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Abstract

With the advent of genome-wide association (GWA) studies, researchers are hoping that reliable genetic association of
common human complex diseases/traits can be detected. Currently, there is an increasing enthusiasm about GWA and a
number of GWA studies have been published. In the field a common practice is that replication should be used as the gold
standard to validate an association finding. In this article, based on empirical and theoretical data, we emphasize that
replication of GWA findings can be quite difficult, and should not always be expected, even when true variants are
identified. The probability of replication becomes smaller with the increasing number of independent GWA studies if the
power of individual replication studies is less than 100% (which is usually the case), and even a finding that is replicated may
not necessarily be true. We argue that the field may have unreasonably high expectations on success of replication. We also
wish to raise the question whether it is sufficient or necessary to treat replication as the ultimate and gold standard for
defining true variants. We finally discuss the usefulness of integrating evidence from multiple levels/sources such as genetic
epidemiological studies (at the DNA level), gene expression studies (at the RNA level), proteomics (at the protein level), and
follow-up molecular and cellular studies for eventual validation and illumination of the functional relevance of the genes
uncovered.

Citation: Liu Y-J, Papasian CJ, Liu J-F, Hamilton J, Deng H-W (2008) Is Replication the Gold Standard for Validating Genome-Wide Association Findings? PLoS
ONE 3(12): e4037. doi:10.1371/journal.pone.0004037

Editor: Thorkild I. A. Sorensen, Copenhagen University Hospital, Denmark

Received June 8, 2008; Accepted November 21, 2008; Published December 29, 2008

Copyright: � 2008 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Investigators of this work were partially supported by grants from NIH (R01 AR050496, R21 AG027110, R01 AG026564, P50 AR055081 and R21
AA015973). The study also benefited from National Natural Science Foundation of China (30570875), Xi’an Jiaotong University, Huo YingDong Education
Foundation, Hunan Province, and the Ministry of Education of China.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dengh@umkc.edu

Introduction

With the advent of genome-wide association (GWA) studies, it is

anticipated that major susceptibility variants for common human

diseases/traits can be detected [1]. With successful application of

GWA studies first appearing in 2005, to date more than 190 GWA

studies have been published, reporting more than 410 SNPs

showing strong evidences of association with various human

complex diseases/traits, such as obesity, diabetes, coronary heart

diseases, asthma, cancers, mental illness, and osteoporosis (a

catalog of published GWA studies is summarized at the

National Human Genome Research Institute (NHGRI) website

at www.genome.gov/26525384). Some GWA findings were

confirmed in subsequent independent replication studies. With

the belief that replication should be used as a gold standard in

high quality publications, the NCI-NHGRI Working Group

proposed suggestions in the June 2007 issue of Nature on what

constitutes replication of a genotype-phenotype association,

and how best to achieve this [2]. A commonly used review

criterion for a GWA study is whether it is accompanied by

internal (e.g., within consortium) or external (independent studies

by other research groups in different populations) replication

evidence.

In this article, based on empirical and theoretical data, we show

that, like conventional linkage scan and candidate gene association

studies, GWA results are also going to be very difficult to replicate

even for powerful, well-designed studies. We demonstrate that 1)

the probability of replication becomes smaller as the number of

independent GWA studies increases if the power of individual

replication studies is less than 100% (which is usually the case), and

2) statistically replicated findings are not necessarily true, although

replication lessens the likelihood of the initial finding being false.

We question whether it is necessary or sufficient to regard

replication as the gold standard for defining a true susceptibility

variant. We lastly discuss the usefulness of integrating evidence

from multiple level/sources such as genetic epidemiology,

functional genomics, proteomics, and molecular and cellular

functional studies.

Results

1) GWA Results Are Inherently Difficult to Replicate
In GWA studies, a finding is considered to be ‘‘replicated’’ if

and only if there is an initial finding which did appropriately

control for multiple testing with strong control of the family-wise

type I error rate (FWER) and in a second independent sample this

finding is re-detected in a confirmatory hypothesis testing setting

[2]. In the following we show that the probability of replicating

GWA results is inherently low. We also discuss some confounding

factors that may further exacerbate the situation.

PLoS ONE | www.plosone.org 1 December 2008 | Volume 3 | Issue 12 | e4037



a) The probability of replicating GWA results is

inherently low. For simplicity, we assume an ideal situation

in which a gene-phenotype association exists and is identified by

the initial GWA. We then examine the probability of replicating

the association under three slightly different scenarios: 1) the initial

GWA findings are followed by several subsequent independent

replication studies (either GWA or focused regional analyses); 2)

two or more independent GWA studies are conducted

simultaneously; and 3) a mixture of N GWA (N,3–4) and R

replication studies (R.5–6) on a smaller number of markers.

The power calculation in each scenario was performed using

the ‘‘Genetic Power Calculator’’ which is public available

(http://pngu.mgh.harvard.edu/,purcell/gpc/). All the power

calculations in the ‘‘Genetic Power Calculator’’ are based upon

formula derived in Sham et al. [3].

Scenario one. Due to polygenic inheritance of complex

diseases/traits, the chance of replicating a susceptibility variant is

much lower than that of initially detecting it. This is because in a

GWA study designed to identify quantitative trait loci (QTLs), it is

usually easy to detect one of the QTLs, even if the effect of the

detected QTL is small and the statistical power of the study is low.

As a numerical demonstration, suppose there are 20 QTLs

underlie a complex trait, each explaining 1% phenotypic

variation. Assuming an ideal situation that the QTL effect size

of 0.01, the QTL allele frequency of 0.20, the marker allele

frequency of 0.30, linkage disequilibrium (LD) between the QTL

and the marker of 0.80 (D9), and the significance level

a= 5.061027, a GWA study with a large sample of 4,000

unrelated subjects (commonly used in current GWA studies) may

only have ,10% power to detect a specific QTL among these 20

QTLs, but this GWA study has a much higher power of ,88%

(12(1–10%)20) to detect at least one of the QTLs.

However, the probability of replicating the specific QTL detected

in the initial GWA will generally be low in subsequent replication

studies. For example, under the same ideal situation assumed

above, an independent replication study with a sample size of

4,000 unrelated subjects will only have ,49% power to replicate

the initial finding at a much less stringent significance level of

a= 1024. Therefore, the specific QTL identified in the initial GWA

can be replicated unless a much larger sample with much higher

power is used. In practice it should be noted that the actual effect

of the identified variant in an initial study is usually overestimated,

a phenomenon called winner’s curse [4–6]. Thus, the actual

required sample size for replication is even larger than the one

estimated based on the effect size reported in the initial discovery

study.

Scenario two. We assume that two independent GWA

studies are performed simultaneously. The likelihood that a

specific susceptibility variant can be found by both studies (i.e.,

replicated by each other) is:

P A1,A2jzð Þ~P A1jzð Þ:P A2jzð Þ~power A1ð Þ:power A2ð Þ ð1Þ

where P(A1, A2|+), the probability of detecting the susceptibility

variant by both studies, is the product of the power of each study

[denoted as power(A1) and power(A2)]. When both studies have 10%

power, the probability of detecting the same variant is as low as

1% (i.e., 10%610%). This probability is increased to 64% when

both studies have much higher power of 80%. However, when one

study has a high power of 80% and the other has low power of

10%, the probability of detecting the same variant is still as low as

8% (10%680%).

In the case of more than two independent GWA studies,

consistent replication across studies becomes increasingly

challenging and the probability of replication becomes diminish-

ingly small unless each study has power close to 100%. Assuming

that N independent GWA studies are performed, the probability of

replicating a specific susceptibility variant by all the studies is

P A1, . . . ,Anjzð Þ~ P
n

i~1
power Ai ð2Þ

It can be seen that the likelihood of consistent replication by N

individual studies depend on the statistical power of each study,

and particularly, on the study of the lowest power. As the number

of individual, independent studies increases, there is a dramatic

decrease in the probability that the same variant will be consistently

significant in all of those studies (shown in Figure 1).

A possible illustration for this scenario is four large, recently

published GWA studies for type 2 diabetes [7–10]. The first

published one was performed in a French case-control cohort [10].

The other three were performed, respectively, by the Finland-

United States Investigation on NIDDM Genetics (FUSION) team

[9], the Diabetes Genetics Initiative [8], and the Wellcome Trust

Case-Control Consortium [7]. Each GWA identified a number of

loci that may confer type 2 diabetes risk. However, only a limited

few loci (e.g., TCF7L2 and SLC30A8) showed significant

associations across ALL the four studies. Notably, neither of these

loci achieved a genome-wide significance level (a P value of 1027

[11]) in all the four studies.

Scenario three. This scenario represents a hybrid of scenarios

one and two. We assume that there are N independent GWA and

R replication studies. Without loss of generality, let’s consider a

situation, where two independent GWA (N = 2) are followed by six

replication studies (R = 6) on a smaller number of markers.

Suppose there are 20 QTLs, each explaining 1% phenotypic

variance. As shown in Scenario one, under an ideal situation, a

GWA study with a sample size of 4,000 may have only ,10%

power to detect a specific QTL among these 20 QTLs, but the

study may have a high power of ,88% (1–(1–10%)20) to detect at

least one of these 20 QTLs. The probability that the same QTL can

be identified by both initial GWA studies is only ,8.8%

(10%688%). To achieve 80% power to replicate this association

in follow-up studies (assuming D9 = 0.80, QTL allele frequency

of 0.20, marker allele frequency of 0.30, a level of 1024, no

Figure 1. The probability of replication in different numbers of
independent GWA studies. We assume all the studies have the same
power (0.90, 0.80, and 0.70) to detect a specific genotype-phenotype
association.
doi:10.1371/journal.pone.0004037.g001

GWA Replication
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between-study heterogeneity or other potential biases), a larger

sample of at least 6,000 subjects is needed. Even if replication is

achieved, there is still a possibility that the finding is false positive

(shown below in section ‘‘Are Replicated GWA Findings Always

True?’’).

b) Influence of LD and allele frequency difference. GWA

is an ‘‘indirect’’ approach testing association between markers and

diseases/traits of interest. Thus, not only the frequency of

susceptibility variants but also the markers may affect the

likelihood of detecting/replicating associations. The influence of

LD and allele frequency difference on association studies has been

demonstrated for diseases [12–14], but their quantitative effects on

quantitative traits (e.g., BMI) have not been studied. To further

illustrate the principles for quantitative traits, we show how these

population-specific characteristics (i.e., marker and susceptibility

allele frequencies, and LD strength) may affect study power. We

consider this in terms of marker effect size, which we can estimate

in practical studies.

Let’s consider a diallelic QTL (Q/q) and a diallelic marker

(M/m), with frequencies of PQ, Pq, PM, and Pm, respectively.

Assuming LD (D9) between the QTL and the marker ranges from

0.1 to 1.0, we can calculate the marker effect size (see Appendix
S1 for detail). Figure 2 shows how the measured marker effect

sizes are influenced by frequencies of the QTL and marker and

LD between them. It can be seen that the power of a GWA is

greatest when allele frequencies of the QTL and the marker

match. Discrepancies in allele frequency between the QTL and

the marker may reduce power, often dramatically as the

magnitude of this power reduction increases as the discrepancy

in allele frequency increases. When susceptibility variant and

marker allele frequencies match, the marker effect size is

approximately proportional to the QTL effect size multiplied by

the D9 value between the two loci. Since allele frequencies of the

QTLs and markers and LD strength may vary across populations

[15–17], the power of GWA studies in different study populations

may have different power to detect a QTL, even if the sample sizes

are the same. A situation that may make replication even more

difficult is long-range LD or cross-chromosome LD which may

exist in the human genome [18]. Intuitively, such long range LD

may have greater variation between different populations.

c) Confounding factors. Diversity in subject ascertainment

and study design across studies may significantly impact GWA

replication [11]. In addition, confounding factors, such as

population stratification, genetic heterogeneity, environmental

factors, and interactions between genetic and environmental

factors (which may vary with different populations and

environments), may reduce the chance of GWA replication.

Most of these factors have been well recognized and evaluated in

association studies for candidate genes [19]. Here we only briefly

review these factors with regard to GWA studies.

Population stratification/admixture may mask, change or even

result in apparently reversed genetic effect of genes underlying

complex disease/traits. The available methods addressing/

controlling this problem may have potential limitations [20–23].

For example, the Genome Control method [20] assumes that the

degree of population differentiation is the same throughout the

human genome, which may not the case. The performance of

the Structured Association method [23] is highly dependent upon

the amount and informativeness of ancestry informative markers

(AIMs) [24], and the accuracy of inferred individual ancestry is

sensitive to the number of pre-assigned subpopulations, which may

not always be satisfactorily resolved [25]. In addition, the use of

the Structured Association method for GWA studies is limited

due to its intensive computational cost for large data sets.

Principal component analysis [22] is a recently developed method

specifically for GWA; however, it may lead to incomplete

stratification correction when the number of markers is less than

20,000 [26].

Genetic heterogeneity is a common phenomenon in human

diseases. A disease could be caused by different susceptibility

variants in different populations. For a specific susceptibility

variant, there may also exist genuine diversity of its genetic effect

in different populations [27]. The allele frequency of a

susceptibility variant could be different across different popula-

tions. Since the population genetic effect of a susceptibility variant

depends on its allele frequency (Figure 2), it should not be

surprising that a significant association identified in one population

cannot be found in another. A recent study estimated the required

sample size to replicate an association finding with different

amounts of between-study heterogeneity [28]. The authors

concluded that: 1) if between-study heterogeneity reaches certain

thresholds, it may not be practically possible to consistently

replicate some true associations, no matter how large the studies

are, and 2) replication sample sizes of 40,000 subjects or even

larger are essential for generating sufficient power to replicate an

association of small or modest effect size [28].

Studies have shown that LD patterns vary substantially among

different populations [29–32]. This differential LD (or LD

heterogeneity) may cause nonreplication of GWA findings across

studies in different populations[27]. LD heterogeneity may exist

even in populations of the same ethnic group such as Caucasians

of European ancestry [30,33,34], although data accumulated

from recent GWA studies [35–37] tend to show that, between

Caucasian populations, the LD is not very heterogeneous. The

diverse intermarker LD may affect the probability of replicating a

gene or region and this should be considered when designing a

replication study, especially with regard to marker-selection

strategy. Clarke et al. [38] showed that when a region of high

intermarker LD is tested to replicate an initial finding that is only

weak association with a disease, the ‘‘local’’ approach that involves

both the originally significant markers and others in the same

regions is a good strategy. Otherwise, the most powerful and

efficient strategy for replication involves testing only the initially

identified variants [38].

Figure 2. How marker effect size (y-axis) is determined by QTL
effect size, marker allele frequency (MAF) and QTL allele
frequency, and extent of LD between marker and QTL. We
assume the QTL is under additive inheritance with MAF of 0.10 and
effect size of 0.05 and the LD is measured by D9 (x-axis).
doi:10.1371/journal.pone.0004037.g002
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Populations of different or even similar cultures may have

different exposures to environmental factors. For example,

lifestyles such as diet, smoking, alcohol drinking, nutritional

status, and exercises may have significant influence on human

body fat (a focal phenotype for obesity research). These factors are

sometimes difficult to be assessed and quantified accurately and

their actual influence on body fat variation might not be

judiciously accounted for in statistical analyses, although there is

a debate on whether the statistical adjustment for environmental

factors is necessary [39].

2) Are Replicated GWA Findings Always True?
In the field a common practice is that a significant GWA finding

is considered to be ‘‘true’’ if replicated by several subsequent

studies (not necessarily all). However, are replicated GWA findings

always true? Some Bayesian based approaches (such as positive

predictive value (PPV) to be discussed below) or complementary

approaches (such as Bayesian False-Positive Report Probability)

[40,41] may help assess the credibility of association findings. In

the following, we assess the probability of the replicated association

being ‘‘true’’ using a Bayesian approach - PPV [42].

For an association finding, the PPV can be estimated by

PPV~P zjAzð Þ~ P Azjzð ÞP zð Þ
P Azjzð ÞP zð ÞzP Azj{ð ÞP {ð Þ

~
1{bð ÞP zð Þ

1{bð ÞP zð Þzp 1{P zð Þ½ �

ð3Þ

where ‘+’ and ‘2’ denote the presence and absence of association,

respectively. A+ denotes rejection of the null hypothesis (i.e., a

significant association is detected). P(A+|+) = 12b is the statistical

power and P(A+|2) = p is the type I error rate. P(+) is the

prior (pre-study) probability that the association is true. Similarly,

we can use negative predictive value (NPV) to evaluate the

probability of null hypothesis being true (i.e., no association) when

a follow-up study does not find the association. NPV can be

estimated by

NPV~P {jA{ð Þ~ P A{j{ð ÞP {ð Þ
P A{j{ð ÞP {ð ÞzP A{jzð ÞP zð Þ

~
1{pð Þ 1{P zð Þ½ �

1{pð Þ 1{P zð Þ½ �zb:P zð Þ

ð4Þ

where A{ denotes acceptance of the null hypothesis (i.e., no

association is detected).

Supposing a significant association is identified in the initial

GWA, the probability of the identified association being true is

P1 zð Þ~PPV1~P zjAz
1

� �
~

1{bð ÞP0 zð Þ
1{bð ÞP0 zð Þzp 1{P0 zð Þ½ � ð5Þ

where P1(+) is the PPV of the initial GWA.

Further suppose that n independent subsequent GWA studies

are performed. If the kth study (k#n) replicates the initial finding

(i.e., the null hypothesis is rejected), the probability of the identified

association being true is

Pk zð Þ~PPVk~P zjAz
k

� �

~
1{bð ÞPk{1 zð Þ

1{bð ÞPk{1 zð Þzp 1{Pk{1 zð Þ½ �
ð6Þ

Alternatively, if the kth study does not replicate the initial

finding (i.e., the null hypothesis is accepted), the probability the

association being true is

Pk zð Þ~1{NPVk~1{P {jA{
k

� �

~1{
1{pð Þ 1{Pk{1 zð Þ½ �

1{pð Þ 1{Pk{1 zð Þ½ �zb:Pk{1 zð Þ

~
b:Pk{1 zð Þ

1{pð Þ 1{Pk{1 zð Þ½ �zb:Pk{1 zð Þ

ð7Þ

From Equations 5–7, it can be seen that the probability of a

replicated GWA finding being true is determined by pre-study

prior probability, statistical power, and p value of the test. Note,

here the prior probability changes by incorporating the PPV of

previous studies.

The above Equations are given without considering potential

biases. Here biases refer to those factors (due to study design, data

quality, statistical analysis, or result presentation) that tend to

produce misleading research results. Let’s quantify bias by u - the

proportion of probed analyses that would not have been GWA

findings in an unbiased study, but are nevertheless reported as

such, because of bias [42]. By taking into account bias u, the

probability of an identified association being true can be calculated

as

P1 zð Þ~PPV1~P zjAz
1

� �

~
1{bzubð ÞP0 zð Þ

1{bzubð ÞP0 zð Þz p 1{uð Þzu½ � 1{P0 zð Þ½ �
ð8Þ

If n independent subsequent GWA studies are performed and

the kth study (k#n) replicates the initial finding, the probability of

the association being true is

Pk zð Þ~PPVk~P zjAz
k

� �

~
1{bzubð ÞPk{1 zð Þ

1{bzubð ÞPk{1 zð Þz p 1{uð Þzu½ � 1{Pk{1 zð Þ½ �
ð9Þ

As a numerical illustration, we assume that a number of

sequential GWA studies are performed using 500 K SNP arrays,

among which 20 SNPs are susceptibility variants. Then the prior

(pre-study) probability of finding at lease one of the susceptibility

variants is P0(+) = 20/500,000 = 4.061025, which is quite low

compared to hypothesis-driven studies with prior knowledge or

evidence of the tested association. We next consider an actual

situation where both positive and negative results are involved. We

assume that an initial GWA study identified a significant genotype-

phenotype association, which is followed up by one to six

subsequent independent studies. We show in Table 1 the PPV

values corresponding to various situations where follow-up studies

replicated the initial finding. From Table 1, we can see that if three

among four follow-up studies replicate the initial association and

the fourth does not, the PPV of the identified association is only

,0.31. This means the chance of being true is only 31% and the

chance that this replicated finding is false is still as high as 69%. If

assuming a bias u = 0.1, the PPV decreases dramatically to as low

as 0.006. As another example, if four among six follow-up studies

replicate an initial association and two other follow-up studies do

not, the PPV of the identified association is only 0.46. While PPV

GWA Replication
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increases with the increasing number of positive replication

studies, each non-replicated study may dramatically decrease the

PPV value. The above PPV calculation was based on an

assumption that all the studies have high statistical power of

90%, which is often higher than that achieved in actual studies.

It should be noted that the experiment-wise a level of 0.05 is

used in the above PPV analysis. In GWA studies, to account for

multiple comparison by testing hundreds of thousands SNPs, a

point-wise P value of 1027 for a genotype-phenotype association is

considered to be statistically significant [11]. However, in PPV

analysis, only the experiment-wise P values that are adjusted for

multiple testing should be used. Otherwise, even point-wise P

values on the order of 1022–1025 achieved in an initial GWA can

yield high PPV if directly used in PPV analyses without correction

for multiple testing.

Discussion

Integrating Evidence of Multiple Levels/Sources
By discussing the difficulties of replication, we do not intend to

depreciate the GWA approach and subsequent replication efforts.

This is an evolving area and our understanding of GWA is

improving from the knowledge gained and challenges that remain.

The genetic community has had some useful discussions on design,

implementation, best practice and interpretation of GWA studies

[11]. Even with the difficulty of replication notwithstanding,

variants with relatively large effects may be identified and

replicated in powerful GWA studies [11]. A potential practical

example is the FTO gene, whose association with obesity and

related phenotypes was identified in three independent GWA

studies in French [35], German [36], and British populations [37].

This FTO gene is responsible for 1% of the total heritability of

obesity [43]. Meta-analysis is a useful tool for synthesizing data

and exploring potential heterogeneity [44,45]. Joint (meta) analysis

of data from comparable GWA studies may increase the power of

gene identification when individual GWA studies are underpow-

ered. However, meta-analysis may not always be ideal as it may

suffer from potential problems such as between-study heterogene-

ity and bias (e.g., selective publication) [46].

From systems biology perspective, GWAs are studies at the

DNA level. At best, GWA studies could, in conjunction with fine

mapping efforts, identify the implicated variant(s) at the level of

molecular markers (e.g., SNPs). Although GWA studies may

implicate a gene(s) as a factor contributing to a disease/trait, it

cannot tell anything about how the gene(s) contribute to the

disease/trait. Similarly, bioinformatics tools, while useful, may

only infer some of the functions of the identified markers/genes.

Functional genomic studies, including gene expression studies at

the RNA level and proteomics studies at the protein level, may

provide useful complementary information to GWA studies. For

example, functional genomic studies may unravel critical infor-

mation about the regulation of gene activity under various

conditions that may contribute to our knowledge of molecular

and genetic mechanisms influencing disease development. GWAs,

gene expression and proteomics studies, individually, have shown

some successes in identifying genes for complex diseases. However,

each may be prone to false positive/negative findings, partially due

to multiple testing in genomic approaches, statistical power

(partially associated with conservative procedures accounting for

multiple testing), and the biological complexity of gene expression

and genetic etiology. Gene expression is regulated simultaneously

and interactively at all the three levels, i.e., DNA, RNA, and

protein levels. Gene expression may be regulated at the level of

DNA, RNA, or protein and there is often interaction between

regulatory controls at these different levels. Hence, a genomic

convergence or systems biology based approach that integrates the

information from GWA studies, gene expression and proteomics

may facilitate the identification of key pathways that are globally

involved in the pathogenesis of the disease and/or interactive

factors acting at different levels of disease-gene expression [47]. It

should be noted that genomic convergence may have its own

limitations. Genes identified at the DNA level in GWA studies

may escape confirmation/replication in studies of RNA (micro-

array) or protein (proteomics), partially because of inherent

differences in these experimental approaches and complex

regulation of gene functions involved, even when those genes

actually contribute to disease development.

Gene expression levels can be used as quantitative traits in

traditional linkage or association studies, and the identified loci are

termed expression QTLs (eQTLs) [48]. Given that most common

human diseases are outcome of a complex interaction between

many genetic loci and the environment, there are obvious

advantages to studying the genetics of gene expression in cells

that represent the in vivo state. For example, a recent study

analyzed the expression of 23,720 transcripts in large population-

based blood and adipose tissue cohorts for various obesity related

traits [49]. A core network module in humans and mice was

identified that is enriched for genes involved in the inflammatory

and immune response and was found to be causally associated to

obesity-related traits [49].

Ultimately, the functional relevance of the identified variant(s)

should be confirmed by in vivo or in vitro studies. These functional

studies, however, also face challenges, as results of in vivo and in vitro

Table 1. The PPVs corresponding to various situations where different number of follow-up studies replicated the initial finding.

GWA studies PPV

Initial GWA 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.00072

Replication studies 1 0.012 7.58E-05 7.58E-05 7.58E-05 7.58E-05 7.58E-05 7.58E-05

2 0.189 0.001 7.98E-06 7.98E-06 7.98E-06 7.98E-06 7.98E-06

3 0.807 0.023 0.0001 8.40E-07 8.40E-07 8.40E-07 8.40E-07

4 0.986 0.306 0.002 1.51E-05 8.84E-08 8.84E-08 8.84E-08

5 0.999 0.888 0.044 0.0002 1.59E-06 9.31E-09 9.31E-09

6 0.999 0.993 0.455 0.004 2.86E-05 1.67E-07 9.8E-10

PPV: positive predictive value.
Bold represents the follow-up study that does not replicate the initial finding.
doi:10.1371/journal.pone.0004037.t001
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studies might not be consistent, and findings obtained in animal

models may not necessarily translate into those in humans. How to

best integrate information of multiple levels/sources in gene

identification and functional studies remain a topic for open

discussion. This is an area that requires substantial efforts from

biologists and clinicians, statistical geneticists, bioinformaticians,

and epidemiologists.

In summary, identification of genes underlying human complex

diseases is challenging. Replication, while important and valuable,

is difficult to achieve and may not be sufficient or necessary for

validating GWA findings. Additional information from other lines

of evidence, such as detailed molecular mechanistic studies and

genomic convergence, may be useful for validating and illuminat-

ing the functional relevance of genes identified in GWA studies.

Methods

The power calculation was performed using the ‘‘Genetic Power

Calculator’’ (http://pngu.mgh.harvard.edu/,purcell/gpc/). All

the power calculations in the ‘‘Genetic Power Calculator’’ are

based upon formula derived in Sham et al. [3].

In PPV analysis, the PPV values for various situations were

calculated based on the Bayesian theory. The assumed parameters

were under ideal situations.

Supporting Information

Appendix S1 Determination of marker effect size by QTL effect

size, allele frequency differences, and the LD between marker and

QTL

Found at: doi:10.1371/journal.pone.0004037.s001 (0.08 MB

DOC)
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