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Abstract
When people are asked to palpate a novel soft object to discern its physical properties such

as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors,

but also the co-contraction level of antagonistic muscles to control the mechanical imped-

ance of fingers. It is suspected that such behavior tries to enhance haptic perception by

regulating the function of mechanoreceptors at different depths of the fingertips and proprio-

ceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we

designed and fabricated a novel two-degree of freedom variable stiffness indentation probe

to investigate whether the regulation of internal stiffness, indentation, and probe sweeping

velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an

artificial silicon phantom using information gain metrics. Our experimental results provide

new insights into not only the biological phenomena of haptic perception but also new

opportunities to design and control soft robotic probes.

Introduction
Physical examination of soft objects to identify hidden mechanical features can be seen in a
variety of areas like minimally invasive surgery, medical physical examination, security, quality
assurance in food industry, entertainment, etc. Manual examination involves variation of both
behavioral and internal impedance levels of the fingers [1, 2], because the interplay between
motor control and internal mechanics (muscles and reflexes) [3, 4] play an important role in
both action and perception [5]. The notion—morphological computation—in soft robotics
and biological systems views the mechanical circuits in the embodiment as a computational
resource for both perception and action. Since the mechanical impedance of the embodiment
changes the functionality of those mechanical circuits, it is important to understand its role in
regulating perception and action of soft robots. The concept of internal impedance control in
dynamic systems was first laid out by Hogan in [6]. However, its applications have been largely
limited to control of action than understanding its role in perception or action-perception
coupling in biological systems. For instance, impedance control principles have been widely
applied in robotics for metastable walking [7], tele-operated excavation [8], safe interaction
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with humans [9, 10], and to enhance stability of prosthetic devices [11]. They take advantage of
passive body dynamics and the interaction with environment to achieve required goals without
high-level cognitive processes [12].

Fig 1 illustrates how perception and action are coupled when they share a common embodi-
ment. In biological systems, proprioceptive sensors such as spindle sensors (sense the amount
and speed of muscle contraction) and tendon sensors (sense force) are located in the very mus-
cles that are used to actuate joints. Therefore, controllers in the central nervous system perceive
the environment depending on the actuation state of the muscles and muscle actuation in turn
depends on perception [13]. Even in tactile perception [14], different types of mechanorecep-
tors are positioned at different depths in the dermis [15] to exploit different features of tissue
dynamics. How this interplay among muscle actuation behavior, environment, and co-contrac-
tion of antagonistic muscles affect the accuracy of proprioception is not well quantified yet
[16].

Recently, we have explored the role of internal impedance control for maximizing the infor-
mation gain in robotic embodied perception [17]. The analytical results and experimental evi-
dence have signified that a robotic manipulator with controllable internal impedance can
maximize information gain (measured using transfer entropy) by searching for an optimal
stiffness under a non-linear relationship between the entropy of sensory information and the
impedance of physical embodiment of the robot. This paper addresses the question as to
whether a robotic probe with variable impedance, indentation, and probe sweeping velocity
(PSV) can achieve a better estimation accuracy of a given environmental condition (i.e. depth
of a nodule embedded inside a silicon phantom).

In order to address this question, we designed and fabricated a new soft robotic probe with
a controllable stiffness Mckibben type joint. The setup for probing experiments on a soft silicon
phantom to estimate the depth of an embedded nodule is described in the following section.
Then the dynamic simulations were carried out to explore the individual and collective role of
internal impedance, indentation level, and PSV in the measured torque response. In the experi-
mental section, we discuss experimental results derived from 5625 probing trials, where we
explain our main contributions—1) Evidence to show that the internal stiffness of the soft
probe plays a statistically significant role in the accuracy of nodule’s depth estimation, 2) A
Bayesian learning framework to combine internal stiffness, indentation level, and PSV that
maximizes the information gain, and 3) Experimental results to show that proposed algorithm
can achieve on average 99% and 96% accuracy in estimating the nodule’s depth in both active
and passive perception respectively.

Design and Analytical Model of Variable Stiffness Probe

Design
The overall design of the probe used in this experiment is depicted in Fig 2(a). It is composed
of two rigid links—tip link with length, l1 = 80 mm, and base link with length, l2 = 70 mm—

made from ABS plastics. The joint connecting between these two links are coupled with a vari-
able stiffness mechanism comprising of two identical linear ENTEX No.3552 stock springs
(0.24 N/mm) from Advanex Europe Ltd, to represent how antagonistic muscles control the
stiffness of biological fingers. Both springs are situated in spring chambers inside the base link
and suspended between the pivot joint (at the connecting location, at which the relative angle
to the vertical axis of the tip link is zero) and the movable anchor ring through a micro-fila-
ment thread (see Fig 2(b)). The stiffness of the joint can be regulated by changing the position
of the anchor ring, ra, which is controlled by a 50 mm-linear actuator L12-50-210-06-I from
Firgelli Technologies Inc. An ATI Nano17 F/T transducer is mounted at the top-end of the
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base link to measure the torque during the interaction with soft silicon phantom. This repre-
sents how the tendon sensor is located at the top end of a natural muscle.

The probe’s indentation level, i is controlled by a 30mm-linear actuator (L12-30-100-06-I
from Firgelli Technologies Inc) mounted at the top of the base link. The total length of this
mechanism when at rest is denoted by lo and has the initial value of 140mm. Hence the total
rest length of this probe when the angle of pivot joint, q = 0, is 290mm. The probe structure is
mounted on a flipped ANT130 XY-stage with built-in speed regulator from Aerotech Inc. as
shown in Fig 2(c), which allows the planar movement in x- and y-direction at a constant speed.
During the interaction with environment, e.g. palpation, the torque around the x-axis is

Fig 1. Embodiment mediates both perception and action during the interaction between an agent and
the environment. The system interacts with the environment through its embodiment. The internal
impedance required for accurate perception through its embodied sensor can differ from that required to take
appropriate action. Likewise an action taken with appropriate impedance could affect the quality of perception
of the environment.

doi:10.1371/journal.pone.0156982.g001

Fig 2. Three dimensional design of the robotic probe and photos of experimental setup and sample soft silicon phantom. (a) Shaded view of
two-link probe’s design. (b) Two springs located inside the spring chambers are attached with the anchor ring and the pivot joint through a microfilament
thread. (Note that the springs shown here are for illustrative purpose only). The stiffness of the joint can be represented by the distance of ra. (c) Photo of
the complete experimental platform’s design comprising of the variable stiffness probe mounted on XY-stage. (d) A soft silicon phantom fabricated using
soft clear silicon elastomer gel with a spherical plastic bead of size 15mm diameter embedded inside at different depths.

doi:10.1371/journal.pone.0156982.g002
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measured at the end of the base link of the probe using an ATI Nano17 Force/Torque (F/T)
transducer.

Here, we used soft silicon phantoms with an embedded hard nodule as the samples for the
haptic perception experiments. Silicon phantom is made from a soft clear silicon elastomer gel
RTV27905 from Techsil. The given chemical substances (Part A and B) were mixed in 1:1 ratio
according to specification to fabricate the silicon phantom. According to the studies in human
biology, the typical tumor in soft tissue has roughly spherical shape [18] and at T1 stage can
vary in size between 0.5 to 20mm [19]. Hence a spherical plastic bead with a diameter of 15mm
was embedded inside each phantom at different depths (see Fig 2(d)). In this experiment, three
silicon phantoms were used as samples where the nodules were embedded at the depth of 2, 4,
and 8mm from the top surface of the phantom to the top of a nodule.

Variable Joint Stiffness
The exploded view of the variable stiffness joint is shown in Fig 2(b). At rest (the angular dis-
placement, q = 0 and the position of anchor ring, ra = 0), the rest length of both springs are
equal and denoted by r. Both springs can be extended from their rest by changing the position
of the anchor ring, ra. The change of the angular displacement of the joint, q, due to the passive
interaction with the environment, depending on the direction, causes both springs to be com-
pressed and extended by Δrp, where Δrp = qR. R is the radius of the pivot joint at which the
microfilament is attached to. Hence the change of the length of the springs can be computed as
following:

Dr1 ¼ ra � qR ð1Þ

Dr2 ¼ ra þ qR: ð2Þ

Since both springs are identical, we can compute the force contributed from each spring to the
probe’s joint as follows:

~f s1;2 ¼ Dr1;2ks: ð3Þ

Hence, the torque generated from both springs due to the change of joint’s angular displace-
ment and the position of the anchor ring is:

ts1;2 ¼~f s1;2 � R ¼~f s1;2?R; ð4Þ

where~f s1;2? is the force produced from each spring perpendicular to the rotational axis.

~f s1;2? ¼ fs1;2 sin ðqÞ: ð5Þ

Therefore, the total torque developed due to both springs can be computed from Eqs (3) to (5)
as follows:

ts ¼ ts1 þ ts2
¼ Rks sin ðqÞðDr1 þ Dr2Þ

ð6Þ

and the stiffness at the joint, Ks, is the derivatives of torque produced with respect to the
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angular displacement of the pivot joint, q, from Eq (6)

Ks ¼
@ts
@q

¼ 2raRks cos ðqÞ: ð7Þ

From Eqs (6) and (7), we can simulate the torque, τs, as well as the resulting joint stiffness,
Ks, as function of q and ra. The simulation results shown in Fig 3 are generated from the follow-
ing parameters: ra = [0. . .15]mm, R = 6.8mm, q = [−90. . .90]°, and ks = 0.24N/mm.

The resulting joint torque due to the changes of both parameters, q and ra, is shown in
Fig 3(a). Here we can see that the extension of both springs by increasing ra results in a change
of the landscape of the relationship between τs and q. Taking derivatives of the simulated joint
torque with respect to the angular displacement of the pivot joint results in the stiffness profile
of the joint shown in Fig 3(b). The stiffness of the joint becomes almost linear as the anchor
ring approaches its origin. Since ra can be controlled through the linear actuator, for the rest
of this paper, we represent the joint’s stiffness level in term of the position of the anchor ring,
ra mm.

System’s Dynamics
The description of variables used in the system depicted in Fig 4 is shown in Table 1. The joint
coupled between the tip and base link comprises of a variable stiffness element, which is repre-
sented by a variable spring-damper system. According to the derivation shown in Eq (7), the
variable joint’s stiffness, Ks(ra, q), is therefore a function of the position of anchor ring, ra, and
the angular displacement of the pivot joint, q.

Equation of Motion. The interaction dynamics of the system can be derived as follows:

m2a
2
2q̈þm2ga2sþ Ksqþ bs _q ¼ tj; ð8Þ

where τj is the torque at pivot joint. The torque, τ = (τf, τj)
T can be resolved from the force com-

ponents in y- and z-direction, f = (Fy, Fz)
>, at the probe’s tip during the interaction with soft

silicon phantom. τf denotes the measured torque at the end of base link. The descriptions of the
variables used here are explained in Table 1. Note that in this paper, the trigonometric func-
tions are abbreviated as follow: s = sin(q) and c = cos(q).

In order to simplify the dynamic equations of the system, the restoring force of the silicon
phantom on the probe during the interaction can be modeled using a linear spring-damper sys-
tem, where the stiffness of the silicon depending on different depth levels of a hard nodule
embedded in the sample phantom can be represented by varying the system’s spring constant.

Fig 3. Simulated joint torque and stiffness. Torque (a) and the stiffness (b) produced at the pivot joint due
to the changes in the displacement of the anchor ring, ra, and the angular displacement of the joint, q.

doi:10.1371/journal.pone.0156982.g003
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Assume that:

1. At rest (no contact between probe and sample phantom) the probe has length of L = lo + l1
+ l2 + i.

2. The base of the probe is fixed directly above the sample phantom at distance ρ.

3. The probe has stiffness Ks as a function of ra and q.

4. The soft silicon phantom has uncertain stiffness kt with Gaussian distribution.

5. The restoring force from the soft silicon phantom is in both y and z-direction.

6. The friction between the tip and soft phantom’s surface is negligible.

7. The deformation of soft silicon phantom has a uniform curvature [20].

When the probe comes in contact with the sample phantom, both the probe and the phan-
tom deform according to their relative stiffness as shown in Fig 4.

We denote the depth of phantom sample deformation in y- and z-directions by ey and ez
respectively. The probe length (compressed prismatically), U, can be expressed as a function of
q as

Υ ¼ lo þ iþ l1 þ l2c: ð9Þ

Since the base of the probe is fixed, the constraint

jezj ¼ Υ� r ð10Þ

Fig 4. Schematic view of the probe interacting with simulated softsilicon phantom. The probe consists
of two rigid manipulator links with a variable stiffness joint. In the experiment, τf is measured at the end of
base link of the probe using ATI Nano17. The nodule embedded inside the phantom is shown in red-black
spherical ball. The physical properties of phantom is described using spring-damper system. The variables
used in the system is described in Table 1.

doi:10.1371/journal.pone.0156982.g004
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is maintained. Furthermore, we assume a uniform curvature deformation (the magnitude of
deformation in both y- and z-directions are equal) of the soft silicon phantom. Therefore:

jeyj ¼ jezj: ð11Þ

By substituting Eq (9) in Eq (10), we obtain:

jeyj ¼ jezj ¼ ðlo þ iþ l1 þ l2cÞ � r ð12Þ

_ey ¼ _ql2c ð13Þ

_ez ¼ � _ql2s: ð14Þ

The restoring force from the soft silicon phantom on the probe in both directions can be mod-
eled as a spring-damper system as follows:

fy ¼ ktey þ bt _ey ð15Þ

fz ¼ ktez þ bt _ez : ð16Þ

Substituting Eqs (12)–(14) in Eqs (15) and (16), we obtain:

fy ¼ ktðlo þ iþ l1 þ l2c� rÞ þ _ql2btc ð17Þ

fz ¼ ktðlo þ iþ l1 þ l2c� rÞ � _ql2bts: ð18Þ

Therefore the force component due to the interaction with soft silicon phantom at the tip is

Table 1. System’s variables.

System Variables Descriptions

Probe τf Torque measured at the end of base link

τj Torque at the pivot joint

q Angular displacement of pivot joint

lo Length of the Indentation control link

l1 Total length of Base link

l2 Total length of Tip link

a2 Distance to center of mass of tip link

m0,1,2 Mass of Indent control, Base, and Tip link

i Indentation

g Gravitational Constant [9.81 ms−2]

bs Damping coefficient of variable stiffness joint

Ks(ra, q) Joint’s variable stiffness rating

ρ Distance from XY table to phantom’s surface

ey,z Phantom’s deformation in y- and z-direction

U ρ + e

ft Translational force in probing direction

Phantom bt Damping coefficient of silicon phantom

kt Stiffness of silicon phantom

fy Restoring force from phantom in y-direction

fz Restoring force from phantom in z-direction

doi:10.1371/journal.pone.0156982.t001
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f = (Fy, Fz)
>, where

Fy ¼ fy � ft

Fy ¼ fy � ðm0 þm1 þm2Þ€y and ð19Þ

Fz ¼ fz: ð20Þ
Fy and Fz are net force in y- and z-direction. ft is the translational force in probing direction. €y
denotes the translational acceleration. Note that fy and fz contain variables, dependent on the
terms indicated, since it is a function of the random variable kt. The terms ra; q; _q; and i, can be
thought of as parameters to the distribution. Adjusting any of these may have an effect on the
information in samples of f.

Torque measurement model. In the design of the probe shown in Fig 2(a), torque, τf, is
measured at the end of the base link. The Jacobian matrix, J of the system can therefore be
expressed as:

J ¼ l1 þ l2c l2c

�l2s �l2s

 !
: ð21Þ

We get the equations of torque resulting from the interaction with the soft silicon phantom as
follows:

t ¼ J>f

t ¼
tf

tj

0
@

1
A ¼

l1 þ l2c �l2s

l2c �l2s

 !
Fy

Fz

 !
:

ð22Þ

Hence the torque measured by the ATI Nano17 transducer mounted at the end of the base link
can be derived as:

tf ¼ Fyðl1 þ l2cÞ � Fzl2s: ð23Þ

Simulation
According to Eqs (8) and (23), the torque response due to the interaction between the probe
and soft tissue is dependent on the soft silicon phantom’s stiffness kt, probe’s stiffness ra, and
indentation level i. Here we explore how different probing conditions such as: probe’s joint
stiffness, indentation, and PSV would affect the distribution of torque response at the probe’s
base during interaction with different phantom stiffness levels.

The expected value of the stiffness of the phantom, kmto, is identified to be 65 N/m with a stan-
dard deviation of 13.2 N/m. The source of uncertainty in the simulation is limited to that from
the phantom’s stiffness. Based on the previous studies [1, 21], we can approximate the variability

of the phantom’s stiffness to be a Gaussian distribution, kt � Nðkmt ; kst2Þ, with expected value,
kmt , and standard deviation, k

s
t . The changes in phantom’s stiffness, Dkmt ¼ kmtn � kmto = 10, 20, 30,

and 40 N/m, represent the presence of a hard nodule at different depths respectively. The length
of the nodule can be viewed as the contact duration with the probe; hence the longer this is,
the slower the PSV (vprobe). In the simulation, vprobe is classified in three levels, namely: slow
(10 mm/s), medium (20 mm/s), fast (30 mm/s).
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The models of tissue’s stiffness, in which the nodule is present, are given by

kmt ¼
kmto if 0 � t < ti and t � tf

kmto þ Dkmt sin
pðt � tiÞ
tf � ti

if ti � t < tf

8><
>:

where

ti ¼
1

2

Lt

vprobe
and tf ¼ ti þ

ln
vprobe

: ð24Þ

Lt = 200 mm, ln = 15 mm, and t represent the length of the simulated phantom along the prob-
ing path, the diameter of the simulated nodule, and the simulation time respectively. ti and tf
denote the time at which the probe’s tip first contacts and leaves the nodule’s area on the phan-
tom’s surface respectively. We simulated the dynamic torque response, τf, during interaction
between the probe and the phantom under different conditions specified in Table 2. The simu-
lations were carried out using ‘ode45’ in MATLAB R2013b, The Mathworks, Inc.

The sample of torque responses, τf, and the variability resulted from the variability pre-
sented in the stiffness of the soft silicon phantom undergoing different interaction conditions
across 25 simulation trials are shown in Fig 5(a)–5(d). Fig 5(a) represents the torque responses
for different soft silicon phantom’s stiffness, kmtn ¼ f75; 85; 95; 105gN/m; whereas the probe’s
internal stiffness, indentation level, and PSV are fixed. This shows the monotonic increase in
torque response as the stiffness of the phantom increases. Fig 5(b) to 5(d) represent the torque
responses for different combinations of probe’s internal stiffness, indentation level, and PSV.
As can be seen in Fig 5(b), τf increases as the internal stiffness of the probe (controlled by the
position of anchor ring, ra) increases from ra = 0 to 4 mm. After that, τf tends to settle down.
The increase of the probe’s indentation level also elevates the torque responses as shown in Fig
5(c). In Fig 5(d), the influence of the PSV, vprobe, on the torque response, given the fixed values
for the rest of the simulation parameters, cannot be visually assessed. Therefore, we have
applied a statistical method to determine this. Since the simulated torque response is normally
distributed (this was tested using Kolmogrov-Smirnov test for normality), we can implement
ANOVA (Analysis of Variance) test. The result from the test signifies no statistically significant

Table 2. Simulation parameters.

System Variables Value

Probe l1,2 80, 70 [mm]

a1,2 40, 35 [mm]

m1,2 0.2, 0.3 [kg]

bs 0.02 [Ns/m]

i {3, 5, 7, 9, 11} [mm]

vprobe {10, 20, 30} [mm/s]

Joint Stiffness R 6.8 [mm]

ra {0, 4, 8, 12, 16} [mm]

ks 0.24 [N/mm]

Silicon Phantom ρ 290 [mm]

km
tn {75, 85, 95, 105} [N/m]

km
to 65 [N/m]

ks
tn;to 13.2 [N/m]

btn,to 0.1[Ns/m]

doi:10.1371/journal.pone.0156982.t002
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difference between these torque response distributions (p-value> 0.05). Therefore, the change
in PSV, vprobe does not significantly affect the torque response.

From each torque response profile measured during palpation, we extracted the maximum
torque at the location of simulated hard nodule as shown in ‘circle’ in Fig 5(a)–5(d). Fig 5(e)–5
(g) depict the expected values and standard deviations of extracted maximum torque response
given different combinations of probe’s internal stiffness, indentation level, and PSV across 25
trials for kmtn ¼ {75(red line), 85(green line), 95(blue line), and 105(purple line)} N/m. Fig 5(e)
presents the average maximum torque with standard deviation extracted from 25 simulation
trials across different probe’s internal stiffness levels presented by ra. The average torque
response increases as ra increases from 0 to 4mm. Then the average peak torque response set-
tles down. Furthermore, we see non-linear elevation of the torque standard deviation as the
probe’s stiffness level increases. On the other hand, the average peak torque and the corre-
sponding standard deviation shown in Fig 5(f) respectively tend to have a rather linear trend.
Lastly, in Fig 5(g) we do not see any statistically significant difference in the average and stan-
dard deviation of peak torque response resulted from the change in the PSV.

These simulation results predict that the torque felt at the base of the probe can be con-
trolled using probe stiffness, indentation level and PSV during the interaction with a soft tissue.
The relationship between the torque felt and the combinations of probe’s stiffness, indentation
level, and PSV are non-linear. Furthermore, in reality the variability present in the system is
non-deterministic and may arise from several sources such as the probing behavior, environ-
ment, and the probe itself. These raise the question as to how we can exploit these non-linear
relationships to enhance the interpretation of the features in the environment using proprio-
ceptive feedback from the torque sensor mounted at the base of the probe (representing how
the tendon sensor is located in natural muscles). Since the relationship is stochastic and non-

Fig 5. Sample of the simulated torque responses and the corresponding variability given different simulated interaction conditions across 25
simulation trials. The simulated spherical hard nodule of size 15 mm diameter is presented at location between 100 mm to 115 mm. The simulated
interaction conditions for each sub-figure are as follows: (a) The average stiffness of soft silicon phantom is varied with the other parameters fixed at
ra = 8mm, i = 4mm, and vprobe = 20mm/s. (b) Average Stiffness of the probe is varied keeping the other variables fixed at km

tn = 95N/m, i = 4mm, and
vprobe = 20mm/s. (c) The indentation level of the probe, i, is varied keeping the rest parameters fixed at km

tn = 95N/m, ra = 8mm, and vprobe = 20mm/s. (d)
The probing speed, vprobe, is varied and the other parameters are kept at km

tn = 95N/m, ra = 8mm, and i = 4mm. For each torque profile measured during
palpation, the maximum torque at the location of simulated hard nodule is extracted. Sub figures (e), (f), and (g) show the average maximum torque felt
with error bars, under different combinations of probe’s internal stiffness, indentation, and PSV.

doi:10.1371/journal.pone.0156982.g005
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linear, the best way to preserve the interaction information is to present the relationship in the
form of a probabilistic distribution. It provides us the opportunity to implement an appropriate
stochastic machine learning technique to understand the role of individual factor in the inter-
pretation of haptic perception.

Experiments and Results
In the experiment, we use the controllable stiffness robotic probe described earlier to derive
deeper insights into the influence of the variation of combinations of probe’s internal stiffness,
indentation level, and PSV on the real-time estimation of the depth of a hard nodule embedded
in soft silicon phantom. We explore whether a probe with controllable stiffness, indentation
level, and PSV can exploit its past experience of palpation by varying its own internal stiffness,
indentation level, and PSV to estimate the depth of embedded nodule inside a soft silicon
phantom.

Palpation Memory Primitives
The palpation experiences during interaction with the soft silicon phantoms with a nodule
embedded at different depths can be presented in the form of a probabilistic representation,
which hereafter is referred to as ‘memory primitives’. The memory primitives were built from
torque measurements, τf, for different ra, vprobe and i, over multiple palpation learning trials.

The probe mounted under the XY-table was programmed to palpate in a straight line along
the probing path over the soft silicon phantom’s exposed surface shown in Fig 2(d). During
each palpation trial, the torque response due to the interaction is measured at the base around
the x-axis at 1000 Hz. Readings of ra, i, vprobe, and τf were recorded using LabVIEW2012 soft-
ware, National Instruments Corp, through the data acquisition cards. Data processing was car-
ried out using MatLAB R2013b, The MathWorks, Inc.

In order to construct the primitives for this experiment, we conducted palpation experi-
ments across 5 probe stiffness levels, ra, 5 indentation levels, i, 3 levels of PSV, vprobe, and 3 lev-
els of nodule depths, d. The experimental conditions are shown in Table 3. These amount to
225 unique interaction conditions. For each given combination, 25 palpation trials were
repeated to allow the formation of distribution of peak torque response.

Each measured torque signal from the F/T transducer is de-noised for 5 levels using wavelet
decomposition technique with a Daubechie’s db10 mother wavelet. The peak torque at the
nodule’s location is then extracted from each de-noised signal. The peak torque distribution
given different combinations of the probe’s stiffness, indentation level, and the probing speed
for different nodule’s depth level, P(τf|d, ra, i, vprobe), can be constructed from all 25 trials by fit-
ting a normal distribution to the data. Here, only 81 interaction conditions are depicted as
examples of memory primitives as shown in Fig 6(a), 6(b) and 6(c).

Table 3. Experimental Conditions.

Experimental variables Sym. Values Units

Probe’s stiffness (anchor position) ra {0,4,8,12,16} mm

Relative distance between the tip of the probe at rest and the surface of phantom, i.e. inwards the phantom (indentation) i {3,5,7,9,11} mm

Probe’s velocity vprobe {10,20,30} mm/s

Nodule’s depth d {2,4,8} mm

Distance between the XYplate and bottom of phantom lt 320 mm

doi:10.1371/journal.pone.0156982.t003
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Experimental results and analysis
The non-linear relationship between the measured torque probability distribution and differ-
ent combinations of probe’s stiffness, indentation level, and PSV can be used in an appropriate
machine learning algorithms to enhance the accuracy in nodule’s depth estimation. In this
paper, interpretation of real-time torque measurements during palpation was done using mem-
ory primitives (conditional probability density functions) in a Bayesian Inferencing framework
as given by

Ptðdjtf Þ ¼
Pðtf jd; ra; i; vprobeÞPt�1ðdÞPm

n¼1 Pðtf jdn; ra; i; vprobeÞPt�1ðdnÞ
; ð25Þ

where Pt(d|τf) is the posterior probability of nodule’s depth given τf. t denotes the current esti-
mation iteration. Pt−1(d) represents the prior distribution of d. P(τf|d, ra, i, vprobe) refers to the
likelihood probability distribution of torque, given d, ra, i, and vprobe. n indicates the index of d.
Andm = 3 is the number of possible classes for nodule depth.

Bayesian Inference in Estimating the Nodule’s depth. Table 3 shows different combina-
tions of probe-soft tissue interaction conditions used to assess the performance of the Bayesian
Inferencing algorithm 1 to estimate d across 5 iterations. The assessment of the nodule’s depth
estimation was repeated for 10 trials in order to obtain the average accuracy of estimation. In
each assessment trial, the memory primitives given different combinations of probe’s interact-
ing conditions were constructed from 25 randomly chosen learning trials.
Algorithm 1: Nodule’s depth estimation algorithm using Bayesian Inference
1 function DepthEstimation (τft = 1..5

(dr, ra, i, vprobe));
Input: Real time torque reading, τft = 1..5

(dr, ra, i, vprobe)
Output: Depth estimation accuracy

2 Define Pt = 0(d) as a flat distribution across different d;
3 for each combination of {ra, i, vprobe}, and actual nodule’s depth, dr do
4 for each iteration t 2 1..5 do
5 Retrieve and process new τft

from the sensor reading, given known prob-
ing bahavior {ra, i, vprobe}.;

Fig 6. Examples of memory primitives computed as probability functions of the de-noised torque profiles from 25 trials given different
interaction conditions shown in Table 3. The sample of memory primitives shown here consist of those when the PSV, vprobe = 10, 20, and 30, in
subfigures (a), (b), and (c), for the indentation level, i, of 3, 7, and 11 mm, and the stiffness of the joint denoted by ra, of 0, 8, and 16 mm.

doi:10.1371/journal.pone.0156982.g006
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6 Compute P(τft
|d, ra, i, vprobe) from φ.;

7 Recall prior distribution of hypothesis of nodule’s depth Pt−1(d).;
8 Compute Pt(d|τf) using Eq 25.;
9 Store posterior distribution as a prior distribution for the next

iteration.;
10 dest ¼ argmax

m
ðPtðdjtfÞÞ;

11 end
12 end

Fig 7 shows an example of a nodule depth estimation trial that consists of 5 iterations of
Bayesian Inference for a given combination of probe’s stiffness, indentation, and PSV. Each
subplot shows the progression of the posterior probability of nodule’s depth estimation starting
from a flat distribution at t = 0 to a refined one at t = 5.

The overall accuracy across 10 assessment trials in nodule depth estimation after each itera-
tion and those for different nodule depth levels are shown in Fig 8. On average, the overall nod-
ule depth estimation accuracy increases from approximately 91% with standard deviation of
3.23% at the first iteration (t = 1) to 96% with standard deviation of 1.8% at (t = 5). We witness
that the estimation accuracy of nodule depth decreases as the nodule is buried deeper from the
exposed surface from 99.3% at d = 2 mm to 95.2% and 94.2% at d = 4 and 8 mm, respectively.
Higher iteration numbers cause the expected values of estimation accuracy for all depth ranges
to increase and the standard deviations to decrease.

Further statistical analysis was performed to investigate the significance of ra, i, and vprobe,
on the depth estimation accuracy across all assessment trials. The Kolmogrov-Smirnov test
showed that the nodule’s depth estimation was not normally distributed p> 0.05. Hence, the

Fig 7. Examples of posterior distribution of nodule’s depth estimationacross iterations. Each plot
depicts the distribution of depth estimation from the initially defined flat distribution at t = 0 to t = 5 given
different combinations of probe’s stiffness, indentation, and PSV. The real depths of nodule, dr, assessed
here were those known values associated with the memory primitives explained earlier.

doi:10.1371/journal.pone.0156982.g007
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conventional Analysis of Variance (ANOVA) could not be performed. Therefore, a non-
parametric Kruskal-Wallis method was applied. The resulting p-values from the test were
0.0002, 0.4715, and 0.7394 for probe’s stiffness, ra, indentation, i, and PSV, vprobe, respectively
over the course of 10 assessment trials across different combinations. Therefore, probe’s stiff-
ness, ra, has statistically significant contribution towards the nodule’s depth estimation accu-
racy (p-value<0.05); while the variation of i and vprobe do not have a significant influence.

The average accuracy in the estimation of nodule’s depth given different probe’s stiffness, ra,
indentation level, i, and PSV, vprobe across 10 assessment trials are shown in Tables 4, 5 and 6,
respectively. We can see that the average nodule’s depth estimation is slightly less accurate for

Fig 8. The nodule’s depth estimation accuracy under fixed-5-iteration Bayesian inferencing
algorithm. The resulting overall nodule’s depth estimation accuracy is shown in black line. The estimation
accuracy for each actual depth, dr = 2, 4, and 8 mm are shown in red, green and magenta lines respectively.

doi:10.1371/journal.pone.0156982.g008

Table 4. Nodule’s depth estimation accuracy across ra.

ra [mm] (Probe’s stiffness)

dr [mm] 0 4 8 12 16

2 96.7% 98.7% 98.7% 99.3% 98.7%

4 90.7% 97.3% 93.3% 98.7% 98%

8 95.3% 83.3% 92.7% 100% 98%

Overall 94.2% 93.1% 94.9% 99.3% 98.2%

doi:10.1371/journal.pone.0156982.t004

Table 5. Nodule’s depth estimation accuracy across i.

i [mm] (Indentation)

dr [mm] 3 5 7 9 11

2 94.7% 100% 100% 99.3% 98%

4 96% 94.7% 90% 98.7% 98.7%

8 89.3% 96% 90% 98.7% 95.3%

Overall 93.3% 96.9% 93.3% 98.9% 97.3%

doi:10.1371/journal.pone.0156982.t005
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the case when the joint of the probe is both stiffest and most relaxed; while it is most accurate
when ra = 12 mm. This suggests that the regulation of body’s stiffness matters when making
an estimation about the environment. Nonetheless, it is important to notice that the efficacy of
ra = 12 mm varies depending on the probing speed and the indentation used.

Furthermore, Fig 7 suggests that the posterior distribution of nodule’s depth estimation can
converge at different rates depending not only on the combination of ra, i, and vprobe, but also
on the noise level of real-time sensor measurements in each iteration and the chosen memory
primitives in the likelihood function. This leads to the question as to whether we can determine
the sufficiency of the number of iteration/exploration required to make an accurate estimation
of the nodule depth. We can address this question by computing the information transfer
entropy in each iteration. This will be addressed in detail in the next section.

Kullback-Liebler Transfer Entropy. In general, the common influences of multiple cou-
pled systems and factors can be quantified through the directed information exchanges by
measuring the information transfer entropy, also known as relative entropy [22]. For example,
we can assign the combination of internal stiffness, indentation level, and PSV; and the torque
sensor reading to be random variables (RV-A) and (RV-B) respectively. While the mutual
information of two coupled variables between RV-A and RV-B does not change with the
exchanges of variables; the transfer entropy from RV-A to RV-B is not identical to that from
RV-B to RV-A. Transfer entropy can be quantified using Kullback-Liebler (KL) divergence.

To be more specific, KL-divergence can be used to assess whether further information
regarding the nodule’s depth estimation can be gained by taking another action (further itera-
tion in Bayesian nodule’s depth estimation procedure). If we consider a set of Pt(d|τf) computed
at the end of each Bayesian iteration as the hypothesis of the depth estimation, its entropy for a
given torque measurement, τf, is dependent on a set of probe’s stiffness, indentation level, and
PSV, {ra, i, and vprobe}. KL-divergence defined in Eq (26) represents the additional information
gained, G, about the relationship between the hypothesis of depth estimation, Pt(d), and τf
across iterations of Bayesian Inference as well as across different sets the probe’s stiffness,
indentation level, and PSV. Therefore, KL-divergence is a good measure to quantify the gain of
different actions underlying the changes in the behavior.

Gt ¼ Ptðdjtf Þ log
Ptðdjtf Þ
Pt¼0ðdÞ

; ð26Þ

Pt(d|τf) represents the probability distribution of depth estimation which is obtained from the
Bayesian inference shown in Eq (25) at tth iteration, and Pt = 0(d) represents the base hypothesis
about the nodule’s depth estimation.

Bayesian Inference in Estimating the Nodule’s depth with Kullback-Liebler Diver-
gence. In addition to the Bayesian Inference method for estimating the depth of the nodule
from the real-time captured torque data, here KL-divergence is implemented at the end of each

Table 6. Nodule’s depth estimation accuracy across vprobe.

vprobe [mm/s] (probing vel.)

dr [mm] 10 20 30

2 97.6% 100% 97.6%

4 96.4% 94.4% 96%

8 88% 96% 97.6%

Overall 94% 96.8% 97.1%

doi:10.1371/journal.pone.0156982.t006
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Bayesian iteration to determine whether further measurement is required to accurately esti-
mate the nodule’s depth. This additional process is carried out by computing the correlation
distance, δ, between information gain from the current hypothesis, Gt, and that from the prior
hypothesis, Gt−1, in relation to the base prior distribution, Pt = 0(d). No further measurement is
necessary to make an accurate estimation when the correlation distance, δ, is less than the
empirically specified threshold of T = 0.0005. This signifies that there is negligible change in
the information gained across the iterations and the distribution of the nodule’s depth estima-
tion hypothesis has converged. The depth estimation procedure is shown in Algorithm 2.
Similar to the process presented in previous section, the assessment of the nodule’s depth esti-
mation is repeated for 10 assessment trials to obtain the average accuracy in the estimation. In
each assessment trial, the memory primitives given different combinations of probe’s interact-
ing conditions are constructed from 25 randomly chosen learning trials.
Algorithm 2: Nodule’s depth estimation algorithm using Bayesian Inference
and KL divergence
1 function DepthEstimationKL(τf(dr, ra, i, vprobe));
Input: Real time torque reading, τf(dr, ra, i, vprobe)
Output: Depth estimation accuracy

2 Define Pt = 0(d) as a flat distribution across different d;
3 for each combination of {ra, i, vprobe}, and actual nodule’s depth, dr do
4 δ = 1 Initialize correlation distance to 1;
5 t = 0 Initialize the number of iteration to 0;
6 G0 = 0; Initialize the information gain at t = 0 to 0;
7 while δ > T do
8 t = t + 1;
9 Follow Step 5–9 in Algorithm 1;

10 Compute Gt using Eq (26);
11 Compute δ between Gt and Gt−1.;
12 end
13 dest ¼ argmax

m
ðPtðdjtfÞÞ;

14 end
15 Compute the nodule’s depth estimation accuracy.

With the implementation of KL-divergence in addition to the Bayesian Inference algorithm,
the nodule’s depth estimation process requires on average of only 2.8 iterations with standard
deviation of 1.2 iterations to converge. While the number of iterations required for conver-
gence is kept to minimum; the nodule’s depth estimation accuracy still reaches within the
comparable range to that with fixed 5-iterations in the inferencing algorithm presented in
Algorithm 1. On average the overall depth estimation accuracy is approximately 96.2% as
shown in Fig 9 (orange bars). The accuracy of nodule’s depth estimation for each actual depth
are approximately 98.4%, 95.3%, and 94% for dr = 2, 4, and 8 mm respectively. These results
show that this method minimizes the number of explorations needed to make an accurate esti-
mation about the depth of the nodule.

Therefore, we can conclude that Bayesian Inference together with KL-divergence provides a
real-time framework to estimate the convergence to an optimal estimate of nodule depth in the
sense of information gain.

Bayesian Inference in Estimating the Nodule’s depth with Dynamic Probing. So far, the
experiments involved keeping ra, i, and vprobe constant given a set of probing iterations in a
trial. However, biological counterparts like humans regulate the internal impedance more like
a random variable within a given probing attempt. Therefore, we conducted further experi-
ments to explore whether we can enhance the nodule’s depth estimation accuracy by allowing
changes in the combination of probe’s stiffness, indentation level, and PSV across trials. This
allows the estimation process to explore in multiple search spaces (memory primitives).
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Algorithm 3: Nodule’s depth estimation algorithm using Bayesian Inference
and KL divergence
1 function DepthEstimationKLR(τf(dr, ra, i, vprobe));
Input: Real time torque reading, τf(dr, ra, i, vprobe)
Output: Depth estimation accuracy

2 Define Pt = 0(d) as a flat distribution across different d;
3 for each actual nodule’s depth, dr do
4 Follow Step 4–6 in Algorithm 2;
5 while δ > T do
6 t = t + 1;
7 Randomly select combination of {ra, i, and vprobe};
8 Follow Step 9–11 in Algorithm 2;
9 end

10 dest ¼ argmax
m

ðPtðdjtfÞÞ;
11 end
12 Compute the nodule’s depth estimation accuracy.

In order to address this, we repeated a similar estimation algorithm to that shown in Algo-
rithm 2. However, instead of the static combination of probe’s stiffness, indentation level, and
palpation velocity; these variables were allowed to randomly vary across iterations in the nod-
ule’s depth estimation process. We repeated this process for 100 trials for each artificial soft
silicon phantom with nodule embedded at dr = 2, 4, and 8 mm. The estimation procedure is
shown in Algorithm 3. At the beginning of the estimation procedure, the process randomly
selects the probe’s stiffness, indentation level, and PSV combination. In each iteration, this
combination is arbitrarily varied to allow the exploration in the other memory primitives to
inference the previous posterior.

Fig 9. Overall nodule’s depth estimation accuracy when using different approaches. 1) 5-iteration
Bayesian inference without KL-divergence (shown in green), 2) the Bayesian Inference together with the
KL-Transfer Entropy with fixed probe’s stiffness, indentation level, and PSV (shown in orange), and 3) the
Bayesian Inference together with the KL-Transfer Entropy with random probe’s stiffness, indentation level,
and PSV (shown in blue).

doi:10.1371/journal.pone.0156982.g009
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The nodule’s depth estimation result from the implementation of the Bayesian Inference
with dynamic probing shown in Algorithm 3 are shown in blue bar in Fig 9. The overall aver-
age accuracy from 100 trials using this algorithm as the estimation hypothesis converges
reaches 99% with standard deviation of 0.5%. For each individual depth level, the average esti-
mation accuracy were all significantly higher; while the corresponding standard deviations
were lower compared to those from the Bayesian Inference with static set of probe’s stiffness,
indentation level, and PSV combinations. The result from this assessment also confirms our
initial hypothesis that the average number of iterations required to perform accurate depth
estimation is kept to a minimum at approximately 3 iterations with standard deviation of 1.3
iterations.

A preliminary experiment was carried out with 1 human subject in the same probing task.
In order to have comparative basis between human and robotic experiments, the subject was
blindfolded and asked to palpate the same set of soft phantoms to estimate the depth of the
embedded hard nodule. The muscle activity caused by the stiffness regulation of the finger was
captured using electromyography (EMG) signal at Flexor digitorum superficialis (FDS) and
Extensor digitorum communis (EDC) [23]. The example of both normalised EMG signals are
shown in Fig 10(a) and 10(b). The combination of both EMG signals results in the co-contrac-
tion activity of the muscle pair. The muscle co-contraction pattern of a human subject during
manual palpation is shown in Fig 10(c). The peaks (circled in red in Fig 10(c)) indicate the co-
activation of the muscle pair, when both FDS and EDC are contracted. Similar to the robotic
experiment with the implementation of Algorithm 3, the human’s co-contraction pattern also
demonstrates variability. The variability of both EMG signals arises from the changes in the
finger’s stiffness level of which the activation of FDS and EDCmuscle pair are responsible
for. The regulation of internal stiffness level of the human’s finger can be correlated with the
change in the joint’s stiffness of the robotic probe. Our results based on robotic experiments
explain the reason behind this activity.

Fig 10. Sample of muscle activity at FDS and EDC during human’s manualpalpation. The FDS (a) and
EDC (b) muscle activities were quantified by the EMG signal during manual palpation trial to estimate the
depth of a hard nodule embedded inside a silicon phantom. The combination of the activities contributed from
both muscles can be described as the co-contraction. The normalised co-contraction is shown in magenta
curve in (c); whereas the red circles indicate the peaks extracted from this signal.

doi:10.1371/journal.pone.0156982.g010
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Discussion and Conclusion
This paper investigated both individual and collective role of the probe’s internal stiffness,
indentation level, and PSV in the accuracy in interpreting and estimating an environmental
feature (depth of a nodule) by controlling a soft probe. The soft robotic probe comprised of a
variable stiffness joint and an indentation level control mechanism. The probe structure was
mounted under an XY-stage allowing the planar movement. Firstly, we simulated the dynamics
of palpation using the designed probe on a simulated soft silicon phantom to observe the inter-
action between them under different combinations of probe’s internal stiffness, indentation
level, and PSV.

The results from the simulation suggest that 1) the torque felt at the base of the probe can be
controlled using different combinations of probe’s stiffness, indentation level, and probing
speed and 2) the relationships between the torque measured, the stiffness of the soft silicon
phantom, and the combination of probe’s internal stiffness, indentation level, and PSV are
non-linear. While a variability in the simulated system from the Gaussian distribution of the
phantom’s stiffness is pre-defined; the variability in such a system in reality is non-determin-
istic and can arise from multiple sources. These brought into a question as to how we can use
these non-linear relationships in the experiment to enhance the estimation of the environmen-
tal features.

In the experiment, we investigated the question as to how the probe with controllable stiff-
ness, indentation level, and PSV can exploit its past experience of palpation to estimate the
depth of a nodule embedded inside a soft tissue in real time. The non-linear relationship
between the probe’s measured torque, its internal variables, and the environment (depth of
nodule in silicon phantom) were presented in the form of a probabilistic distribution given dif-
ferent combinations of probe’s internal stiffness, indentation level, and PSV. In this paper, we
referred to these conditional probability distributions as ‘memory primitives’. These ‘memory
primitives’ functioned as likelihood functions in a Bayesian framework to estimate the depth of
a nodule in the soft tissue phantom. The memory primitives were constructed from three levels
of PSV, five levels of indentation, and five levels of joint stiffness, for three nodule’s depth lev-
els. In total 5625 probing trials were performed using this automated experimental setup.

In conclusion, the implementation of Bayesian Inference allows the algorithm to accurately
estimate the depth of a nodule from the measured torque real-time. Furthermore, KL-diver-
gence was introduced to determine whether further iteration of measurement is required to
make an accurate estimation by comparing the information gained in the current iteration to
that of the previous iteration. It was shown that on average the estimation processes using
Algorithm 2 and 3 require approximately 3 iterations to converge in order to obtain compara-
ble and better (in the latter) estimation accuracy. Finally, allowing the combination of probe’s
internal stiffness, indentation level, and PSV to randomly vary across iterations (allowing
exploration in multiple memory primitives in each nodule’s depth estimation process), resulted
in a convergence to the global optimum with a minimum number of iterations. We showed
that, this could enhance the average depth estimation accuracy to almost 100% with higher
repeatability (smaller standard deviation).

The insights from this study sheds light on the practice of manual and robotic assisted pal-
pation of soft tissue to locate T-1 stage tumors in biological tissues [18]. Medical literature
shows that T-1 stage tumors can be modeled as spherical shape hard nodules. Since the focus
of this paper is to understand the importance of the internal impedance of the probe in detect-
ing a hard nodule in a soft tissue, we limited the study to a spherical acrylic hard nodule buried
at depths upto 8mm. This scenario represents the conditions of a typical manual tumor localiz-
ing procedure for a T-1 stage tumor. Even within this range of depths, Fig 9 shows how the
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accuracy of nodule’s depth estimation decreases as the depth of the nodule increases. Nodules
located deeper in the tissue would require higher indentation forces potentially causing damage
to the tissue. However, future studies could be done with different shapes and materials of nod-
ules buried deeper in the tissue.

This paper has provided important explanations about the role of morphological computa-
tion in haptic based probing of a soft object, as well as providing guidelines to design and control
variable stiffness probes for physical examination. Certainly, the operational implementation of
this probe should be further developed depending on different applications. However, the fact
that controllable internal stiffness helps to gain proprioception information is still valid in such
a tool. However, additional complexities arising from factors such as variable friction and irreg-
ular surface conditions not addressed in this paper should be further examined. Future studies
will also involve temporal control of probe stiffness, indentation, and speed to better understand
diverse probing strategies used by different classes of human participants as seen in [1].
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