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Abstract

To understand the diversity and abundance of antibiotic resistance genes (ARGs) in phar-
maceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale phar-
maceutical wastewater treatment plants (PWWTPs) were investigated and compared with
sludge samples from three sewage treatment plants (STPs) using metagenomic approach.
The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to
585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). Moreover, the
diversity of ARGs in PWWTP aerobic sludge (153 subtypes) was higher than thatin STP
aerobic sludge (118 subtypes). In addition, it was found that the profiles of ARGs in
PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from
those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO) could be one of
the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglyco-
side, sulfonamide and multidrug resistance genes were frequently detected. While, tetracy-
cline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were
abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the micro-
bial community and the correlation between microbial community and ARGs in PWWTP
sludge. And, significant correlations between ARG types and seven bacterial genera were
found. In addition, the mobile genetic elements (MGEs) were also examined and correla-
tions between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our
results suggested that the microbial community and MGEs, which could be affected by DO,
might be the main factors shaping the profiles of ARGs in PWWTP sludge.
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Introduction

As potential threats to human health, antibiotic resistant bacteria (ARB) and antibiotic resis-
tance genes (ARGs) continue to spread globally due to the overuse and misuse of antibiotics
for medical treatment, veterinary and agriculture [1-3]. In recent years, ARGs have been
detected in various environments, such as soil [4], groundwater [5], sediment [6], etc. Many
studies have showed that wastewater treatment plants (WW'TPs) are significant sources of
ARGs in the natural environment [7-9]. Moreover, previous studies also reported that the dis-
charge of effluent and sludge was one of the main routes to release the ARGs to the environ-
ment and the dissemination of ARGs to the environment from sludge was about 1000 times
higher than effluent [10].

According to a study conducted by Gao et al. [11], positive correlations were found between
some ARGs and their corresponding antibiotics in a sewage treatment plant (STP). Therefore,
pharmaceutical wastewater treatment plants (PWWTPs) are worthy of attention due to the
high concentration of antibiotics in the pharmaceutical wastewater [12]. As a vital node in
PWWTPs, biological treatment process with a high density of bacteria created an ideal envi-
ronment for ARG exchange [13] through horizontal gene transfer (HGT) among different
microorganisms, which was controlled by mobile genetic elements (MGEs), including plas-
mids, integrons and insertion sequences (ISs) [14-16]. Moreover, the HGT may cause ARGs to
be transferred to pathogenic bacteria, which could pose serious health risks to humans [17, 18].

A few studies have been conducted to investigate the ARGs in PWWTPs [19, 20]. However,
the pioneer studies provided limited information of ARGs due to the limitations of the quanti-
tative polymerase chain reaction (q-PCR) methodology. Metagenomic approaches could over-
come the drawbacks of amplification-based methods and have been successfully applied to
investigate ARGs in various environmental samples, such as, soil [21], biofilm [22], deep ocean
sediments [23], wastewater and activated sludge [24].

The present study investigated the abundance and diversity of ARGs, MGEs and bacterial
community in activated sludge samples from PWWTPs and STPs by using metagenomic
sequencing. The objectives of this study were (1) to explore the abundance and diversity of
ARGs and MGEs in PWWTP sludge (2) to reveal the potential differences of ARGs between
anaerobic and aerobic treatment processes (3) to investigate the potential reasons on the varia-
tion of ARGs among different treatment processes. The findings of this study may help to
extend our knowledge about the distribution of ARGs and the correlations between ARGs and
bacterial community and MGEs in PWWTP sludge.

Materials and Methods
Sampling and DNA extraction

In this study, eleven sludge samples were collected from two full-scale PWWTPs of Hisun
Pharmaceutical Co., Ltd located in two cities (PWWTP A in Hangzhou City and PWWTP B in
Taizhou City, Zhejiang Province) of China and three full-scale STPs located in Zhengzhou,
Henan Province, China, and, we would like to state that these plants have approved this study.
Relevant operational parameters about the PWWTPs and STPs were shown in S1 Table. The
flowcharts and the sampling sites of the two PWWTPs were shown in Fig 1A. PWWTP A was
composed of two hydrolytic acidification systems (HA), a cyclic activated sludge system
(CASS) and an anaerobic/oxic system (A/O). The process of up-flow blanket filter system
(UBF) and anaerobic/oxic system (A/O) were applied in PWWTP B. The flowcharts and the
sampling sites of the three STPs were shown in S1 Fig. The process of anaerobic/anoxic/oxic
system (A/A/O) was applied in STP-1 and STP-2 and the process of oxidation ditch (OD) was
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Fig 1. Treatment processes in the two PWWTPs and the shared ARGs. (A) The flow charts and sampling sites of the
treatment processes in two PWWTPs. The black points in oxidation ditch represent the sampling sites. HA: Hydrolytic
Acidification; CASS: Cyclic Activated Sludge System; UBF: Up-flow Blanket Filter; (B) Number of shared ARG subtypes by
adjacent treatment systems in two PWWTPs. (C) Percentage of the shared ARGs in the total ARGs.

doi:10.1371/journal.pone.0156854.g001

applied in STP-3. Eight sludge samples were collected from PWWTPs, three sludge samples
were collected from STPs and the sample IDs were shown in S1 Table. The sludge samples
were immediately mixed with 50% ethanol (v/v) before transporting to our laboratory for
DNA extraction. The fixed sludge was centrifuged at 4,000 rpm for 10 min to collect approxi-
mately 200 mg of the pellets for total genomic DNA extraction with the FastDNA™ Spin kit for
Soil (MP Biomedicals, CA, USA) [25]. The concentration and quality of the extracted DNA
were determined with microspectrophotometry (NanoDrop ND-2000, NanoDrop Technolo-
gies, Willmington, DE, USA).

PLOS ONE | DOI:10.1371/journal.pone.0156854 June 13,2016 3/17



@’PLOS ‘ ONE

ARGs in Pharmaceutical Wastewater Treatment Bioreactors

lllumina high-throughput sequencing and quality filtering

The DNA samples extracted from activated sludge were sent to Jiangsu Zhongyijinda Analyti-
cal & Testing Co., Ltd for library construction and high-throughput sequencing on a
Hiseq2500 platform (Illumina, San Diego, CA, USA). The sequencing strategy of Index 101 PE
(Paired-End sequencing, 101-bp reads and 8-bp index sequence) was applied to generate raw
sequencing reads. For quality control, the raw sequences contaminated by adapter or contain-
ing three or more unknown nucleotides (‘N’) were firstly removed using the quality control
(QC) pipeline recommended by sequencing institutions. A strict filtration strategy was then
conducted by using Galaxy (https://usegalaxy.org/). FASTQ Groomer’ tool was used to con-
vert quality formats, and ‘Filter by quality’ tool was then used to remove low quality sequences
to ensure that more than 75% bases of each filtered read with quality greater than 30. The qual-
ity-filtered reads were used for subsequent analysis. The metagenomic sequencing data have
been deposited into sequence read archive (SRA) database under accession number PRINA
316198.

Bioinformatics Analysis

In order to evaluate the distribution of ARGs and MGEs in PWWTPs and STP sludge, the
quality-filtered reads were separately aligned to databases including Antibiotic Resistance
Genes Database (ARDB, http://ardb.cbcb.umd.edu/index.html) [26], The Integron Database
(INTEGRALL, http://integrall.bio.ua.pt/) [27], Insertion Sequences Database (IS Finder,
https://www-is.biotoul.fr//) [28] and NCBI Reference Sequence Database (NCBI RefSeq
database, http://www.ncbi.nlm.nih.gov/refseq) [29]. A read was annotated as ARG sequences
according to its best BLAST hit in ARDB with a threshold of amino acid sequence
identity>90% and sequence alignment length>25 amino acids [30]. A read was identified as
integron or insertion sequence if the sequence had an identity >90% with its best BLAST
(BLASTn with the E-value cut-off at 10~°) hit over an alignment of at least 50 bp [30]. The
plasmids identification was determined by using BLAST (BLASTn with the E-value cut-off
at 10~°) with a threshold of nucleotide sequence identity >95% over an alignment of at least
90 bp [30].

The quality-filtered Illumina reads of the eight sludge samples were submitted to Metage-
nomics RAST server (MG-RAST) (http://metagenomics.anl.gov/) [31]. The MG-RAST server
was used to compare the reads of the PWWTP sludge samples using ‘best hit classification’
function with Ribosomal Database Project (RDP) database as the annotation source with a
maximum Evalue cutoff of 10>, a minimum identity of 97%, and a minimum alignment length
of 50 bp [32, 33].

Statistical Analysis

In order to analyze the abundance of ARGs and MGEs in different samples, the portion of
ARGs and MGE:s in “total metagenome sequences” was defined as “abundance” (using the unit
of “ppm”, one read in one million reads). The portion of ARGs and 16S rRNA gene sequences
in “total ARG sequences” and “total 16S rRNA gene sequences” were defined as “relative abun-
dance” (expressed as percentage to avoid confusion). Redundancy analysis (RDA) was per-
formed by using ‘vegan’ package (version 2.0-10) of R software (version 3.1.0). Principal
Coordinates Analysis (PCoA) and the Pearson correlation analysis were performed by using
PAleontological STatistics software (PAST, version 3.01). Linear regression analysis of the total
ARGs and MGEs was carried out by using Statistical Product and Service Solutions software
(SPSS, version 22.0). Student’s ¢ test was carried out to assess the variations and p < 0.05 was
considered to be statistically significant.
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Results
Diversity of ARGs in PWWTP and STP sludge

In this study, 215 ARG subtypes belonging to 11 ARG types (aminoglycoside, beta-lactam,
chloramphenicol, fosfomycin, macrolide-lincosamide-streptogramin (M-L-S), multidrug,
polypeptide, quinolone, sulfonamide, tetracycline and unclassified) were identified from the 11
sludge samples by high-throughput sequencing-based metagenomic approach (52 Fig). In gen-
eral, three ARG types (fosfomycin, quinolone and unclassified) were present in very low abun-
dance (<1%) in all samples. In order to simplify the results, these ARG types were considered
as “others” for subsequent analysis. Among all ARG types, multidrug had the highest diversity
(39 subtypes), followed by polypeptide (33 subtypes), beta-lactam (31 subtypes), tetracycline
(26 subtypes), M-L-S (22 subtypes), aminoglycoside (22 subtypes), chloramphenicol (18 sub-
types) and sulfonamide (15 subtypes).

As shown in Fig 1B, most of the ARG subtypes in PWWTPs were shared by the adjacent
treatment systems. For instance, between the 151 ARG subtypes of B-A1l and the 132 ARG sub-
types of B-A2, there were 120 shared ARG subtypes. Moreover, as shown in Figure A in S1 File,
the diversity of ARG subtypes in PWWTP aerobic sludge (153 subtypes) was obviously higher
than that in STP aerobic sludge (118 subtypes) and 94 ARG subtypes were shared between
these two kinds of sludge samples. Furthermore, these shared ARG subtypes represented over
90% of the total ARG abundance as shown in Fig 1C and Figure B in S1 File. These results
implied that the sludge flow may play a critical role in the dissemination of ARGs in PWWTPs
and the dominated ARG subtypes in PWWTPs and STP aerobic sludge are largely similar.

Abundance of ARGs in PWWTP and STP sludge

In addition to the diversity, it was found that the ARG abundance in PWWTPs was also obvi-
ously higher than that in STPs. The total ARG abundance in PWWTPs ranged from 54.7 to
585.0 ppm and the total ARG abundance in STPs ranged from 27.2 to 86.4 ppm (Fig 2A). A
summary of the percentage of different ARG types in PWWTPs and STP sludge was shown in
Fig 2B and S3 Fig. It was found that the distributions of ARG types in the three STP sludge
were similar, tetracycline type had the highest percentage (average 22.8%) and chlorampheni-
col type had the lowest percentage (average 3.3%). By contrast, the distributions of ARG types
in the eight PWWTP sludge samples were different. The percentages of tetracycline, polypep-
tide and M-L-S in PWWTP anaerobic sludge (average 29.5%, 15.5% and 21.8%, respectively)
were much higher than those in PWWTP aerobic sludge (average 8.4%, 6.3% and 8.7%, respec-
tively). While, the percentages of aminoglycoside, sulfonamide and multidrug in PWWTP
anaerobic sludge (average 16.5%, 5.2% and 5.8%, respectively) were lower than those in
PWWTP aerobic sludge (average 40.6%, 18.8% and 10.4%, respectively).

Fig 2C and S4 Fig showed the percentages of resistance mechanisms in PWWTP and STP
sludge. Inactivation was the predominant resistance mechanism (average 40.2%) in STP sludge
followed by efflux pump (average 24.7%). Different from the STP sludge, target modification
(average 55.2%) was the predominant resistance mechanism in PWWTP anaerobic sludge, fol-
lowed by inactivation (average 29.8%). While, inactivation (average 48.9%) was the predomi-
nant resistance mechanism in PWWTP aerobic sludge, followed by target bypass (average
17.7%). Moreover, the percentage of target modification in PWWTP anaerobic sludge (average
55.2%) was higher than that in PWWTP aerobic sludge (average 16.5%).

To conduct further analysis, we selected 63 predominant (>1% in at least one sludge sam-
ple) ARG subtypes (accounting for 89.5% to 97.9% of the ARGs in all samples) from 215 ARG
subtypes and their percentages were shown in Fig 3. Among the 63 ARG subtypes, 16 subtypes
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Fig 2. Abundance of ARGs in the PWWTP and STP sludge samples. (A) Total abundance of ARGs in the
PWWTP and STP sludge. (B) Percentage of the ARG types in the PWWTP and STP sludge. (C) Percentage
of resistance mechanisms in the PWWTP and STP sludge.

doi:10.1371/journal.pone.0156854.g002

(including 2 aminoglycoside, 2 chloramphenicol, 1 M-L-S, 5 polypeptide, 3 tetracycline and 3
beta-lactam resistance) were only predominant in one sample. While, ermF and tetX were
detected with high percentage (>>1%) in all samples. As mentioned before, the tetracycline
resistance genes were detected with very low percentage in aerobic sludge, but tetX in this type
was persistent in all samples. In addition, the percentage of vancomycin (one kind of
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polypeptide antibiotics) resistance genes (e.g., vanA) had 1-2 orders of magnitude lower in aer-
obic sludge than the anaerobic sludge, especially in STP aerobic sludge. Besides, two subtypes
of aminoglycoside, aph(33)-Ib (25.86%) and aph(6)-1d (29.23%), in A-O1 were obviously
higher than other samples.

PCoA Analysis of ARGs in PWWTP and STP sludge

PCoA (Fig 4) was conducted based on the percentage of ARG subtypes in PWWTP and STP
sludge. The PCoA result revealed that the ARG subtypes in the 11 samples could be clustered
into three groups: (1) Group I contained all PWWTP anaerobic sludge samples; (2) Group II
contained all STP aerobic sludge samples and two PWWTP aerobic sludge samples (A-O2 and
B-O1); (3) Group III only contained the PWWTP aerobic sludge sample A-O1. This implies
that the dissolved oxygen (DO) might be one of the important factors affecting on the distribu-
tion of ARG subtypes in wastewater treatment systems. Moreover, it also confirmed the results
mentioned before that the dominated ARG subtypes in PWWTP and STP aerobic sludge were
similar.

Correlations between ARGs and Bacterial Community

To better understand the dissemination and fate of ARGs in the wastewater treatment systems,
we examined the bacterial community in all PWWTP sludge and investigated the correlations
between ARGs and bacterial community. The bacterial community of the PWWTP sludge at
phylum level was shown in Fig 5A, Proteobacteria, Firmicutes and Bacteroidetes were the three
predominant phyla in the eight samples. In general, except for A-Ol, the percentage of Proteo-
bacteria in the anaerobic sludge (average 21.05%) was lower than its in aerobic sludge (average
27.22%). On the contrary, Firmicutes and Bacteroidetes were more abundant in anaerobic
sludge (average 17.31% and 24.86%, respectively) than those in aerobic sludge (average 2.11%
and 8.76%, respectively). The percentages of Proteobacteria, Firmicutes and Bacteroidetes in
A-O1 accounted for 18.39%, 40.44% and 3.90%, respectively. The percentages of the bacterial
genera in the PWWTP sludge were shown in Fig 5B. To simplify the results, we selected the
top 10 abundant genera in each sample (In total, 36 abundant genera were obtained from the 8
samples) for comparison. Among the 36 genera, the percentages of five genera (including Bac-
teroides, Lactobacillus, Parabacteroides, Porphyromonas, Xanthomonas) were significantly

PLOS ONE | DOI:10.1371/journal.pone.0156854 June 13,2016 7/17



@'PLOS ‘ ONE

ARGs in Pharmaceutical Wastewater Treatment Bioreactors

oA Pl \\\)

0.80 - AN I _.
_0.64
<
8
S 0.48
Q
b5
2 0.324
3
% -7 T <
Y 0.16 1 7 ~ -
S A =7 B
£ / II e \ - OA_A] N
— n \ = ]
s 0 —S03®50T —= -
=] | | e d
© \ | 4 _ B-Al 7
© -0.16 " B.OI / , A-AZeqp 47 r

\ - o / 4 ~ -

A~ \ A_OZ / / .A'AJ ///
(\Il \ / / _ -
A -0.32 AN 7 " I -

-0.48

| | | | | | I
-0.48 -0.32 -0.16 0 0.16 0.32 0.48 0.64

P1- Percent variation explained (39.53%)
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doi:10.1371/journal.pone.0156854.g004

different between anaerobic sludge and aerobic sludge (p<0.05). Besides, the percentage of
Bacillus in A-O1 (37.3%) was obviously higher than those in other samples.

The correlation of bacterial community and ARG types was examined through RDA based
on the percentages of the 36 abundant genera and percentages of the 8 ARG types (except oth-
ers). As shown in Fig 6, among the 36 genera, 7 genera (Xanthomonas, Burkholderia, Porphyro-
monas, Bacteroides, Lactobacillus, Nitrosomonas and Kinetoplastibacterium) were significantly
correlated with the ARG types (p<0.05), indicating that these genera possibly played important
roles in shaping the ARG profiles in the sludge samples. Moreover, the ARG types could be

grouped into three clusters

according to the RDA results. Cluster I, which included aminogly-

coside, sulfonamide and multidrug resistance genes, was positively correlated with Xanthomo-
nas, and Burkholderia. Cluster II, which included M-L-S, polypeptide and tetracycline
resistance genes, was positively correlated with Porphyromonas, Bacteroides and Lactobacillus.

Cluster III, which included

chloramphenicol and beta-lactam resistance genes, was positively

correlated with Nitrosomonas, Kinetoplastibacterium. In addition, the samples could be
grouped into two clusters, one cluster contained all aerobic samples and the other contained all

anaerobic samples.

To better understand the correlation, the association between the percentage of predomi-
nant ARG subtypes and the seven genera identified in Fig 6 were further analyzed. As shown in
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doi:10.1371/journal.pone.0156854.9g005

S5 Fig, Burkholderia was significantly positively correlated with two types of aminoglycoside
resistance genes and one type of sulfonamide resistance genes. Xanthomonas was significantly
positively correlated with one type of sulfonamide resistance genes. Bacteroides was signifi-
cantly positively correlated with three types of M-L-S resistance genes, five types of tetracycline
resistance genes and seven types of polypeptide resistance genes. Lactobacillus was significantly
positively correlated with most of the polypeptide resistance genes (vancomycin resistance
genes), two types of tetracycline resistance genes and three types of M-L-S resistance genes.
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doi:10.1371/journal.pone.0156854.9006

Porphyromonas was significantly positively correlated with one type of M-L-S resistance genes
and five types of tetracycline resistance genes. Two types of beta-lactam resistance genes and
two types of chloramphenicol resistance genes were significantly positively correlated with
Nitrosomonas, Kinetoplastibacterium (r>0.5, p<0.05).

Correlations between ARGs and MGEs

In this study, we also examined the MGEs in all PWWTP sludge samples and obvious correla-
tions were observed between ARGs and MGEs. Table 1 summarized the abundance and diver-
sity of MGEs (including integrons, ISs, and plasmids) in all PWWTP sludge samples. The
highest abundance of total MGEs was observed in sample B-O1 (6347ppm) and the lowest
abundance of total MGEs was observed in sample A-A2 (728ppm). And, the highest and lowest
diversity of total MGEs were observed in sample B-A2 (756 types) and sample A-A2 (329
types), respectively. Plasmids were the main MGEs in the PWWTP sludge (>80%) and the
plasmid abundance in the aerobic sludge was two times higher than that in the anaerobic
sludge (S6 Fig). Furthermore, we summarized the correlation coefficients of the abundance
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Table 1. The abundance and diversity of MGEs in PWWTP sludge.

Samples

A-A1
A-A2
A-A3
A-O1
A-O2
B-A1
B-A2
B-O1

Insertion sequences

Abundance (ppm)°

270
130
65
1918
133
548
327
138

Integrons Plasmids Total MGEs?

Diversity® Abundance (ppm) Diversity Abundance (ppm) Diversity Abundance (ppm) Diversity

92

86

147
136
132
171
192
154

2 - 1349 391 1621 483
13 = 585 243 728 329
18 = 761 347 845 494
43 = 3973 334 5933 470
41 = 1825 290 1999 422
47 = 1706 475 2301 646
84 = 4885 564 5296 756

155 = 6054 448 6347 602

Total MGEs ® = integrons + insertion sequences + plasmids
Abundance : the portion of MGEs in total metagenomic sequences.
Diversity °: the number of the annotated MGE types.

doi:10.1371/journal.pone.0156854.t001

and diversity of ARGs, integrons, ISs, and plasmids in S2 Table. The diversity of ARGs was sig-
nificantly positively correlated with the diversity of MGEs (r>0.5, p<0.05). And, the total
abundance of ARGs was significant positively correlated with the abundance of MGEs (r>0.5,
p<0.05) (S7 Fig). Finally, as shown in S8 Fig, the abundances of aminoglycoside and sulfon-
amide resistance genes were significantly correlated with the abundance of plasmids.

Discussion

In this study, metagenomic analysis demonstrated that the abundance of total ARGs in
PWWTP sludge was higher than that in STP sludge reported in other studies [34, 35]. Similar
results were found by Liu et al. [36] that more abundant tetracycline resistance genes presented
in an oxytetracycline wastewater treatment system than those reported in sewage treatment
systems. In addition, Liu et al. [19] also reported that the M-L-S resistance genes in spiramycin
production wastewater treatment were 2.5 orders of magnitude higher than those in the sewage
and inosine wastewater treatment systems. The abundance of total ARGs in the PWWTPs of
this study was also obviously higher than those in other environment samples, such as ocean
sediments (0.3-7.0ppm) [23], manures and soils (less than 1.0ppm) [21]. To our knowledge,
vancomycin resistance genes were rarely detected in the environmental samples [23, 35] at
such a high level as in our study. This is probably because vancomycin was the main product of
the two PWWTPs (S1 Table). Vancomycin is indicated for treatment of life-threatening infec-
tions unresponsive to other antibiotics and it is one of the most important medications needed
in a basic health system and was listed in the World Health Organization's List of Essential
Medicines (http://www.who.int/medicines/publications/essentialmedicines/en/). The dissemi-
nation of vancomycin resistance genes could potentially increase the vancomycin resistance of
pathogens and pose serious health risks to humans. Many studies have confirmed that antibiot-
ics can obviously accelerate the accumulation of ARGs and some types of antibiotics could per-
sist for a long time in sludge [8, 37, 38]. Therefore, excess sludge generated during antibiotics
production wastewater treatment should be disposed carefully to control the spread of ARGs
in the environment.

Consistent with the results of this study, previous studies also showed that tetracycline resis-
tance genes could be frequently detected in WWTPs. Zhang and Zhang [39] found that the tet-
racycline resistance genes occurred in 15 WWTPs from different locations around the world
and Yang et al. [34] found that tetracycline resistance genes were the most abundant ARGs in
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the activated sludge samples. The tetracycline resistance mechanisms included tetracycline
efflux, ribosome protection, tetracycline modification and tetracycline inactivation [40]. In this
study, we found that the tetracycline inactivation gene (fefX) was predominant in all sludge
samples. The reason could be that (1) tetracycline was one of the most commonly used antibi-
otics for humans and veterinary medicine; (2) tetracycline was significantly adsorbed by acti-
vated sludge [37]. A previous study indicated that tetX gene was linked to ermF because the
ermF clones (E. coli) were found to confer tetracycline resistance when grown aerobically [41].
This may be the reason why ermF gene was also predominant in all sludge although its corre-
sponding antibiotic was not used as much as tetracycline.

As one of the early studies to compare the distribution of ARGs between PWWTP sludge
and STP sludge, our results showed that the distribution of ARGs in PWWTP aerobic sludge
was more similar to that in STP aerobic sludge than that in PWWTP anaerobic sludge (PCoA
in Fig 4). This suggested that the concentration of DO probably have more impacts than the
influent composition on the distribution of ARGs. Besides, it was noticed that the sample
A-Ol was separated from other samples in Fig 4 due to the distinct distribution of ARGs in
this sample (the resistance genes of aph(33)-Ib and aph(6)-1d accounted for over 50% of the
total abundance of ARGs). This pattern could be attributed to the distinct bacterial community
[42, 43]—the abundance of Bacillus (37.3%) in A-O1 was obviously higher than those in other
samples. Although there was no evidence showing that Bacillus carry these two genes, it was
reported in some studies [44, 45] that Bacillus have aminoglycoside resistance. In addition,
according to ARDB, the similar aminoglycoside resistance genes (e.g., aph(3)-Ia and aph(3)-
ITTa) were frequently found in bacteria affiliated to this genus. MGEs may be another factor
shaping the distribution of ARGs in sample A-O1 [46]. Aminoglycoside resistance genes were
often detected in the plasmids [47], and the abundance of MGEs in A-O1 was 3-8 times higher
than those in other samples of PWWTP A.

It was known that different kinds of antibiotics display different bactericidal activity for spe-
cific group of bacteria. For instance, Aminoglycoside and sulfonamide displays bactericidal
activity against Gram-negative aerobes [48, 49]. Polypeptide and Macrolide (M-L-S) have
effects on Gram-positive bacteria [50, 51]. Chloramphenicol and beta-lactam were used to
treat infections caused by both Gram-positive and Gram-negative bacteria [52, 53]. Tetracy-
cline would highly enriched Bacteroidetes in the sludge [54]. It was also known that the selec-
tive pressure from antibiotics could accelerate the ARGs transmission in the sensitive bacteria
[8]. Therefore, bacteria could develop resistance genes to resist their specific antibiotics. Thus,
the aminoglycoside and sulfonamide resistance genes may frequently occur in Gram-negative
bacteria. And, polypeptide and M-L-S resistance genes may frequently occur in Gram-positive
bacteria. Most Proteobacteria and Bacteroidetes are Gram-negative bacteria and most Firmi-
cutes are Gram-positive bacteria [55]. Based on the above information, it can be inferred that
distribution of ARGs may change with the alteration of bacterial community. Previous studies
[25, 56-57] have shown that DO could impact on the microbial community structure and the
dominant bacterial population might change from Proteobacteria to Firmicutes and Bacteroi-
detes with the decrease of DO. This implies that the shifts of microbial community affected by
DO would affect the distribution of ARGs. Besides of DO, temperature could also impact the
microbial community structure [58]. In this study, the temperature in the aerobic and anaero-
bic bioreactors of PWWTPs were similar (30+2°C). Further studies are needed to investigate
whether temperate could also impact the ARGs profiles through affecting microbial commu-
nity in bioreactors.

In this study, the percentages of Xanthomonas, Bacteroides, Lactobacillus, Porphyromonas
genera were significantly different between anaerobic sludge and aerobic sludge and these five
genera were significantly correlated with the distribution of ARG types. The subtypes of the
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correlated ARG types have been frequently detected in those genera. For example, tetQ, ermF
and vancomycin resistance genes were detected in Porphyromonas, Bacteroides and Lactobacil-
lus [59-62]. According to ARDB, species in Xanthomonas were aerobic Gram-negative bacteria
and were found to carry aph(33)-Ib and aph(6)-1d. As another aerobic Gram-negative bacterial
genus, Burkholderia demonstrated a high-level of antibiotic resistance, including aminoglyco-
side, macrolide and resistance-nodulation-cell division (RND) transportation system (most of
multidrug resistance genes belong to RND transportation system) [63]. These results con-
firmed that the distribution of ARGs could be affected by the microbial community.

Conclusions

In this study, ARGs in two PWWTPs with aerobic and anaerobic systems and three STP aero-
bic systems were investigated. The results showed that the diversity and abundance of ARGs in
PWWTPs were higher than those in STPs, suggesting that PWWTP sludge, as an important
source of ARG pollution, need to be paid more attention to. The distribution of ARGs in
PWWTP aerobic sludge was more similar to those in STP aerobic sludge than those in
PWWTP anaerobic sludge. Tetracycline, M-L-S and polypeptide (especially vancomycin) resis-
tance genes could be accumulated in anaerobic treatment system. While, aminoglycoside, sul-
fonamide and multidrug resistance genes were abundantly present in aerobic treatment
system. Microbial community between the aerobic and anaerobic sludge were different and sig-
nificant correlations were observed between the ARGs and microbial community. The abun-
dance and diversity of MGEs were also positively correlated with the ARGs and the ARGs in
the plasmids were detected more frequently in aerobic sludge than those in anaerobic sludge.
These results imply that the shifts of microbial community and MGEs as controlled by DO
may affect the distribution of ARGs in PWWTP bioreactors.
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