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Abstract

X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major
bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including
sequence cloning, protein material production, purification, crystallization and ultimately, structural determination.
Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the
protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of
bioinformatics methods based on protein sequence information have been developed for this purpose. However, our
knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals
remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger
and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently
developed a new approach termed ‘PredPPCrys’ using the support vector machine (SVM). Using a comprehensive set of
multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and
characterized the relative importance and contribution of each feature type to the prediction performance of five individual
experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to
build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build
second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking
experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous
datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as
compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics
consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.
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Introduction

Solving the three-dimensional (3D) structure of a protein

represents a prerequisite and critical step towards complete

understanding of its biological function. In addition, knowledge

of the 3D structure is useful for research areas that rely on protein

structure, such as rational protein design, bioinformatics, biodi-

versity, and studies on mechanisms of human health and disease

[1]. As of July 2013, more than 32 million protein sequences were

documented in the NCBI Reference Sequence (RefSeq) database

[2]. However, by August 12, 2013, the structures of only 82,146

proteins in the Protein Data Bank (PDB) [3] had been successfully

solved using the primary method, X-ray crystallography, account-

ing for 88.3% of all proteins in PDB. The rapidly increasing

sequence-structure gap has resulted in a huge number of

structurally uncharacterized proteins. To address this issue,

structural genomics (SG), an international initiative, has been

applied with the aim of solving the structures of representative

members for each of the biologically important protein families

[1].
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The experimental progress and status of most target proteins in

the SG consortium have been made freely available for

acceleration of target selection [4]. For example, TargetTrack

(http://www.sbkb.org/tt/) is a target registration database that

collects information on the experimental progress and status of the

selected targets for structural determination by the Protein

Structure Initiative (PSI) and other worldwide structural biology

projects. TargetTrack combines the TargetDB [5] and PepcDB

databases [6], the most widely used records, to extract information

in order to develop computational methods for protein solubility

and crystallization propensity prediction [7]. As a centralized

target database, TargetDB collects protein target data from nine

NIH Protein Structure Initiative (PSI) centers and 10 international

structural genomics sites [5]. PepcDB (Protein Expression Purifi-

cation and Crystallization Database) serves as an extension of

TargetDB, and provides more detailed historical status and

experimental details for each trial [6]. Further descriptions and

trial explanations are also available in TargetDB. In addition,

other complementary web-based platforms for annotating and

exploring targets, such as TOPSAN [8], PSI SGKB [9] and

SPINE [10], have been established through the efforts of SG.

As a result of the SG efforts, an increasing number of previously

unknown proteins have been structurally solved using X-ray

crystallography, NMR spectroscopy and electron microscopy [11].

However, despite the significant progress, only a small proportion

of the SG targets have successfully produced high-diffraction

quality crystals. For example, as of January 2012, in the SPINE

database [10], only about 71.5%, 42.1%, 20.5% and 4.05% of the

initially cloned proteins were expressed, solubilized, purified, and

successfully produced diffraction-quality crystals, respectively.

Failure in the progress of crystallization trials is the major

challenge frequently encountered by the SG consortia in structural

determination, with setbacks stemming from problems in one or

more of the five major experimental steps of cloning, expression,

solubility, purification and crystallization. To solve these problems,

repeated trial-and-error experiments in a high-throughput mode

are commonly performed, which represents a time-consuming and

high-cost process [12]. Elucidation of the fundamental principles

and biological properties of proteins that govern crystallization

should assist in the development of a suitable experimental setup,

protocol optimization, and design of improved methods to

enhance the success rates of high-quality crystal production [13].

In view of the increasing detailed annotations with respect to

both successful and failed attempts to produce high-quality

diffraction crystals that can be solved using X-ray crystallography,

a variety of analytical, statistical and computational methods have

been developed to predict the propensity of each of the five major

experimental steps required for crystallization and structural

determination. A number of studies have focused on character-

ization of the important factors influencing the crystallization

propensity of proteins. For example, using decision trees and

random forests, Goh et al. [14] showed that the sequence

conservation score across other organisms, percentage of charged

residues, occurrence of hydrophobic patches, number of binding

partners and sequence length are the most significant factors that

influence a protein’s amenability to high-throughput structural

determination. Price and colleagues argued that the prevalence of

low entropy, well-ordered surface features is the principal

determinant of protein crystallization [15]. In summary, large-

scale studies to date suggest that prediction of the crystallization

propensity of a protein from its sequence is feasible. Nevertheless,

a major shortcoming of these methods is that they are mostly

developed as simplified predictive models and seldom available as

bioinformatics webservers or tools for the wider research

community.

Other statistical or machine learning-based crystallization

propensity predictors typically use sequence-derived features that

can be readily exploited by experimental biologists. Amongst

these, SECRET [16] and CRYSTALP [17] predict the crystal-

lization propensity of protein targets with sequence lengths ranging

from 46 to 200 amino acids. Additional methods, such as OB-

Score [18], ParCrys [19], CRYSTALP2 [20] and MCSG-Z score

[21], utilize several types of sequence-derived features to train their

models and achieve reasonable computational efficiency and

prediction performance. SCMCRYS [22], as a simple voting

method, was developed based on the P-collocated amino acid

pairs. To further improve performance, some methods, including

XtalPred [23], Pxs [15], SVMCRYS [24], PPCPred [13],

XANNPred [25], RFCRYS [26] and CRYSpred [27], have

incorporated other informative features, such as predicted

secondary structure, disorder and solvent accessibility. More

recently, Jahandideh et al. [28] developed an updated version of

XtalPred, namely XtalPred-RF, which used random forest (RF) to

train the classifiers based on an enlarged balanced dataset. The

results show that RF-based classifiers outperformed those built

using support vector machines (SVMs) and artificial neural

networks (ANNs). With the rapidly accumulating experimental

data generated by SG centers and consequent improvements in

protein crystallization technologies, a target previously regarded as

non-crystallizable may become crystallizable. Therefore, it is likely

that outdated data include some errors in terms of annotation and

classification of positive (crystallizable) and negative (non-crystal-

lizable) samples. Indeed, these drawbacks have resulted in

performance deterioration when applying previous methods to

recently updated data [13]. To address this issue, Mizianty and

Kurgan recently developed a new tool designated PPCPred [13] to

predict the success of the entire crystallization process, and more

importantly, the likelihood of success at each step, using a large

updated dataset and comprehensive set of sequence-derived

features. Their research revealed important factors that influence

success/failure across all the considered steps (e.g., hydrophobic-

ity/hydrophilicity-based indices) as well as individual steps (such as

Cys residues for material production and diffraction-quality

crystallization, buried His residues for crystallization). However,

the PPCPred method suffers from certain limitations. Firstly,

despite accuracy on the original dataset, the performance of

PPCPred declined substantially when applied to a larger up-to-

date benchmark dataset, achieving AUCs (area under the ROC

curve) of only 0.683, 0.612, 0.432 and 0.704 for predicting the

propensity of protein material failure (MF), purification failure

(PF), crystallization failure (CF), and diffraction-quality crystalli-

zation (CRY), respectively (shown below). Secondly, given the

rapidly accumulating experimental data due to technological

advances, there is a pressing need to characterize the critical

protein properties that contribute to attempt success at individual

steps, and accordingly, develop improved tools to facilitate the

high-throughput structural biology efforts of the community.

In the current study, we developed a new sequence-based

approach to improve performance and reliability that not only

allows prediction of the propensity of the entire crystallization

process but also dissects the key features responsible for success at

each individual step in protein crystallization and structural

determination. This approach, designated PredPPCrys (Prediction

of Procedure Propensity for protein Crystallization), combines a

wide range of sequence-derived features, including amino acid

indices, types, compositions, physicochemical properties, predicted

structural features, and other complementary characteristics

Predicting Protein Production and Crystallization Propensity
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generated by PROFEAT [5], which have been used for the first

time for this purpose to our knowledge. More specifically,

PredPPCrys employs a multi-step feature selection and model

training procedure based on SVM to eliminate redundant and

irrelevant features and highlight the most important factors

responsible for failure at each step through the construction of

two-level classifiers (first-level and second-level classifiers termed

PredPPCrys I and II, respectively). Benchmarking on an enlarged

up-to-date dataset extracted from PepcDB, we showed that

PredPPCrys outperforms the state-of-the-art predictor, PPCPred,

and other existing methods on independent test datasets. The

predicted targets of currently non-crystallizable proteins assigned

at five difficulty levels (optimal, suboptimal, average, difficult, and

very difficult) have been made available at the website, http://

www.structbioinfor.org/PredPPCrys/Dataset.html, along with

those predicted to pass the five consecutive experimental steps of

the crystallization process. We anticipate that the availability of the

PredPPCrys web server and classified targets with different

confidence scores can be applied to facilitate community-wide

efforts for SG target selection.

Materials and Methods

Construction of 5-class experimental progress datasets
The PepcDB database provides annotations on experimental

progress of protein targets, including status history, reusable text

protocols and stop conditions from PSI and other structural

biology centers [6]. We downloaded the most recent datasets from

the PepcDB database comprising 108,933 targets and 979,645

experimental trials. Each target is defined as the objective of the

crystallization trial(s), with each trial representing a set of

experimental procedures used to crystallize the target [13]. Our

dataset was extracted and selected according to the following

criteria. 1) We only selected targets with either a complete stop

status ‘current status: work stopped’ or status ‘in PDB’ or ‘crystal

structure’, suggesting authentic status of crystallization. The X-ray

crystallography-based experimental statuses in PepcDB mainly

include ‘selected’, ‘cloned’, ‘expressed’, ‘soluble’, ‘purified’, ‘crys-

tallized’, ‘diffraction’, ‘crystal structure’ and ‘in PDB’. 2) We

removed all the trials before January 1, 2006, and after December

31, 2010. Older data were removed to take into account the latest

advances in crystallization trials, while new data were removed in

cases of incomplete findings and work still in progress. Thus, the

annotations regarding experimental status have not been appro-

priately updated in the database. 3) Trials performed using X-ray

crystallography were specifically selected. 4) The most recent and

advanced experimental statuses were annotated and used for each

target. For example, multiple trials with different statuses may exist

for each target, one marked ‘expressed’ as the final status, and

more recently, ‘soluble’ as the final status. In this case, we only

applied the most advanced status of ‘soluble’ as final and removed

the preceding trials. We additionally selected the latest experi-

mental trials for the target among those annotated with the same

stop status.

The following 5-class assignments were employed to indicate the

experimental failure/success status of crystallization progress for

the included targets (Table S1): (1) protein cloning failure (CLF),

with the final status annotated as ‘selected’; (2) production of

protein material failure (MF), with the final status annotated as

‘cloned’ or ‘expressed’; (3) purification failure (PF), with the final

status of ‘soluble’, ‘purified’ or ‘purification failed’; (4) crystalliza-

tion failure (CF), with the final status of ‘crystallization failed’ or

‘poor diffraction’; and (5) crystallizable (CRYS), with the final

status of ‘crystal structure’, ‘structure successful’, ‘crystal structure’

or ‘in PDB’. In particular, the CLF class was used for the first time

in this study, while the remaining 4-class system was the same as

that applied previously by Mizianty and Kurgan [13]. The major

difference between our classification and the earlier 4-class system

is that we further distinguished ‘Cloning Failed’ from ‘Production

of protein material Failed’. Protein cloning is the crucial first step

of protein crystallization, and many proteins fail to pass this step.

Therefore, there is a need to discriminate target proteins that fall

in this category from those in the ‘Production of protein material

Failed’ group. Better understanding of the key factors that account

for failures in these two steps is essential.

For 5-class prediction, a target is considered a positive sample if

one or more than one experimental trial has passed a given step.

Conversely, a target is considered a negative sample if none of the

experimental trials succeed in passing a given step. More

specifically, in prediction of the protein cloning propensity, target

proteins labeled CLF are considered negative, while proteins

labeled MF, PF, CF and CRYS are all regarded as positive

samples. In prediction of the protein material production

propensity, the negatives include all targets marked with trials

labeled CLF and MF, while the positives include proteins labeled

PF, CF and CRYS. In prediction of purification propensity, we

only consider the targets labeled PF as negative samples, i.e.,

excluding targets labeled CLF and MF, since certain proteins that

fail to be cloned or expressed may be purified. Other targets

labeled CF and CRYS are considered positives. In prediction of

the propensity of crystallization, targets marked with trials labeled

CF are regarded as negative, while those labeled CRYS are taken

as positive. In prediction of diffraction-quality crystallization

propensity, all targets marked as failed trials are regarded as

negative, while those labeled CRYS are positive.

Finally, we reduced sequence homology in the datasets by

removing sequences with $40% sequence identity using CD-HIT

[29] within each class. We did not perform this procedure between

different classes in order to retain more useful data, as suggested

previously [13]. Following this procedure, approximately half the

sequences in each class were removed. The final datasets

contained 23,348 non-crystallizable and 5,383 crystallizable

proteins (See Table S1 for the statistics of the target proteins in

each class). To evaluate the performance of our predictors,

datasets of the five classes of experimental trials (denoted

‘DB_CLF’, ‘DB_MF’, ‘DB_PF’, ‘DB_CF’ and ‘DB_CRYS’,

respectively) were randomly divided into six equally sized subsets,

five of which were merged as the benchmark training set

(CRYS_train), while the remaining subset was used as the

independent test set (CRYS_test). We performed feature selection

and parameter optimization of the SVM models via 5-fold cross-

validation based on the benchmark training dataset, and evaluated

performance with other approaches based on the independent test

dataset. In addition, we applied BLAST [30] to further reduce the

sequence redundancy between the training and independent test

datasets using a cutoff of 25% sequence identity, and assessed the

models’ performance on this more stringent independent test

dataset. The supplementary file (Supporting Information S1)

contains the benchmark training datasets and two different types

of independent test datasets.

Feature extraction
A schematic illustration of PredPPCrys is shown in Figure 1.

We extracted a comprehensive set of sequence-derived features as

candidate features to train the SVM models of PredPPCrys, with

the aim of quantifying the relative importance and contribution of

each distinct type of feature or property responsible for the success

of each experimental step and overall success of protein

Predicting Protein Production and Crystallization Propensity
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crystallization. In total, 2,924 initial features were derived from

protein sequences. The complete list of all sequence-derived

features is provided in Table S2. A brief summary of the extracted

features is provided in subsequent sections.

Amino acid types and compositions and physiochemical

properties. The compositions of different amino acid types

were calculated according to three criteria: (1) composition of 20

standard amino acid types; (2) composition of hydrophobic,

hydrophilic, neutral, positively charged and negatively charged

amino acids; (3) composition of 10 functional groups according to

the amino acid side-chain, such as sulfhydryl (M), phenyl (F/W/

Y), carboxyl (D/E), guanidyl (R) (imidazole, primary amino, thiol,

amido, hydroxyl and non-polar) [24]. In addition, the dipeptide

and tripeptide compositions of the grouped amino acids (rather

than the 20 AA types) based on physicochemical properties were

calculated (see Table S2 for more details). We additionally used

the AAindex database [31] to encode the physicochemical

properties of amino acids. The utility of AAindex-based encoding

has been confirmed in a number of studies [13,21,24,27,32]. For

example, Creamer [33] showed that side-chain entropy calculated

based on the Creamer scale [34], average hydrophobicity value

based on the Kyte-Doolittle hydropathy parameters [35] and

sequence length are three key factors for protein crystallization,

which were also used as features in the current study.

Additional complementary features. In addition to the

above, we extracted other complementary features [36,37] using

several bioinformatics tools. These included isoelectric point (pI)

using Bioperl [38], predicted disordered region using DISOPRED

2 [39], predicted secondary structure using PSIPRED 3.2 [40],

and predicted solvent accessibility (residue exposure or burial

status) with SSpro 4.1 [41]. Another important aspect was the

incorporation of other informative structural and physicochemical

features of proteins (a total of 1080 features) calculated with the

PROFEAT web server [42], which were used as inputs, along with

other features to build SVM models. PROFEAT features included

normalized Moreau-Broto autocorrelation, Moran autocorrela-

tion, Geary autocorrelation, transition, distribution, quasi-se-

quence order descriptors (QAOD), pseudo-amino acid composi-

tion (PAAC), amphiphilic pseudo-amino acid composition

(APAAC), total amino acid properties (TAAP), and atomic-level

topological descriptors (TAAPs). To our knowledge, this is the first

study to incorporate all these features for prediction of protein

crystallization propensity.

Feature combination. Each amino acid displays a charac-

teristic arrangement at both the sequence and structural levels in

the protein microenvironment. For example, a hydrophilic residue

D is located within a helical segment, predicted to be solvent-

buried and intrinsically disordered. Thus, the physicochemical

features of this residue would include hydrophilicity, solvent burial,

Figure 1. Schematic illustration of the PredPPCrys approach. The details of each of the six major steps are discussed within the main text.
doi:10.1371/journal.pone.0105902.g001
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disorder and location in a helical segment, in addition to its

microenvironment among other neighboring amino acids, their

composition, order, and physiochemical features. We hypothe-

sized that the properties of a residue in a protein are

interdependent. As a result, features that combine different types

of characteristics may encode key information influencing the

propensity of the target protein to pass the five experimental steps

(protein cloning, material production, purification, crystallization

and diffraction-quality crystal production). Accordingly, we

included combinatorial features to train our 5-class SVM models

through encoding strategies (for instance, combinations of

AAindex properties of amino acids with their predicted burial/

exposure status or amino acid types with their predicted secondary

structure or the predicted disorder and secondary structure). A

complete list of the combinatorial features and explanations is

provided in Table S2.

Feature selection
The large initial feature set may contain some redundant and

noisy features, leading to overfitting and overestimation of the

performance of machine learning models. Therefore, it is common

practice to perform feature selection to isolate a subset of relevant

features for prediction [43,44,45]. In the current study, we used

the mRMR (minimum-redundancy and maximum-relevance) [46]

algorithm to rank the initial features. An attractive advantage of

mRMR criterion is that it generates a ranked list of the relevant

features for prediction in order of importance. mRMR has been

widely applied in feature and gene selection in the areas of

bioinformatics and systems biology [47,48,49,50,51]. Following

mRMR feature ranking, we performed a two-stage feature

selection to efficiently filter out irrelevant features and select the

most relevant ones from the initial set. First-stage feature selection

was performed based on a two-step mRMR feature selection,

while second-stage feature selection was based on incremental and

forward feature selection, which is briefly discussed below.

Two-step mRMR feature selection. We employed one-step

and two-step mRMR strategies to gradually select the relevant

features for prediction (Figure 1). For the one-step process, the top

300 contributory and minimum-redundancy features were selected

from a total of 2,924 features using the mRMR criterion. For two-

step mRMR feature selection, AAindex-based features (including

AAindex_seq, AAindex_buried, and AAindex_exposed) were

initially used to select the 100 most contributory features from

each AAindex-based feature set for predicting the propensity of

each individual experimental status class (ultimately, 300 features

were selected from the initial AAindex-based features). We

subsequently combined the selected 300 AAindex-based feature

set with others (2924236544=1292) in second-step mRMR (the

top 300 features were selected after second-step mRMR feature

selection). After this procedure, a selected smaller subset of features

was subjected to stepwise feature selection.

Incremental feature selection (IFS) and forward feature

selection (FFS). We continued to perform an incremental

feature selection (IFS) and forward feature selection (FFS) to

establish a compact subset of the best performing features. IFS

adds a new feature each time to the set according to the ranked

importance of all the mRMR-selected features (more important

features are added first), and the performance of the resultant

SVM predictor based on these feature sets is evaluated in each

round. IFS stops when the AUC of the corresponding SVM

predictor reaches the maximal value and the selected features

contained in this feature subset are considered optimal. For FFS,

each candidate feature in the initial set is added to the FFS-

selected feature set to build the SVM classifier in each round of

FFS. The performance of the resulting predictor is evaluated in

each round, and FFS stops until the highest AUC value is reached.

The feature set that achieves a higher AUC score than last round

is used as the initial feature set for next round. The feature set

leading to the highest AUC score is regarded as the optimum set

for the corresponding experimental step. Using two-stage feature

selection, optimal feature subsets for each of the five experimental

steps were selected and used to train the SVM models of

PredPPCrys.

SVM implementation and parameter optimization
For SVM implementation, we used LIBSVM package 2.82 [52]

to train and build 5-class SVM predictors. All three types of

available kernels in LIBSVM, specifically, sigmoid (SIG), radial

basis function (RBF) and polynomial (POLY), were employed to

train the models and evaluate their corresponding performance

based on the training datasets. We optimized two parameters (C
and c) in these kernels using a grid search function implemented

by LIBSVM. The optimal feature subset for each class was used to

train the models, and performance evaluated with 5-fold cross-

validation and independent tests.

Construction of first-level and second-level PredPPCrys

models with improved performance. The optimal features

selected via the two-stage strategy were used as inputs to initially

build SVM classifiers of the first-level predictors, termed

PredPPCrys I. Next, prediction outputs by PredPPCrys I

predictors were used as inputs to build second-level SVM

classifiers, termed PredPPCrys II. This two-level framework

significantly enhanced prediction performance, as shown in

Results and Discussion.

Performance evaluation
We used the following measures to quantify the performance of

the SVM models:

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

p

Accuracy~
TPzTN

TPzTNzFPzFN

Sensitivity~
TP

TPzFN

Specificity~
TN

TNzFP

Precision~
TP

TPzFP

where TP, FP, TN and FN are the numbers of true positive, false

positive, true negative and false negative, respectively. More

specifically, TP and TN denote the numbers of correctly predicted

successful or failed trials of an experimental step, respectively,

while FP and FN signify the number of incorrectly predicted

successful or failed trials of an experimental step, respectively. In

addition, we used the AUC measure, the area under the receiver-

operating characteristic curve (ROC), by plotting the true positive

rate (TPR) against the false positive rate (FPR).

Predicting Protein Production and Crystallization Propensity
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AUC is a widely used measure in bioinformatics to evaluate the

prediction performance of the trained models especially for

imbalanced datasets, which was used as the primary performance

measure in this study. In addition, with rapidly accumulated

experimental data generated by SG centers and consistently

improved protein crystallization technologies, a target previously

regarded as non-crystallizable may become crystallizable in the

future. Therefore, a real-valued propensity score for a query

protein is more important and has more meaning than the

classification result of being ‘crystallizable’ or not.

Altogether, the performance of the SVM models was compre-

hensively evaluated using these six measures based on both 5-fold

cross-validation and independent tests. The independent test

dataset for the CRYS class was additionally used to evaluate and

compare the performance between our system and earlier

published methods, since the majority of these methods could

not be used to predict the propensity of success in individual

experimental steps, with the exception of PPCpred [13]. The other

three independent test datasets of MF, PF and CF classes were

applied to compare the performance between our method and

PPCPred.

Results and Discussion

Feature selection results
Two-step mRMR feature selection

results. Characterization of the important features that deter-

mine experimental progress from sequence cloning to acquisition

of diffraction-quality crystals that can be structurally solved using

X-ray crystallography is critical for understanding the principles

that govern protein crystallization. In the current study, we

assembled a comprehensive set of sequence-derived features with a

total of 2,924 features to conduct an in-depth investigation of the

most important factors affecting protein crystallization. We

performed two-step feature selection based on mRMR, IFS and

FFS strategies to evaluate the relevance and contribution of the

features to prediction of target success in steps of the 5-class

experimental system.

As mentioned earlier, the initial feature set may contain

redundant and irrelevant information. Thus, it is desirable to

perform effective feature selection to filter out noisy and redundant

features. In this regard, mRMR feature selection has been shown

to be a powerful tool for effectively identifying and ranking the

most relevant features, with numerous applications over the recent

years [47,48,49,51,53]. The 544 amino acid indices available in

the current AAindex1 database [31] represent an abundant

information source for the description of physicochemical

properties of the 20 amino acids. AA indices are often used as

input features in bioinformatics analysis [13,27,54,55]. Neverthe-

less, some AA indices are highly correlated with each other,

exhibiting high correlation coefficients (R) of .0.8. Therefore, to

reduce redundancy and irrelevance in AA indices, we performed

first-step mRMR feature selection on each AAindex-based feature

set. Next, second-step mRMR feature selection was performed to

filter out other irrelevant features in the remaining set. The

number of selected features after one-step and two-step mRMR

methods for 5-class prediction is shown in Table 1.

As presented in Table 1, the proportions of AA index-based

features within the 300 selected features in the 5-class prediction

system [sequence cloning (CLF), protein material production

failure (MF), purification failure (PF), crystallization failure (CF)

and crystallizable (CRYS)] were 87.3%, 71.0%, 82.0%, 57.3%,

and 75.7%, respectively, after one-step mRMR, and 47.0%,

26.3%, 34.0%, 17.7% and 27.7% (with a decrease in 40.3%,

44.7%, 48.0%, 39.6% and 48.0%, respectively) after two-step

mRMR feature selection. This finding indicates that a large

proportion of noisy and redundant features contained in the initial

AAindex-based feature set is filtered out using the two-step

mRMR feature selection. Moreover, this strategy provides more

balanced feature selection results for each class, especially with

respect to the percentage of exposure-based and burial-based

features. For example, for CRYS class prediction, the one-step

mRMR method selected 119 exposure-based and 5 burial-based

features amongst the top 300 features, while the two-step mRMR

method selected 52 exposure-based and 29 burial-based features.

The ratio of exposure-based to burial-based features was thus

reduced from 23.8 to 0.56. Other features, such as predicted

secondary structure, predictor disorder, tri-peptide, PROFEAT

features and amino acid compositions were selected for CRYS

class prediction after two-step mRMR selection. Therefore, this

strategy has the advantage of filtering redundant features and

enriching class-specific features. Similarly, the two-step mRMR

procedure helps to establish a condensed subset of more useful and

relevant features for prediction of the four other classes of

experimental steps.

We compared the prediction performance of various SVM

models trained using different subsets of features selected with a

number of methods (Table 2). Clearly, prediction performance of

the SVM models based on feature subsets selected after two-step

mRMR achieved higher AUC scores than those based on feature

subsets after one-step mRMR across all the experimental steps

(including CLF, MF, CF and CRYS), with the exception of the PF

class (the underlying reasons for this are unclear). These results

suggest that multi-step feature selection is generally useful for

reducing feature redundancy and improving the performance of

prediction models.

IFS and FFS feature selection results. On the basis of

feature ranking generated with the one-step or two-step mRMR

procedure, we subsequently performed IFS and/or FFS [56,57] to

further refine the subsets of selected features for 5-class prediction.

As described in Materials and Methods, according to results

evaluated using 5-fold cross-validation test for a class, the feature

subset based on its corresponding SVM model achieved the

highest AUC score was regarded as optimal for this class.

Table 2 depicts the performance comparison of prediction

models trained using feature subsets based on one-step and two-

step mRMR and IFS or FFS feature selection, in terms of the

AUC score. The results suggest that the ‘two-step mRMR + FFS’

feature selection strategy that combines two-step mRMR with FFS

criteria outperformed other strategies in CLF, MF and CRYS class

predictions, while the best strategy for the PF class was ‘one-step

mRMR + FFS’ combining one-step mRMR with FFS criteria. For

the CF class, the best feature selection strategy was ‘two-step

mRMR + IFS’. The data highlight the importance and necessity of

feature selection in the construction of more accurate machine

learning models.

After feature selection, a smaller subset of the final selected

features for each class was generated for further building the

primary SVM classifiers. The prediction performance of the

primary classifier evaluated using six measures, specifically, AUC,

MCC, Accuracy, Specificity, Sensitivity and Precision, along with

the number of final selected features, are presented in Table 3.

Overall, 31, 43, 54, 229 and 37 optimal features were finally

selected for building the primary classifiers for the sequence

cloning (CLF), protein material production failure (MF), purifica-

tion failure (PF), crystallization failure (CF), and diffraction-quality

crystallization (CRYS) classes, respectively. The corresponding
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AUC scores of the primary classifiers for the five experimental

steps were 0.727, 0.777, 0.790, 0.707 and 0.765, respectively.

Prediction performance of first-level PredPPCrys I and
second-level PredPPCrys II classifiers
Next, we performed in-depth analysis of the performance of the

classifiers based on different kernel functions, with a view to

gaining an insight into the important factors that influence the

performance of SVM-based models. The training datasets were

used to build SVM models of first-level classifiers of PredPPCrys I,

which were subsequently tested on the independent test dataset for

each class. Three available kernel types, including POLY, RBF

and SIG, based on the respective optimal feature subset, were used

to build SVM classifiers, and the corresponding parameters (C and

c) optimized by grid search. The performance comparison results

are shown in Table 4. After parameter optimization, AUC scores

of the classifiers improved from 0.717 to 0.728, 0.766 to 0.769,

0.763 to 0.800, 0.681 to 0.701 and 0.750 to 0.770, for the CLF,

MF, PF, CF and CRYS classes, respectively. In addition, the best

performing classifiers of CLF and PF were built using the RBF

kernel, while those of MF, CF, and CRYS were constructed using

the POLY kernel.

The prediction results generated by PredPPCrys I classifiers

with regard to the propensity of success in 5-class experimental

steps, from sequence cloning to high-diffraction quality crystal

yield, can be used to analyze the inter-dependence or inter-

correlation between any two steps in experimental trials. To

achieve this, we calculated the correlation coefficients of the

probability outputs of the SVM classifiers between any two classes

(Figure 2). For example, for CLF class prediction, MF is the most

inter-correlated class with a correlation coefficient R of 0.31, while

for MF class prediction, CRYS is the most inter-correlated class

with a correlation coefficient R of 0.77 (Figure 2).

To further illustrate this finding, we trained classifiers using the

prediction outputs of other classes as the input features and

evaluated the performance of the resulting classifiers. ROC curves

illustrating classifier performance are presented in Figure 3.

Taking the CLF class as an example, the classifier using the

output of the MF class as input achieved an AUC score of 0.678

for predicting the CLF class, while the AUC score of the

PredPPCrys I predictor was 0.711 (Figure 3A). These results

consistently suggest that the outputs of classifiers for other classes

are beneficial for further improving the prediction of a given class.

To confirm this, we generated second-level PredPPCrys

predictors using the predicted outputs of the first-level PredPPCrys

predictors as input features, as described in Materials and

Methods. Figure 3 illustrates the prediction performance compar-

ison between the first-level and second-level predictors. The results

confirm performance improvement across all five classes, with

improved AUC scores from 0.711 to 0.725, 0.772 to 0.793, 0.800

to 0.872, 0.712 to 0.735 and 0.770 to 0.838, respectively. Clearly,

PredPPCrys II consistently outperforms PredPPCrys I predictors

by exploiting outputs from the first-level predictors as inputs for

the second-level predictors.

Comparison of PredPPCrys with previous methods
As mentioned earlier, some proteins that previously failed in

crystallization trials may become crystallizable and produce

diffraction-quality crystals with the aid of advanced experimental

technologies. This highlights the importance and necessity of

constructing updated independent test datasets that reflect the true

results of their crystallization status. Here, we constructed new

independent test datasets, and compared the prediction perfor-

mance of our methods (PredPPCrysI and three available

optimized kernel models of PredPPCrys II) with other previously

published methods, including ParCrys [19], OBScore [18],

CRYSTAP2 [20], XtalPred [23], SVMCRYs [24], PPCPred

[13], SCMCRYS [22], and XtalPred-RF [28]. The performance

of all predictors was evaluated using AUC, MCC, Accuracy,

Specificity, Sensitivity and Precision measures based on indepen-

dent tests, and results are summarized in Table 5. Since most of

the other methods (except PPCPred) can only be used to predict

crystallization propensity, we mainly compared performance for

this particular class (Table 5). A list of the sequence-derived

features used by the different methods is presented in Table S3.

ParCrys, OBScore and CRYSTAP2 achieved AUC scores of

0.611, 0.638, and 0.599, respectively, while XtalPred, SVMCRYs

and SCMCRYS achieved MCC values of 0.224, 0.142 and 0.145,

respectively, for predicting the propensity to yield diffraction-

quality crystals (CRYS). Most recently, XtalPred-RF, an updated

version of XtalPred, was developed using a RF algorithm based on

a new balanced dataset. It was found to achieve a better

performance on the balanced dataset, but was shown to perform

worse on the imbalanced dataset. Clearly, the two variants of

PredPPCrys (PredPPCrys I and II predictors) and PPCPred

significantly outperformed the other methods when evaluated

using AUC and MCC scores. Furthermore, PredPPCrys II

predictors performed the best among all the methods, followed

by PredPPCrys I predictors. PredPPCrys II achieved the highest

AUC of 0.838 and MCC of 0.428, which were 19% and 68%

increased, compared to the corresponding values of PPCPred.

Additionally, PredPPCrys II achieved the highest specificity

(76.21%), sensitivity (75.30%) and precision (42.64%) values,

relative to the other methods. Analysis of the ROC curves

obtained at varying Specificity/Sensitivity values (Figure 4) led to

the same conclusions.

Since we introduced 5-class prediction in this study, none of the

previous methods could be applied to predict the likelihood of

sequence cloning failure (CLF class) for comparison with

PredPPCrys. However, we were able to compare the performance

Table 2. Performance comparison of the SVM models trained based on various feature subsets selected using different methods
on the 5-class benchmark datasets.

Feature selection method CLF MF PF CF CRYS

one-step mRMR + IFS 0.691 0.769 0.722 0.684 0.760

one-step mRMR + FFS 0.711 0.767 0.790 0.665 0.753

two-step mRMR + IFS 0.698 0.763 0.759 0.707 0.756

two-step mRMR + FFS 0.727 0.777 0.779 0.645 0.765

Performance was evaluated based on the AUC score.
doi:10.1371/journal.pone.0105902.t002
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of PredPPCrys with the state-of-the-art method, PPCPred, for

predicting the propensity of [success in] other experimental steps

(MF, PF and CF), in addition to CLF and CRYS. The results are

shown in Table 5. PredPPCrys II outperformed PPCPred, with

higher AUC (0.793, 0.872, and 0.735 vs. 0.683, 0.612, and 0.432,

respectively) for each of the three classes. The ROC curves

displayed in Figure 4 clearly indicate that PredPPCrys II compares

favorably with PPCPred and PredPPCrys I.

In addition, to assess the influence of sequence similarity

between the training dataset and independent test datasets on the

prediction performance of PredPPCrys, we further reduced the

sequence redundancy between the training and testing datasets

using a sequence identity cutoff of 25% and tested the

performance of PredPPCry models on the new testing datasets.

As shown in Table 5, there was a slight decrease in the

performance on the independent test datasets of 40% and 25%

sequence identity, as evaluated by AUC and MCC scores.

However, this performance difference was not significant. These

results indicate that PredPPCrys could achieve a robust perfor-

mance when being applied to predict query sequences with lower

sequence similarity to the training datasets.

As previously described, only a small number of proteins can

successfully yield high-diffraction quality crystals (HCDC), while

most of them failed in the procedures of protein expression,

solubility, purification, and production of diffraction-quality

crystals. Therefore, we want to develop PredPPCrys in this study

for the purpose of accurately predicting and selecting potential

targets with larger likelihood of yielding HDQC from a large

number of current non-crystallizable proteins, similar to the

previous work of PPCPred. For this purpose, we employed an

imbalanced database to train models, which can be employed to

prioritize all current non-crystallizable structural genomics targets.

Recent studies have shown that the methods developed using

RF classifiers achieve better performance for predicting protein

crystallizability. RFCRYS and XtalPred-RF are such methods that

performed well particularly when tested on the balanced datasets.

Jahandideh et al [28] extracted a new larger dataset (e.g. the

XtalPred-RF dataset) from the PSI TargetTrack database. This

balanced dataset was generated by reducing negative data and had

nearly equal counts of negative and positive samples. Therefore, in

this study, we also applied our method to the XtalPred-RF dataset

and compared the performance between different methods. As a

result, PredPPCrys model trained using the optimal features

selected by multi-step heterogeneous feature selection achieved an

MCC value of 0.478, which was slightly higher than XtalPred-RF

(MCC=0.470) (see Table S4). These results indicate that with the

efficient multi-step feature selection, PredPPCrys is able to provide

a competitive performance for protein crystallization prediction

compared with recently developed predictors.

Feature contribution to the 5-class prediction system
We further analyzed the contributory effects of the final set of

selected features to the prediction performance of PredPPCrys.

Features were analyzed in three broad categories, namely,

PROFEAT, AAindex and other features, as shown in Fig. 5.

For details of the final selected features for the five classes, please

refer to the Supplementary files at http://www.structbioinfor.org/

PredPPCrys/Datasets.html.

To our knowledge, PROFEAT features have been used for the

first time in this study. The initial PROFEAT features included

dipeptide composition (Profeat[1–400]); normalized Moreau-

Broto autocorrelation (Profeat[401–490]); Moran autocorrelation

(Profeat[491–580]); Geary autocorrelation (Profeat[581–670]);

composition (Profeat[671–691]), transition (Profeat[692–712]),
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distribution (Profeat[713–817]) of hydrophobicity, Van der Waals

volumes, polarity, polarizability, charge, secondary structure and

solvent accessibility; quasi-sequence order descriptors (Pro-

feat[818–977]); amphiphilic pseudo-amino acid composition

(Profeat[978–1057]); and total amino acid composition (Pro-

feat[1058–1060]). Each feature was numbered in accordance with

that provided by the PROFEAT webserver. Among the features,

dipeptide compositions have been previously used for protein

crystallization prediction [16,17,20,21], which are especially

important for predicting the propensity of the CF class, accounting

for 25.93% of the selected features for this class.

Interestingly, a few autocorrelation-based features (Profeat[401–

670]) were found to be significant for the MF class, with significant

p-values, (Profeat[470]) = 1.76102127 and (Pro-

feat[641]) = 1.2610281, and p-value (Profeat[461]) = 4.76102273

for the CRYS class. This finding suggests that the features

Figure 2. Correlations between the probability outputs of any two classes. Results were evaluated based on the training dataset.
doi:10.1371/journal.pone.0105902.g002

Predicting Protein Production and Crystallization Propensity

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e105902



describing protein–protein interface properties play an important

role in influencing protein material production and diffraction-

quality crystal preparation processes. Moreover, other features of

PROFEAT that describe the composition, transition and distri-

bution of 7-type properties (Profeat[671–817]) were relevant for

the performance of the predictors of respective classes, including

Profeat[719] for CLF, Profeat[784,718] for MF, Profeat[757] for

PF, Profeat[677,741] for CF and Profeat[760,680,674] for CRYS.

Quasi-sequence order descriptors and amphiphilic pseudo-amino

acid compositions appeared to play important roles in the

prediction of nearly all classes, accounting for 3.4%, 30.2%,

18.5% and 38.9% of the selected features for CLF, MF, CF and

CRYS, respectively.

The second largest feature category, specifically, AAindex-

based, was also critical for prediction performance. These features

can be further divided into those describing the physicochemical

properties of buried residues (denoted as ‘AAindex_buried’),

exposed residues (denoted as ‘AAindex_exposed’) and whole

protein (denoted ‘AAindex_seq’ in Figure 5). Analysis of these

AAindex features revealed several important findings. For

example, for the CLF class, the AAindex features that describe

physicochemical properties of buried residues were more abun-

dant than those of exposed residues and whole protein (27.59%,

compared with 13.79% and 10.34%, respectively). Similarly, for

the CF class, the AAindex-based properties of the buried residues

were more abundant than exposed residues and whole sequence.

Interestingly, for the PF and CRYS classes, the physicochemical

properties of the exposed residues of the protein appeared to play

more important roles in predicting propensity. During the

processes of protein purification and crystallization, higher

concentrations of soluble proteins are often required and the

physicochemical properties of the exposed parts of the protein may

influence solvent accessibility and protein–protein interactions.

From this perspective, the significant role of these properties is

understandable. In addition, the AAindex properties of the whole

sequence (11.63%) were abundant in the feature subset for the MF

class, suggesting that these properties are more useful for

predicting protein material production propensity. Subdivision of

protein properties into these three subtypes is therefore more

informative and aids in improving prediction performance.

Other final selected feature types critical for prediction included

predicted disorder, amino acid types, predicted secondary

structure, and tripeptide compositions (Table S2). The disorder

segment-based features were previously found to be particularly

useful for MF, CF and CRYS classes by Mizianty and Kurgan

[13]. In the current study, these features were selected in the final

feature subsets and were more important, not for MF, CF and

CRYS as suggested earlier, but for CLF and PF classes (Figure 5).

In particular, the disorder segment-based features led to significant

improvements in the prediction performance of CLF and PF

classes, compared with the former two classes.

Another important feature type relevant for prediction is the

predicted secondary structure. This includes, for example, the coil

Figure 3. ROC curves for different predictors. (A), CLF; (B), MF; (C), PF; (D), CF; and (E), CRYS class. Taking the CLF class as an example, the
performance of the first-level predictor PredPPCrys I (corresponding to the CLF class feature in Figure A), predictors built using the outputs of
classifiers for other classes as inputs, as well as the second-level predictor, PredPPCrys II, are compared using the respective ROC curves. All predictors
were built using the optimized SVM parameters based on the respective training datasets, and subsequently tested on the corresponding
independent test datasets.
doi:10.1371/journal.pone.0105902.g003
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segment divided by sequence length (denoted ‘$SS_RES_C_-

seg_1’, with p-value<0) for MF and CRYS classes, length of the

maximal b sheet (denoted ‘$max_seg_avg_E’) for CLF class,

length of maximum coil segment (‘$max_seg_avg_C’) for MF class,

total secondary structure segments (‘$SS_avg’) for PF class,

frequency of sulfur containing amino acids in the coil segments

(‘$AA_sulfur_C’) and frequency of more than 8 AA coil segments

(‘$SS_RES_C_seg_8’) for CF class. These results are in agreement

with previous data [13,23,24,58]. In addition, we found that

tripeptide compositions based on hydrophobic (1: amino acids

coded F/I/M/L/V/M/Y/C/A), hydrophilic (2: amino acids

coded R/K/N/D/E/P) and neutral (3: amino acids coded T/H/

G/S/Q) types were useful for predicting propensity for CLF, PF,

CF and CRYS classes. Tri-peptide compositions were used for the

development of CRYSTALP2 [20] and SVMCRYS [24].

Notably, the frequency of exposed His residues additionally

made a significant contribution to the prediction of success in

CLF, PF and MF classes, with p-values of 0, 3.46102157 and

5.96102127, respectively. These results are consistent with the

findings of Mizianty and Kurgan [13]. Interestingly, the frequency

of Glu residues in a protein was identified as an important factor

for predicting target propensity for MF and CRYS classes.

Furthermore, the frequency of Glu residues buried partly or

wholly was a critical factor for PF. Consecutive exposed segment

was another important factor for CLF (with more than one

exposed segment), PF (segments longer than 4, 8 or 16 AAs) and

CRYS (segments longer than 16 AAs) classifiers, indicating that

longer exposed segments are favorable for protein purification and

diffraction-quality crystal yield. Finally, the isoelectric point (pI) of

the protein was critical for prediction of protein material

production failure, consistent with previous data [13,16,18,20].

In summary, this study has not only reinforced the importance

of several major feature types reported as critical for prediction

(e.g., dipeptide compositions, tripeptide compositions, predicted

secondary structure and isoelectric point of the protein), but also

revealed other complementary features that have not been

previously recognized as significant (e.g., autocorrelation-based

PROFEAT features). These features were selected using an

efficacious and reliable multi-step procedure to obtain good

prediction performance of models that were trained and tested on

up-to-date experimental datasets. Through multi-step feature

selection analysis, we provided in-depth details of the relative

contribution and significance of the selected features and

generated optimally performing feature subsets for each major

experimental step.

We evaluated the contribution of each individual feature by

examining the AUC score of the predictor that used only a feature

as the input using benchmark datasets. The feature that resulted in

a higher AUC score of the corresponding model was more

important. The results are shown in Figure S1. We can see that the

AUC-based results were generally consistent with that obtained

based on p-values.

Figure 4. ROC curves displaying the performance of our methods (PredPPCrys I and II predictors), compared to previous
procedures, on independent test datasets for predicting propensity of targets to successfully pass each experimental step. (A), CLF;
(B), MF; (C), PF; (D), CF and (E), CRYS class. PredPPCrys-I denotes the first-level predictors of PredPPCrys, PredPPCry-II denotes second-level predictors
of PredPPCrys, while PredPPCrys-II_POLY, PredPPCrys-II_RBF, PredPPCrys-II_SIG denote the best performing SVM classifiers built with SVM_POLY,
SVM_RBF, SVM_SIG kernels in second-level predictors, respectively.
doi:10.1371/journal.pone.0105902.g004
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Implementation of the online web server and
prioritization of all non-crystallizable structural genomics
targets for PredPPCrys
To date, yielding diffraction-quality crystals of structural

genomics targets for structure determination has remained a

formidable task for biologists. To facilitate high-throughput SG

efforts, we have constructed an online prediction web server of

PredPPCrys at http://www.structbioinfor.org/PredPPCrys/

server.html, which is programmed using Perl. Usage of the

webserver starts with input of sequences in the FASTA format. A

typical prediction task will normally take 3–5 min to complete.

The prediction output includes the predicted probability scores of

Figure 5. Statistical significance of the contributions of selected features to the prediction performance of the five classes,
evaluated based on the negative logarithmic value of p-value (-log(P)) calculated using t-tests. Contribution significance was determined
using t-tests, and only the final selected feature types that made a significant contribution (p,0.01) to performance were included in the analysis. The
vertical and horizontal axes display the contributory features. The pie chart insets denote the percentages of selected feature types in the final feature
subset for each class.
doi:10.1371/journal.pone.0105902.g005
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the propensity of the query protein to pass each of the five

experimental steps. In particular, a protein is categorized into one

of the five possible crystallization propensity classes according to

the prediction cutoffs: ‘Optimal’ (probability score $0.6), ‘Subop-

timal’ (0.55# probability score ,0.6), ‘Average’ (0.45# probabil-

ity score ,0.55), ‘Difficult’ (0.2# probability score ,0.45) and

‘Very difficult’ (probability score ,0.2). The probability score

output by the web server allows users to rank and prioritize their

own targets.

We subsequently applied the best performing PredPPCry

predictors to rank and annotate SG targets that have not

successfully yielded diffraction-quality crystals. The prediction

results of all prioritized targets by PredPPCrys are freely available

at the website (http://www.structbioinfor.org/PredPPCrys/

Datasets.html). The statistics of prioritized structural genomics

targets with different prediction cutoffs are presented in Table S5.

Proteins annotated ‘Optimal’, ‘Suboptimal’, ‘Average’, ‘Difficult’

and ‘Very difficult’ accounted for 5.1%, 7.7%, 19.9%, 46.4% and

20.9% of the total targets, respectively. We believe that the

availability of computationally prioritized targets will expedite the

determination of 3D structures and consequent functional

characterization of these proteins.

Conclusions

In this study, we have developed a new approach, termed

PredPPCrys, to predict the propensity of a protein to pass the five

critical consecutive experimental stages involved in the crystalli-

zation process, including sequence cloning, protein material

production, purification, crystallization and diffraction-quality

crystal yield. By taking into account the contribution of a large

number of heterogeneous features and subsequently applying

multi-step feature selection using mRMR, IFS and FFS methods,

PredPPCrys achieved better prediction performance, compared

with other published methods, on independent test datasets. As

one of the only two methods for predicting the propensity of

targets to pass each individual experimental step, PredPPCrys also

outperformed the state-of-the-art PPCPred method, with an AUC

of 0.838, Matthews correlation coefficient of 0.428 and overall

accuracy of 76.04% for predicting crystallization propensity.

Moreover, the webserver of PredPPCrys has been made publicly

available at http://www.structbioinfor.org/PredPPCrys, which is

expected to be a powerful tool to facilitate and accelerate ongoing

SG efforts.
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