Numbers of genotypes (11, 12, 22) according to alleles from Table 3.
aModel including medication with diuretics, lipid lowering and antihypertensive therapy, HDL-C, type 2 diabetes, smoking, and BMI.
doi:10.1371/journal.pone.0007729.t005

Table 6. Association analysis results in female gout case-control sample.

Gout case genotypes Gout-free control genotypes Allelic Allelic OR Adjusted a

SNP 11 12 22 MAF 11 12 22 MAF p-value (95% CI) p-value

rs12129861 52 102 45 0.482 176 337 166 0.493 0.720 0.96 (0.77–1.20) 0.315

rs780094 76 100 25 0.373 243 336 109 0.403 0.288 0.88 (0.70–1.11) 0.734

rs734553 140 52 2 0.144 393 235 39 0.235 1.4*1024 0.55 (0.40–0.75) 1.3*1023

rs6855911 138 59 3 0.163 384 254 45 0.252 2.0*1024 0.58 (0.43–0.77) 9.7*1024

rs2231142 155 44 2 0.119 555 127 5 0.100 0.256 1.22 (0.86–1.74) 0.265

rs742132 106 73 23 0.295 326 290 72 0.315 0.426 0.91 (0.71–1.16) 0.391

rs1183201 61 88 52 0.478 163 351 166 0.502 0.386 0.91 (0.73–1.13) 0.507

rs12356193 141 55 5 0.162 483 184 18 0.161 0.958 1.01 (0.75–1.36) 0.778

rs17300741 60 101 38 0.445 181 344 156 0.482 0.194 0.86 (0.69–1.08) 0.270

rs505802 102 84 16 0.287 335 298 56 0.298 0.687 0.95 (0.74–1.21) 0.923

Numbers of genotypes (11, 12, 22) according to alleles from Table 3.
aModel including medication with diuretics, lipid lowering and antihypertensive therapy, HDL-C, type 2 diabetes, smoking, and BMI.
doi:10.1371/journal.pone.0007729.t006
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The same might hold true for the other SNPs that were

genotyped in our present study but showed no significant

association with the phenotype gout. However, one has to

emphasize that in our study, we explicitly investigated the role

of SNP markers with clinically manifest gout or gouty arthritis, for

which elevated serum UA levels are an important but not a

mandatory risk factor [21,22]. Therefore, differences in the

pathophysiological pathways of the development of elevated

serum UA levels and the ignition of the inflammatory process of

gout or gouty arthritis may account for the distinct findings of our

study. This is also reflected by the clinical observations that many

patients with high serum UA levels never experience an attack of

gout, whereas other people in the absence of hyperuricemia suffer

from severe and recurrent flares of gouty arthritis [22]. One can

speculate that other pathophysiological mechanisms might be

involved, or a complex interplay of genes and their variants lead to

the manifestation of the disease. For example, the well-known

URAT1 transporter, encoded by SLC22A12 gene, is involved in

renal urate exchange [23], and a SLC22A12 polymorphism is also

linked to serum UA levels [7]. Therefore, this gene is a strong

candidate for gout, but does not show significant association with

the clinical phenotype in this and a previous study [6]. Another

possible explanation is the small effect size of some polymorphisms

on serum UA levels that could directly impact susceptibility to

gout. Our present study showed a high degree of association

between gout and SNPs in ABCG2 and SLC2A9, those polymor-

phisms that were reported to have highest effects on serum UA

levels found in the previous meta-analysis (explaining 0.57% and

3.53% of variability, respectively) [7] and that showed ORs for

gout between 1.37 and 1.52 in our study. All other SNPs were

significant on a genome-wide level, but explained less the

variability of serum UA levels (below 0.2%) [7]. Therefore, either

power was not sufficient for detection of association between these

SNPs and gout in the present study, or their relevance on the

clinical phenotype gout is not evident.

Additionally, we found only weak epistatic interaction between

SNPs in SLC2A9 and LRRC16A on gout, making a relevant

additive effect of SNPs influencing serum UA levels on the

qualitative trait unlikely. Potential confounders, such as different

medications and prevalence of type 2 diabetes, smoking or BMI,

did not influence the association results significantly. Taken

together, it is obvious that SNPs with highest influence on serum

UA levels could be directly linked to susceptibility to gout, whereas

the relevance of less contributing polymorphisms is still arguable.

More complex functional studies are warranted in the future to

elucidate the pathways with which the newly identified genes

impact serum UA levels and development of gout.

Furthermore, the presence of hyperuricemia and gout has often

been discussed to be a cardiovascular risk factor [24–28]. We thus

examined the SNPs being associated with elevated UA serum

levels in our second case-control study consisting of CAD cases

and controls from the general population. Here, we did not detect

a direct genetic relationship between the tested SNPs and CAD.

One possible explanation may be limited power: polymorphisms

with a small effect on disease susceptibility require very large study

samples to be detected. Therefore, we cannot rule out a causal link

between the SNPs influencing serum UA levels and CAD. On the

other hand, CAD is possibly a more heterogeneous disorder than

gout, even on genetic level. For example, no genes known to

influence serum UA levels were identified by recent GWA studies

on CAD, but genetic loci involved in several different pathways

were found [11,12,29–32].

There are limitations in our study design that have to be

considered. First, we do not have measurement of serum UA levels

in our cohort. Hence, we can not directly replicate the findings of

Kolz et al. on serum UA levels [7]. However, we did not aim in

replication of serum UA level association but in expansion of these

results to clinical manifestation of the phenotypes gout and CAD.

Second, all phenotypes were assessed retrospectively from patient

documentations and medical history readings. When gout was

diagnosed by a physician according to ICD-9 code 274, the

phenotype gout was considered as confirmed. In case of self-

reported gout, additional intake of uricostatic or uricosuric

medication was required to affirm the diagnosis of gout. We have

follow-up data from more than 80% of our study participants and,

therefore, validation of clinicial phenotypes is available. Third, the

power to analyze gender effects in our study is limited. As

previously described, association of serum UA levels depends to

some degree on gender [4]. Our findings on gender-specific

association between male but not female gout patients and

rs2231142 in ABCG2 gene are likely to be true positive results but

some other gender effects may have been overlooked. Forth,

assuming that gout is a risk factor for CAD, we expected to

observe significantly more CAD patients in the gout sample than

Table 7. Association analysis results in CAD case-control sample.

CAD case genotypes CAD-free control genotypes Allelic Allelic OR Adjusted a Power b Power b

SNP 11 12 22 MAF 11 12 22 MAF p-value (95% CI) p-value OR = 1.2 OR = 1.4

rs12129861 379 712 355 0.492 329 605 288 0.483 0.537 1.04 (0.93–1.15) 0.785 0.655 0.992

rs780094 539 691 228 0.393 433 603 198 0.405 0.393 0.95 (0.85–1.06) 0.125 0.639 0.991

rs734553 817 505 89 0.242 726 404 59 0.220 0.055 1.14 (1.00–1.29) 0.984 0.509 0.964

rs2231142 1,140 305 16 0.115 991 226 13 0.102 0.131 1.14 (0.96–1.36) 0.055 0.303 0.796

rs742132 715 607 137 0.302 606 495 129 0.306 0.740 0.98 (0.87–1.10) 0.543 0.593 0.985

rs1183201 385 743 321 0.478 320 608 290 0.488 0.477 0.96 (0.86–1.07) 0.638 0.655 0.992

rs12356193 1,026 389 36 0.159 848 353 29 0.167 0.417 0.94 (0.81–1.09) 0.065 0.432 0.926

rs17300741 385 686 368 0.494 336 315 273 0.474 0.149 1.08 (0.97–1.21) 0.745 0.655 0.992

rs505802 681 641 136 0.313 595 520 115 0.305 0.516 1.04 (0.93–1.17) 0.996 0.592 0.984

Numbers of genotypes (11, 12, 22) according to alleles from Table 3.
aModel including age at inclusion, gender, hypercholesterolemia, diabetes, hypertension, smoking, and BMI.
bPower was calculated for the given OR using the respective MAF in controls and a two-tailed p = 0.05.
doi:10.1371/journal.pone.0007729.t007
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in gout-free controls. However, based on our initial ascertainment

strategy where we retrospectively identified gout patients and gout-

free controls from a MI/CAD study cohort, we did not find a

significant coincidence of CAD and gout. On the other hand, in

our CAD case-control sample we found that the clinical phenotype

of gout seems to be associated with CAD.

In conclusion, we performed a comprehensive analysis on

association with susceptibility to gout and CAD of recently

published polymorphisms known to be linked with serum UA

levels. Markers in SLC2A9 and ABCG2 genes are strongly

associated with clinical manifestation of gout in the German MI

Family Study. With the knowledge of a comprehensive number of

genetic polymorphisms contributing to gout, genetic testing as a

supportive diagnostic tool would be conceivable.
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Author Contributions

Conceived and designed the experiments: KS WR MG TI CH. Performed

the experiments: KS WR. Analyzed the data: KS WR MG JE HS TI CH.

Contributed reagents/materials/analysis tools: JE CH. Wrote the paper:

KS WR MG JE HS CH.

References

1. Campion EW, Glynn RJ, deLabry LO (1987) Asymptomatic hyperuricemia.

Risks and consequences in the Normative Aging Study. Am J Med 82: 421–426.
2. Li S, Sanna S, Maschio A, Busonero F, Usala G, et al. (2007) The GLUT9 Gene

Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts.

PLoS Genet 3: e194.
3. Stark K, Reinhard W, Neureuther K, Wiedmann S, Sedlacek K, et al. (2008)

Association of common polymorphisms in GLUT9 gene with gout but not with
coronary artery disease in a large case-control study. PLoS ONE 3: e1948.
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