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Abstract
The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the

neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that con-
trol behaviors can be formulated based on its complete neural connection map, and easily

assessed by applying advanced genetic tools that allow for modulation in the activity of spe-

cific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be

empirically quantified and analyzed, thus providing a means to assess the contribution of

specific neural circuits to behavioral output. Particularly, locomotory behavior can be

recorded and analyzed with computational and mathematical tools. Here, we describe a

robust single worm-tracking system, which is based on the open-source Python program-

ming language, and an analysis system, which implements path-related algorithms. Our

tracking system was designed to accommodate worms that explore a large area with fre-

quent turns and reversals at high speeds. As a proof of principle, we used our tracker to

record the movements of wild-type animals that were freshly removed from abundant bacte-

rial food, and determined how wild-type animals change locomotory behavior over a long

period of time. Consistent with previous findings, we observed that wild-type animals show

a transition from area-restricted local search to global search over time. Intriguingly, we

found that wild-type animals initially exhibit short, randommovements interrupted by infre-

quent long trajectories. This movement pattern often coincides with local/global search

behavior, and visually resembles Lévy flight search, a search behavior conserved across

species. Our mathematical analysis showed that while most of the animals exhibited Brown-

ian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. ele-
gans can use Lévy flights for efficient food search. In summary, our tracker and analysis

software will help analyze the neural basis of the alteration and transition of C. elegans loco-
motory behavior in a food-deprived condition.

PLOS ONE | DOI:10.1371/journal.pone.0145870 December 29, 2015 1 / 22

a11111

OPEN ACCESS

Citation: Moy K, Li W, Tran HP, Simonis V, Story E,
Brandon C, et al. (2015) Computational Methods for
Tracking, Quantitative Assessment, and Visualization
of C. elegans Locomotory Behavior. PLoS ONE 10
(12): e0145870. doi:10.1371/journal.pone.0145870

Editor: Jian Jing, Nanjing University, CHINA

Received: June 5, 2015

Accepted: December 9, 2015

Published: December 29, 2015

Copyright: © 2015 Moy et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All sample video
recording files are available from the Dryad Digital
Repository at http://datadryad.org/resource/doi:10.
5061/dryad.n9c88 (doi:10.5061/dryad.n9c88).

Funding: This work was supported by http://www.
depaul.edu/ and http://www.rosalindfranklin.edu/. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145870&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145870&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0145870&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://datadryad.org/resource/doi:10.5061/dryad.n9c88
http://datadryad.org/resource/doi:10.5061/dryad.n9c88
http://dx.doi.org/10.5061/dryad.n9c88
http://www.depaul.edu/
http://www.depaul.edu/
http://www.rosalindfranklin.edu/


Introduction
The nematode Caenorhabditis elegans provides many advantages for unraveling the principles
underlying functional neural circuits. C. elegans has a simple nervous system that consists of
only 302 neurons and approximately 7000 synaptic connections [1]. Furthermore, the com-
plete anatomical annotation of its entire nervous system provides a framework for establishing
specific functional maps. Additionally, many genetic tools and mutantations can be applied to
modulate neural circuits, thus expediting functional mapping. For example, we can specifically
activate or inactivate specific neurons using optogenetic tools [2, 3], ablate specific neurons by
expressing caspase-1 [4, 5], or reduce synaptic transmission of specific neurons by expressing
tetanus toxin [6, 7]. It is clear from current C. elegans neural circuit studies that the basic build-
ing blocks of nervous systems (modules of neural networks) are conserved across species.
Thus, the knowledge gained from C. elegans studies will be directly applicable to more complex
mammalian nervous systems.

Functional neural mapping requires monitoring of behavioral output, and several behaviors
of C. elegans have been quantified and analyzed. These behaviors include egg laying, the pha-
ryngeal pumping and defecation cycle, and locomotion. C. elegans locomotory behavior has
been traditionally classified based on visual inspection by researchers. Although this classifica-
tion tends to be consistent among different researchers, it is neither quantitative nor objective
and poses problems when animals exhibit subtle behavioral differences. Recent developments
in worm trackers, in which the movements of worms can be digitally recorded and analyzed
further with computational and mathematical tools, opened doors for precise quantification of
many movement parameters, including speed, acceleration, and turning [8, 9].

Although several worm trackers have been developed thus far, their shortcomings and limi-
tations make them not suitable for all purposes [8]. For instance, some trackers are designed
for recording multiple worms at the same time [10], and others are suitable for imaging of spe-
cific neurons [11–13]. It has been challenging to record the movements of single animals that
are freshly removed from bacterial food, particularly over a long period of time. These animals
tend to explore a large area with frequent turns and reversals, and at high speeds. This move-
ment pattern requires the frequent adjustment of camera position along with large spatial cov-
erage. Such requirements often lead to unreliable tracking and premature ending of the
recording. Here, we developed a new stand-alone worm tracker, which is based on Python, an
open source programming language, and inexpensive, commonly available hardware compo-
nents, to record food-deprived animals. To recognize the worm for tracking, we implemented
an image difference algorithm, in which an image frame is subtracted from a previous frame,
leaving the difference image. This algorithm increases the fidelity of worm tracking by effec-
tively removing immobile dark blobs present on the agar surface, such as salt precipitates or air
bubbles. As a proof-of-principle, we successfully recorded freely moving, food-deprived ani-
mals for an extended period of time. We further analyzed their movement using algorithms
newly developed by us, such as cell occupancy, step length, and locality. Wild-type animals
freshly deprived of food exhibited a previously reported behavioral transition from an initial
local search in a restricted area to a global search in a broad area over time [4, 14, 15]. Intrigu-
ingly, we found that this behavioral pattern often coincides with another behavioral pattern, in
which animals initially displayed small, random movement steps interrupted by relatively long
trajectories. This movement pattern visually resembles Lévy flights. In Lévy flights, the move-
ment pattern is repeated across all scales such that the rank distributions of movement step
lengths are best modeled by a power-law distribution, in which step length is defined as the dis-
tance between two points that are associated with directional changes. Lévy flight search is
observed in the food search behavior of other species in the wild [16–18]. We analyzed the
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rank distribution of step lengths from wild-type worms searching for food, and found that
approximately 20 percent of off-food wild-type worms indeed exhibited Lévy flights. These
results indicate that, in addition to Brownian walks, C. elegans uses Lévy flights to locate food
efficiently in a search space that lacks sensory cues.

Materials and Methods
Our system involves both hardware and software components that allow us to acquire and pro-
cess C. elegans locomotory behavior. The hardware components include a recording apparatus
that produces video recordings by tracking single animals with a camera, and a computer for
running tracking software that controls the recording apparatus. The software components
include the aforementioned tracking software, as well as software for processing and analyzing
the video data.

Hardware
The tracker (Fig 1A) consists of three parts: the base, the housing, and the computer. The com-
ponents used in the tracker are common in worm labs or are otherwise relatively inexpensive,
in order to minimize the cost of initial setup.

Fig 1. Tracker hardware. A: The tracker hardware consists of a base, the housing, and a computer. B: The housing includes a 150mm diameter agar plate
on which the nematode crawls. C: The base comprises an X-Y translation stage, a camera, and two stepper motors.

doi:10.1371/journal.pone.0145870.g001
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Base. The base of the tracker (Fig 1C) is arranged with all of the tracking device compo-
nents necessary for recording the worm. It consists of an X-Y translation stage, a camera, two
stepper motors, and a motor control board. The camera is mounted on the X-Y translation
stage that is driven by the stepper motors. The motor control board interfaces with the tracking
software, discussed later, to control the motors.

The translation stage was assembled from 8mm stainless steel rods mounted on pillow blocks
(http://www.adafruit.com). The sliding components were cut from lightweight white plastic com-
posite, and fitted with bronze sintered bearings (http://www.pbclinear.com). The motors used are
NEMA 17 two phase bipolar stepper motors with a phase angle of 1.8 degrees (200 steps/rev);
high precision is necessary for accurate control of the camera positioning. These are available
from the Evil Mad Scientist Laboratories (EMS) for $16 each (http://www.evilmadscientist.com).
Themotor control board we used to interface with the PC is the EiBotBoard v1.1; a newer version,
v2.0, is available from the EMS for $50. The camera is a monochrome USB 3.0 camera capable of
recording at resolutions up to 1280 × 960 pixels, and at a frame rate up to 60 fps (see3CAM-
10CUG from e-consystems.com, India). The camera board houses a high-resolution lens with a
25mm focal length, f5.6, with M12 mount, mounted via an M12 adapter (Edmund Optics). The
lens-to-specimen distance was adjusted to give a field of view of ca. 10 mm × 7.5 mm.

Housing. The housing of the tracker (Fig 1A) serves as the frame that holds a NGM agar
plate during recording. It is structurally independent of the base of the tracker, in order to iso-
late any vibration that may influence the movement of the worm. The housing, made from
extruded aluminum components (http://www.adafruit.com), is designed to hold a removable
150 mm diameter NGM agar plate (Fig 1B) on an adjustable-height stage (Newport Corp.).
The housing is mounted above the base of the tracker, and can be elevated to adjust the dis-
tance to the camera. Additionally, a light source (160-LED dimmable, battery-powered video
light, Amazon) and diffuser are mounted above the housing, to provide adjustable lighting for
recording purposes.

Computer. We use a dedicated Intel NUC small form factor PC ($150) running an open
source Linux distribution for executing our tracking software; however, virtually any PC
machine can be used. This machine connects to the motor control board and the camera via
two USB ports (the computer-to-camera connection requires USB 3.0).

Tracking and Segmentation Algorithms
Tracking Software. The tracking software we developed is an open source, cross-platform,

standalone package written in Python that is demonstrably capable of running on low-perfor-
mance machines (http://medixsrv.cstcis.cti.depaul.edu/nematodes/source/). The software uses
real time input from the camera to determine the location of the worm, and adjusts the camera
position to keep the worm within the field of view. All camera movements are also recorded
separately from the video, which are further used to reconstruct absolute positioning.

The algorithm implemented for finding and re-centering the worm is based on a simple
motion tracking mechanism: in the difference image, immobile background artifacts (such as
tracks and dips) are subtracted out to black, leaving only the moving worm as a white object
[19]. A single image, acquired after each camera movement, is used as a reference to subtract
the background in subsequent frames. The maximum pixel intensity in the difference image
provides an estimated location of the worm in that current frame.

The image subtraction method for identifying the worm position is applied at a rate of 10
Hz, subsampling from the stream being emitted by the camera. This ensures that the worm has
enough time to move, and thus will not subtract itself out. To further improve the localization
of the worm, a Gaussian smoothing filter is also applied. For efficiency purposes, the worm
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location and Gaussian filtering algorithms are applied within a cropped region always centered
on the previous known worm location. The cropping mechanism is in action after 20 frames
elapsed, following the program start-up and the first camera movement.

Worm Segmentation. The recorded videos from the tracking software are encoded as
RGB AVI videos. Individual video frames are first extracted from the video and then converted
to gray scale (Fig 2A). For each frame, a Gaussian filter is applied to reduce noise and homoge-
nize the pixel intensities on the worm body, which might have a lighter intensity region due to
illumination conditions (Fig 2B). As a result, the differences in the pixel intensities of the worm
body are diminished and the number of segmentations with interior holes (Fig 2C) is reduced.

The filtered frames are then segmented using a dynamic thresholding algorithm, producing
binary images. Each pixel is assigned a label as on-worm or off-worm based on a comparison
of the pixel’s intensity to the local neighborhood average. If the ratio of the pixel intensity to
the local average falls below a threshold value of 80%, the pixel is marked as potentially being a
part of the worm. Pixels labeled as being part of the worm body are visually represented as
completely white pixels (Fig 2D).

When holes in the worm body segmentation occur despite the preprocessing step of blur-
ring the input image, a closing morphological operation is applied to the segmented image (Fig
2C). The closing operation first dilates the segment using a disk mask of width 5 (approxi-
mately the width of the worm), expanding the outside and inside edge of the worm and result-
ing in filling the holes in the worm body. Second, the excess pixels that were added to the
outside of the worm are removed using erosion, which contracts the edges but does not affect
the previous hole regions because the holes are fully filled and no longer have edges.

Finally, connected components are identified using a union-find data structure. The con-
nected component with the largest area is identified as being the worm [20]. All other compo-
nents are removed from the image.

Worm Body Centroid Determination. One feature of interest is the location of the worm
as it travels during the observation period. To represent this location, we extract the centroid,
or center of mass, of the worm from each frame. The centroid of the worm is determined as the
average of the x and y coordinates of all M pixels on the worm body, calculated as follows:

ðCx;CyÞ ¼
PM

i¼1 xi
M

;

PM
i¼1 yi
M

� �
ð1Þ

Worm Segmentation in a Distributed Computing Environment. As the image process-
ing algorithms are computationally expensive, processing video data of long observation peri-
ods can be a time-consuming process. In response, we have developed a distributed computing
solution for utilizing a large number of workstation machines.

A B C D

Fig 2. Overview of the segmentation process. A: A sample worm image. B: Gaussian filter applied on the source image. C: Thresholded image. D:
Morphological closing resulting image.

doi:10.1371/journal.pone.0145870.g002
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The segmentation process is designed for task-parallelism so that high-throughput analysis
can be attained with the use of one or more machines. The software is multithreaded and can
process multiple parts of the data set concurrently; this accomplishes real time performance
(30 frames per second) on most individual machines. The task is further parallelized by adding
multiple machines to a network, scaling performance approximately linearly with each addi-
tional machine.

This distributed network is made up of multiple machines, or nodes, that the user can con-
trol from one endpoint. The application requires a terminal node, a redistribution node, and
any number of additional compute nodes. The terminal node is a machine where the user can
control the network; adding or removing nodes, sending data sets to be processed, and retriev-
ing processed data. It also acts as a scheduler for tasking the compute nodes. The redistribution
node, in our case a file server with greater network bandwidth and disk performance, stores
and distributes parts of the data set to the compute nodes as they require them. The compute
nodes receive tasks from the terminal node and data from the redistribution node, then return
processed data to the redistribution node.

Movement and Path Analysis Algorithms
Movement Path Extraction. To extract the worm path on the agar plate, the worm centroid

(Cx, Cy) is tracked as it moves throughout the video [21]. This centroid position is calculated
using Eq (1), however, it is only the position in respect to the current frame. To calculate the
global coordinates for the centroid, what we call a location relative to the initial camera position,
we offset this centroid value by the camera’s current position coordinates in pixels. Camera posi-
tion is recorded at every frame in a log file from the tracker software. The sequence of the cen-
troids’ global coordinates represents the extracted worm path in the corresponding video.

Speed, Acceleration, Angle, and Angular speed. The centroids are also used to objec-
tively quantify a worm’s movement behavior: instantaneous speed, acceleration, angle, and
angular speed are calculated from the changes in centroid position between frames. Our calcu-
lations feature windowed averages with a parameter for the sample time interval δ that can be
adjusted to balance noise reduction and data fidelity. The instantaneous speed s of the worm
was calculated by taking the displacement between two consecutive centroid positions and
dividing by the sample interval length of time [12]. The angle φ is calculated as the vector direc-
tion between two centroid positions with respect to the horizontal [12]. Furthermore, accelera-
tion a and angular speed ω are the differences of consecutive values of instantaneous speed and
angle, respectively. Eqs (2)–(5) provide the formulas for these movement features where t is
time in seconds:

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt � xt�dÞ2 þ ðyt � yt�dÞ2

q
d

ð2Þ

at ¼
st � st�d

d
ð3Þ

φt ¼ arctan
yt � yt�d

xt � xt�d
ð4Þ

ot ¼
φt � φt�d

d
ð5Þ
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Cell Occupancy. Cell occupancy O is a metric by which the spatial search efficiency of the
worm can be quantified. A greater average cell occupancy value indicates oversampling, as the
worm is searching areas repeatedly, or visiting less area per unit time. Cell occupancy values
are attained by dividing the physical space into a grid of square cells, and calculating the num-
ber of unique cells that the worm visits in a given time period [22]. In our implementation, we
chose the grid cell size as 1 mm2, based on the average length of adult worms. To help under-
stand how the worm’s search efficiency changes over, the number of unique cells visited can be
counted for discrete time periods throughout the video.

Step Length Analysis. Rather than working with all the centroid points on the worm path,
we divide the path into a series of line segments called “steps” and use the step length data to
quantify the path and infer patterns in search behavior. Our algorithm is based on the work by
Reynolds et al. [23] and Codling et al. [24] in which the location of a turning event was defined
where “the angle between two movement segments joining three successive positional fixes is
less than a critical angle”. While they applied the algorithm to understand the movement
behavior of fruit flies (Drosophila melanogaster) from short video tracking data and to investi-
gate optimal search strategies for foragers based on computer simulated data, we propose to
apply it to quantitatively describe the movement path of C. elegans in the presence and absence
of food for longer periods of time.

The proposed algorithm consists of three steps: path sampling, turning event identification,
and step identification and length calculation.

First, we sample the centroid coordinates of the worm (Cx, Cy) at a regular time interval
Δt = 1 sec forming a dataset of [ti, Cxi, Cyi] values where time ti = Δt � i and i denotes the i-th
point on the sampled path at a time rate of Δt (Fig 3A). Second, a “turning event” (TE) is identi-
fied at a specific [ti, Cxi, Cyi] (Fig 3B and 3C) if the current movement heading, φcj deviates by
more than some threshold angle Θ from the heading at the previous turning event, φpj, where j
denotes the index for turning events. Our current approach determines the threshold empiri-
cally as a tradeoff between the correct sampling of the path and the predictive modeling power
of the generated step length data. Therefore, a new subsample of centroids is generated from
the sampled path, containing only the centroid locations for the turning events [TEj, Cxj, Cyj].
Note that the first centroid location of the worm, [t1, Cx1, Cy1], is considered to be the initial
turning event, [TE0, Cx0, Cx0]. Once the turning events are identified, a step is defined as a line
segment (Fig 3D)) between two consecutive turning events, [TEj−1, Cxj−1, Cyj−1] and [TEj, Cxj,
Cyj]. The length of a step Sj is then calculated as:

Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCxj

� Cxj�1
Þ2 þ ðCyj

� Cyj�1
Þ2

q
ð6Þ

Fig 3D and 3E show two hypothetical paths of C. elegans and their respective sampled paths
using the described step length algorithm to illustrate its significance for determining patterns
in the search behavior. We notice that the “curvy” path in Fig 3D resulted in a greater number
of steps than the “straight” path in Fig 3E and that each of those step lengths in Fig 3D was
shorter as well. We can therefore take advantage of this insight and use step length to describe
various movement behaviors of the worm. A smaller mean step length over a unit of time is
associated with more “curving” behavior and vice versa with a larger mean step length over
time associated with more “straight” behavior.

Lévy Flight step length Distribution Analysis. Our initial visual assessment of the path of
food-deprived wild-type animals led us to investigate the possibility of quantifying step length
data using power-law distributions as described by the probability distribution formula:

pðSjÞ � S�a
j ð7Þ
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E

Fig 3. Step length analysis. A: Example of sampled centroid locations of a worm (Cxi, Cyi) at Δt = 1 sec. B: Identification of “turning events”—the first two
turning events are shown with their respective φpj

and φcj. C: location of all turning events. D: Resultant sampled path using steps. E: Sampled path using
steps for a relatively “straight” worm path.

doi:10.1371/journal.pone.0145870.g003
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where ‘*’means ‘distributed as’ and α is the power-law (Lévy) exponent. The Lévy exponent
is constrained by the condition, 1< α� 3, which ensures that the distribution can be normal-
ized with probabilities that sum to one and is characterized by a divergent variance [25]. Since
in practice few empirical phenomena obey the power law for all values of Sj, the power law
applies only to values greater than some minimum Sj; the tail of the distribution then follows a
power law distribution [26]:

pðSjÞ ¼
a� 1

Sj;min

� Sj
Sj;min

 !�a

ð8Þ

Assuming that the data are drawn from a distribution that follows a power law distribution
for Sj � Sj,min, the scale parameter α can be estimated from the data using the method of maxi-
mum likelihood [26]:

â ¼ 1þ n
Xn
j¼1

ln
Sj

Sj;min

" #�1

ð9Þ

where n is the number of points on the tail of the distribution that follow a power law distribu-
tion and Sj are the observed values such that Sj � Sj,min, j = 1‥n. For estimating Sj,min we use the
method proposed by Clauset et al. [26] that chooses the value of Sj,min that makes the probabil-
ity distribution of the measured data p(Sj) and the best fit power-law model q(Sj) as similar as
possible above the estimator of Sj,min. Using the Kolmogorov-Smirnov or KS statistic to quan-
tify the distance between the two distributions, the estimator of Sj,min is then the value that min-
imizes D [26]:

D ¼ maxSjdpðSjÞ � qðSjÞe ð10Þ

Locality Analysis. Since the step length data only capture whether a worm exhibits
straight or curving behavior, we introduce a new metric to describe whether a worm is moving
“locally” or “globally” alongside step length. To quantify this locality L, we use the ratio of
mean speed to unique cells visited over an interval of time τk where k denotes the kth time
interval τ from the start of the video and the mean speed E[vk] per interval τk is calculated
using instantaneous speeds gathered at every frame of the video for an interval τk:

LðtkÞ ¼
E½vk�
Ok

ð11Þ

Since every interval of time τk, is the same (1 minute), E[vk] is proportional to the distance
traveled by the worm over τk. In other words, Dk = E[vk] � τk for each interval τk and thus dis-
tance Dk is just E[vk] scaled by a constant of τk. The locality metric becomes proportional to the
distance:

LðtkÞ �
Dk

Ok

ð12Þ

Fig 4A and 4B show how the locality concept helps differentiate between two hypothetical
local and global search movements. While the distance traveled in both cases Fig 4A and 4B is
the same, the number of unique cells covered is larger for the path in Fig 4B and therefore pro-
duces a low locality for this path.
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Results

Establishment of a New Tracker to Reliably Record C. elegans
movement
We have developed a tracker to examine C. elegans food search behavior. First, we determined
whether the tracker performs well, particularly in a challenging condition that causes extended
movements with turns and reversals. For comparison, we observed animals under two different
environments; on an agar plate seeded with E. coli (“on-food”), the nematode’s primary food
source, and on an agar plate without bacterial food (“off-food”). In addition, we also deter-
mined whether tph-1mutants, which are defective in producing serotonin and exhibit several
food-related behavioral deficits, show altered food search behavior in comparison with wild-
type animals.

We have been able to observe and record on-food locomotory behavior over a few hours of
time, and off-food behavior for up to an hour and twenty minutes. Samples of each on food
and off food recordings are available (doi:10.5061/dryad.n9c88). Our camera hardware enables
us to maintain an average frame capture rate of up to 30 Hz. In on-food sessions, video record-
ing is truncated once animals have reached outside of the bacterial lawn. In off-food recordings,
as animals reach close to the edge of the agar plate, the overall darkness of image frames
increases and recording sessions were designed to stop automatically after a certain threshold.
We concluded that a difference image algorithm used in our tracker is useful for recording C.
elegansmovement in a food-deprived environment.

Next, we assessed whether our image processing and image analysis algorithms can handle
massive data obtained from the tracker. The performance of the segmentation process exceeds
real time on our average workstation computers. As shown in Table 1, performance on

A B

Fig 4. Locality movement. A: Hypothetical “local” search movement. B: Hypothetical “global” search movement.

doi:10.1371/journal.pone.0145870.g004

Table 1. Individual machine segmentation performance.

CPU Clock RAM FPS TPF (ms)

Intel Xeon 2.67 GHz 6 GB 27.9 35.9

Intel Core i7 2.80 GHz 8 GB 30.9 32.4

Intel Core i7 2.80 GHz 12 GB 31.7 31.6

Intel Xeon 2.40 GHz 16 GB 52.6 19.1

Intel Xeon 3.40 GHz 16 GB 54.9 18.2

The average performance in frames per second (FPS) and time per frame (TPF) for a variety of machines

utilizing 4 threads.

doi:10.1371/journal.pone.0145870.t001
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individual Dell workstations are shown to average around 34 frames per second. However,
with the use of multiple machines, long videos can be processed in a fraction of the time. The
statistics in Table 1 are an average of the performance of each machine type across 42 video
samples. Thirty eight machines were tested, giving 5 different hardware configurations; 4 Dell
Vostro Desktops, 1 Dell T3700 Desktop, 1 Alienware Desktop, 2 Dell T1700 Desktops, and 30
Dell T7810 Desktops.

In practice, our videos are processed on Dell T3610 Desktops (Xeon E5 @ 3.0GHz CPU and
8GB of RAM). These machines each have 6 physical cores and 6 additional logical cores, giving
a capacity for 12 simultaneous threads. Performance in relation to available thread count is
shown in Table 2. Although analysis can be conducted with the use of only one machine, each
additional machine increases the performance of the software linearly. Our hardware configu-
ration includes 32 desktops, capable of processing approximately 2,800 frames per second, or
about a minute and a half of video per second.

With regard to the reliability of image processing, our methodology successfully segments
and extracts centroid data in 98% (on average) of all frames with worms. The process tends to
fail on frames that were recorded during camera movements, which are blurry, and frames in
which the worm body is against the edge of the plate. In these cases, the data from the segmen-
tation process is considered unreliable and is discarded.

Extraction of Movement Features Reveals Different Behaviors on and off
Food
Based on the camera position and centroid, we calculated speed and acceleration of animals; to
visualize the results, we created a web user interface (UI) for selecting observation samples and
viewing them as time series (http://medixsrv.cstcis.cti.depaul.edu/nematodes/visualizer/). The
UI was designed to allow selection of multiple samples, enabling us to easily view and compare
different animals side-by-side. The web UI has access to all available data samples, and can be
accessed from anywhere without need for special software.

When well-fed wild-type and tph-1 animals were introduced to an agar plate without food,
they exhibited consistently high speed movement for more than an hour (Fig 5). In fact, even if
wild-type animals pre-conditioned on an agar plate lacking food for two hours were re-intro-
duced to another plate without food, they showed consistently high speed. By contrast, when
well-fed wild-type and tph-1 animals were introduced to plates with abundant food, they
showed different locomotory behaviors (Fig 5). As previously noted, tph-1mutants did not
slow down over recording time. On the other hand, wild-type animals slowed down after 20
minutes of extended movement. Although we expected that tph-1 would show a deficit in slow-
ing down on food, it was surprising that the reduction of wild-type animal speed took more
than 20 minutes.

Table 2. Multi-thread performance.

Threads FPS

4 51.20

6 75.26

8 80.36

10 88.25

12 96.55

Performance scaling in relation to the number of threads available to the program.

doi:10.1371/journal.pone.0145870.t002
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Path Structure Analysis Can Lead to a New Insight into Locomotory
Behavior
Previous studies described how C. elegans locomotory behavior changes over time in response
to removal of bacterial food. These studies were performed by measuring the frequency of
movement parameters, such as turns and reversals, at intervals of tens of minutes. We intended
to quantify food search behavior using path-based algorithms, which provide a holistic view of
food search behavior. To visualize the movement path, we took two approaches: an animation,
and a plotted path. The animation is a recreation of the worm path over time that plots the
global centroid positions at a rate faster than real time. The points are persistent on the graph,
thus producing a trail as the worm moves, and by the end, tracing the entire path of the worm.
The plotted path is simply the last frame of this animation (Fig 6). Additionally, to read the
position of the worm in the physical space, the physical space was divided into a grid of 1 mm
square cells. Information about the worm’s speed and acceleration at each frame can also be
included in these visualizations by coloring each centroid position as an indication of its speed
at that time. Our visual inspection of the path structure indicates that when wild-type animals
are freshly removed from food, their trajectories show a cluster in one area, then relatively
large trajectories, followed by a cluster in another area (Fig 6B and 6D). However, this pattern
disappears over time.

We further analyzed their path structure by counting the number of grid cells the worm vis-
ited over time. As shown in Fig 7A and 7B, we made a comparison between N2 on-food and N2
off-food. We noticed that N2 on-food animals tend to visit many cells at the beginning, but
much less frequently after approximately 20 minutes. However, N2 off-food animals maintain a

Fig 5. Movement feature web visualizer.Web user interface for visualizing movement feature time series
on multiple observation samples; F, NF, and NNF stand for on-food, off-food, and pre-conditioned on a food-
deprived agar plate for two hours before re-introduction to another plate without food, respectively.

doi:10.1371/journal.pone.0145870.g005
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higher number of cell visits throughout the observation period. Intriguingly, the number of cell
visits has a correlation with the speed of animals over time. This behavioral difference in on- and
off-food wild-type animals may result from serotonergic signaling, which is increased by food
presence. Therefore, we also examined whether tph-1mutants, which have a defect in serotonin
production, exhibit any difference from wild-type animals on- and off-food (Fig 7C and 7D). We
found that tph-1mutants either on- or off-food behave like wild-type off-food animals, indicating
that the suppression of wild-type animals’ speed is caused by serotonergic signaling.

Wild-type Animals Can Exhibit the Lévy Flight Pattern in Search Space
That Lacks Sensory Cues
The characteristic path structure of wild-type animals freshly removed from food led us to ana-
lyze their movement patterns with step lengths. A step length is defined as a distance between
two centroids, each of which is associated with directional change. Our previous body curva-
ture analysis showed that the head angles of wild-type animals moving in a straight direction
fluctuate between -30 and 30 degrees [27]. Thus, we chose 40 degrees as the cut-off angle for
directional change.

The frequency of turns or reversals will be inversely correlated with the size of step lengths; if
worms make frequent directional changes, then step lengths get shorter. In addition to informa-
tion on the frequency of turning events, step length analysis provides information on the reloca-
tion of animals. To calculate how far animals displace from their previous spot, we measured

A B

C D

Fig 6. Representative centroid path fromwild-type andmutant animals.Centroid movement path
visualization. Color indicates the speed of the worm at that position. A: wild-type N2 on food, B: wild-type N2
off food, C: tph-1mutant on food, D: tph-1mutant off food.

doi:10.1371/journal.pone.0145870.g006
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locality, which inversely correlates with visited cell number but correlates with mean speed.
Locality index is usually inversely correlated to step length size (Fig 8). Another intriguing obser-
vation was that wild-type animals exhibited random, small movement steps that were interrupted
by large rare relocation steps when they were transferred to a bacteria-free agar plate. This food
search pattern is described as Lévy flight in the literature, in which the rank distribution of move-
ment step lengths is fit by a power-law distribution. Lévy flight is widely accepted as an optimal
search strategy in environments where sensory information that provides target location is not
present [17]. In order to determine that our observations are consistent with the hypothesis that
the step length data are fit by a Lévy power-law distribution, we estimated the parameters of the
power-law distribution function (Eq (8)) using the approaches described in the methodology sec-
tion (Eqs (9) and (10)). A power-law exponent between 1 and 3 represents Lévy flights, whereas
an exponent above 3 represents Brownian walks [28]. Table 3 summarizes the estimations of the
parameters for step length distribution for each of the 33 sets of video data we recorded for wild-
type N2 off-food. These animals were cultured on various densities of OP50 E. coli without any
consideration that bacterial lawn thickness and uniformity may affect off-food locomotory
behavior. Our results show that 6 out of the 33 videos for off-food N2 tracking can be fit by Lévy
flight distribution (for angle 40 degrees and first 20 minutes), whereas the rest can be quantified
with Brownian walks. Fig 9 shows logarithmic step length data that present a Lévy flight behav-
ior. These data indicate that C. elegans can use Lévy flights as well as Brownian walks to locate
food in a search space that lacks sensory cues.

A

C

B

D

Fig 7. The number of cells visited over time. The Y axis represents the number of unique 1 mm2 cells the worm has visited during the 1 minute interval, the
X axis is time in minutes. A: wild-type N2 on food (n = 4), B: wild-type N2 off food (n = 33), C: tph-1mutant on food (n = 15), D: tph-1mutant off food (n = 5).

doi:10.1371/journal.pone.0145870.g007
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An Example of tph-1Mutant Step Lengths is Consistent with a Worm
that Exhibits Continuous Searching Behavior on Food
tph-1mutants exhibit several food-associated deficits. Our initial assessment of tph-1mutants
off-food showed that their search behavior was not so different from that of wild-type off-food
animals. We further examined whether tph-1mutants exhibited any deficits on food using step
length analysis (Fig 10). A wild-type animal on food initially exhibited exploratory behavior,
which was associated with large step lengths. However, after 15-20 min on food, its step lengths
were reduced to a minimum level. Wild-type animals in long-term recordings showed occa-
sional large step lengths, which were observed in roaming animals. By contrast, a tph-1mutant
consistently showed a mixture of large and small step lengths. This characteristic has some
resemblance to food search behavior of off-food animals. Because tph-1mutants on food do
not make frequent turns and reversals as often as wild-type animals freshly exposed to a food-
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Fig 8. Step length, locality, and path. A: Mean step length over time for a wild-type N2 off food showcasing two distinct movement phases using different
colors: the first phase (red) corresponds with “local”movement behavior with short step lengths. The second (blue) movement phase correspond with “global”
movement behavior. B: Locality (E½v�O ) through time. When step length is low, the locality is usually high and vice versa. C: A complete path of the observation
period (colored corresponding to the phases described in A). D: Zoomed path sections corresponding to the phases described in A.

doi:10.1371/journal.pone.0145870.g008
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deprived environment [30], these results strongly suggest that tph-1 animals on food resemble
later stages of food-deprived wild-type animals engaging global search.

Discussion and Conclusion
A primary aim of our tracker was to record the movements of a single worm in the absence of
food over a long period of time. A food-deficient environment poses a challenge for tracking

Table 3. Estimated power law parameters from step length using Eqs (7)–(9).

Length (min) N step Min step Max step Est. Xmin N tail Est. alpha Distance

12 213 0.009 13.339 2.113 19 3.600 0.920

20 331 0.003 6.660 1.320 68 3.622 0.798

8 106 0.043 7.289 2.516 16 4.260 0.858

10 340 0.012 2.663 1.186 30 4.988 0.915

20 364 0.002 4.136 1.482 42 4.491 0.887

17 219 0.007 7.156 1.283 77 3.118 0.653

A 18 253 0.003 5.821 0.756 105 2.581 0.589

20 445 0.002 5.825 1.038 90 3.509 0.802

20 349 0.005 4.406 2.012 33 4.749 0.908

17 306 0.002 6.267 1.243 54 3.034 0.827

20 250 0.015 8.080 1.591 50 3.574 0.804

12 265 0.002 4.002 1.714 28 5.456 0.898

18 231 0.004 11.206 1.816 41 3.251 0.827

B 20 239 0.008 12.621 1.724 53 2.987 0.782

20 317 0.005 5.215 1.578 47 4.143 0.855

20 351 0.002 4.052 1.124 55 3.968 0.846

C 20 356 0.000 4.284 0.473 175 2.352 0.511

20 380 0.000 3.144 1.433 36 5.781 0.908

20 345 0.000 7.446 1.789 26 4.486 0.928

20 345 0.001 3.743 1.525 40 4.860 0.887

20 276 0.016 10.598 1.530 75 3.502 0.732

20 384 0.000 3.630 0.884 84 3.126 0.784

12 199 0.004 4.091 1.231 65 3.259 0.678

16 222 0.022 4.383 1.741 24 5.449 0.896

20 360 0.007 3.257 1.590 26 6.126 0.931

20 331 0.005 3.866 1.801 39 4.922 0.885

20 319 0.001 6.337 1.671 53 3.883 0.837

D 20 326 0.000 5.397 0.578 108 2.366 0.672

E 19 265 0.004 5.314 0.953 86 2.722 0.683

20 258 0.014 5.929 2.956 17 6.938 0.938

20 335 0.001 4.062 1.655 41 5.875 0.881

20 656 0.002 2.915 1.008 64 4.608 0.904

F 9 116 0.018 7.607 0.369 71 1.893 0.405

Our results show that 6 out of the 33 videos for wild-type off-food data can be quantified with Lévy flight distribution (for angle 40 degrees and first 20

minutes). Fitting of the six indicated data sets (A-F) to power-law distributions is shown in Fig 9. The column labels have the following meaning: N

step = total number of steps for that video. Estimated Xmin = minimum step length from which the distribution to the right follows a Lévy flight distribution.

N tail = number of steps that have a length greater than estimated Xmin. Distance = distance between the power-law distribution and the empirical

distribution. By definition, the value of alpha between 1 and 3 fits to Lévy flights [29]. The values below 1 and above 3 resemble ballistic and Brownian

movements, respectively [28].

doi:10.1371/journal.pone.0145870.t003
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worm movement, since food-deprived worms move faster with frequent turns and tend to
reach the edge of the agar plate more quickly than worms on a bacterial lawn. Previously
described worm trackers, which were developed for different purposes, are not optimal for our
aim. For example, Luo et al. developed a tracking system that uses a high-pixel density camera
to record the movements of multiple young adult worms performing salt chemotaxis across 25
cm x 25 cm agar plates [31]. Data analysis was performed using customized particle-tracking
and shape analysis algorithms written in two proprietary software packages. While this system
is robust, it is difficult to acquire images at a high frame rate and to analyze the detailed

A B C

D E F

Fig 9. Empirical complement cumulative density functions (CCDF) vs maximum likelihood approximations. A-F: CCDF vs maximum likelihood
approximations for the recordings labeled in Table 3.

doi:10.1371/journal.pone.0145870.g009
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Fig 10. Step length vs time.Mean step length over time. A: N2 on food. B: tph-1 on food.

doi:10.1371/journal.pone.0145870.g010
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curvature of individual animals. Another system has a similar set up as ours in respect to hard-
ware logistics [9]; the position information of a single animal is fed to the controller that read-
justs the position of the motorized stage, in which a camera is mounted. This system has been
successfully used for tracking single animals on food, but is not robust enough to track single
animals in the absence of food. To reliably record worm movement in the absence of food, we
changed the latter tracker in two different aspects. First, we used a new algorithm to track
worm movement. One of the frequent issues in tracking worms is that tracking software recog-
nizes air bubbles or precipitates resulting from NGM agar plate preparation as a worm. We
applied a difference image algorithm, in which an image frame is subtracted from another pre-
vious image frame, canceling out all of the background pixels and leaving only a worm image.
We find that our new algorithm reliably distinguishes a worm from salt precipitates or other
blobs. Second, we modified the housing environment to accommodate a 150 mm diameter
NGM agar plate which is comparatively larger than conventional 60-100 mm diameter NGM
plates used in other worm trackers [11, 13, 32, 33]. With a 60 mm plate, we can only record less
than 2 minutes, as animals, upon food deprivation, tend to reach the edge rapidly. With a 150
mm plate, we typically record more than 15 min, and occasionally, more than an hour.
Together, the changes we implemented in our worm tracking system significantly improved
off-food worm recording.

Another goal of our tracker was to identify novel metrics by which we could parameterize or
quantify worm behavior. We implemented algorithms described in other published worm track-
ers [11, 19, 20, 32], to satisfy essential functions of worm tracking, such as image processing and
segmentation, and the extraction of commonly used features, such as movement features and
centroid location. The current version of our tracker allows the quantification of these metrics, as
well as introduces novel metrics that provide insights into food search behavior. In particular, we
implemented several metrics for analyzing path structure, such as cell occupancy, step length and
locality. The cell occupancy metric divides the physical space into defined areas, which we con-
sider “searched” if the worm is ever present within its boundaries. This gives us a rough estimate
of the amount of space the worm was able to search within the observation period. Although the
methods used in Humphries et al. [22] work with simulation data, we suspect that many of the
theories can be applied to C. elegans behavioral data. Step length analysis gives a unique perspec-
tive in path analysis and can replace previous movement-based analysis of locomotory behavior,
such as turns and reversals, when overall worm path structures are considered. Locality can be
used as a complementary metric to step length analysis, since step length analysis does not give
information on howmuch the worm is displaced in two dimensional spaces from a previous
measurement point. Based on our preliminary results for predictive modeling of movement, we
plan to integrate an auto-correlation analysis of the step length data and angles using approaches
proposed by Reynolds A. [25] and Dray et al. [34]

Previous studies found that upon exposure to a food-deprived environment, well-fed C. ele-
gans exhibits restricted area search/local search or dispersal/global search depending on expo-
sure duration [4, 14, 15]. These studies relied on the frequencies of turns and reversals, which
are movement parameters rather than genuine path-based parameters. In our current study,
we determined the path of animals using step lengths and search efficiency by analyzing long
continuous video frames. Intriguingly, the local/global search behavior overlaps with another
movement pattern, which has some similarities to Lévy flights. In Lévy flights, a cluster of
small random movements is interspersed by infrequent longer relocations [22, 35]. Lévy flights
reduce oversampling compared with Brownian walks. In other words, animals using the Lévy
flight strategy are less likely to return to previously searched areas due to the long relocations.
For this reason, Lévy flights, but not Brownian walks, have been postulated to be the optimal
search strategy in an unknown environment. In fact, Lévy search strategy has been observed in
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many species, including Drosophila [36], mussels [37], birds [38, 39], marine predators [29],
and humans [40]. Peliti et al. [41] showed that worms exposed to a food-deprived environment
exhibit directional movement. If worm movements in the absence of food are purely random
Brownian walks, then such directional locomotion could not be observed. Thus, these results
support our finding that initial C. elegans food search behavior combines random walks with
long relocations.

Our analysis of step length distribution using the maximum-likelihood estimate method
indicates that a fraction of the samples (6 out of the 33 off-food animals) fits into the mathe-
matical definition of Lévy flight. The remaining samples fit into Brownian, or possibly com-
plex, composite movements. Hence, C. elegans can adopt different search patterns on an
individual basis. Such variability in search patterns was also observed in the C. elegans local/
global search paradigm. The exact timing of the transition from local to global search in ani-
mals exposed to a food-free environment varies from 10 min to 45 min [14]. Furthermore, the
transition could be abrupt or gradual. In some cases, such a transition was not observed. How
can we reconcile behavioral variability in a genetically homogeneous population? A recent
study showed that sensory experience on food affects subsequent off-food behavior [42]. Spe-
cifically, if animals were cultured in a highly variable density of bacterial food, they made less
frequent turns. Because we did not control bacterial thickness and uniformity, to which ani-
mals were exposed during their growth, different culture conditions might explain why C. ele-
gans exhibited Lévy flights or Brownian walks, or both. The variability in movement patterns
was also observed in albatrosses and marine predators [17, 29]. Similar to C. elegans, these ani-
mals exhibited Lévy flights, Brownian, or complex composite movements. This variability was
attributed to different environments such as food abundance.

tph-1mutants, which fail to produce serotonin, exhibit many behavioral and metabolic
changes that are associated with food [30, 43–46]. tph-1mutants have a defect in slowing when
they encounter food [47]. In addition, tph-1mutants exhibit an enhanced roaming response on
food. Together, these studies implicated serotonin as a neuromodulator for locomotory behav-
ior. Our observation of tph-1 suggests that tph-1mutants continue food search behavior even
on food. In the future, it will be necessary to analyze other mutants that have a defect in seroto-
nin signaling, including serotonin receptors (mod-1, ser-1 to ser-7) and transporters (cat-1,
mod-5) to confirm our findings.

In summary, we have developed methods for recording and tracking C. elegans over long
periods of time, as well as algorithms for extracting information about its locomotory behavior.
In our study, we employed these methods in an attempt to identify differences in food-related
behavior between wild-type and tph-1 animals. Our study illustrates an example of how our
quantitative assessment system can be used to study the genetic basis of behavior. In the future,
it will be possible to expand our study to analyze other mutants that have defects in food sens-
ing or food-related behaviors. Alternatively, it will be possible to examine transgenic animals
whose neural circuits that potentially control food searching have been modified.

Supporting Information
S1 Fig. Path Graphs for the 6 Videos Presented in Fig 9.
(EPS)

S2 Fig. Mean step length vs. reversals. A: Mean step length of a tph-1mutant on food. B:
Reversals of the same tph-1mutant on food. The size of the mean step length shows an inversed
relationship with the frequency of reversals over a period of time.
(EPS)
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