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Abstract

This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based
representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and
conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of
greater computational complexity and increased storage requirements. We show that a unified visual matching framework
can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between
feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or
its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT
and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics.
Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK)
method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method
combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables
efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the
proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes,
Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively
efficient LCMK method.

Citation: Song Y, McLoughlin IV, Dai L-R (2014) Local Coding Based Matching Kernel Method for Image Classification. PLoS ONE 9(8): e103575. doi:10.1371/
journal.pone.0103575

Editor: Wen-Bo Du, Beihang University, China

Received May 5, 2014; Accepted July 3, 2014; Published August 13, 2014

Copyright: � 2014 Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: Grant No. 61172158, National Nature Science Foundation of China (http://www.nsfc.gov.cn/). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Prof. Ian Vince McLoughlin has recently been appointed as a PLOS ONE Editorial Board member. This does not alter the authors’
adherence with PLOS ONE editorial policies and criteria.

* Email: songy@ustc.edu.cn

Introduction

Visual matching is a core task of many content-based image

retrieval and visual recognition applications. Existing visual

matching algorithms generally comprise two closely related

components: visual content representation and similarity measure-
ment [1]. An image can conventionally be globally represented by

low-level features such as GIST [2], Gabor filter, color or texture

histograms computed over the entire image or over fixed regions.

Using such methods, a convenient and compact representation

can be achieved and used for visual similarity measurement [3,4].

However a significant disadvantage is that global features can be

sensitive to intra-category variations caused by different view-

points, lighting conditions and background clutter. The conse-

quence of this is degraded visual matching accuracy.

Local feature based representations have recently attracted

much attention. For example, SIFT [5] and HoG [6], which are

extracted from patches around detected interest points, or

extracted in a dense grid over the image. Representing images

using local feature sets is demonstrably more descriptive,

discriminative and robust to intra-category variations compared

to using a single global feature vector [7]. However representation

by local feature sets in this fashion may be redundant, impacting

the efficiency of the visual similarity measurement task. The

problem is more challenging in that the feature sets have different

cardinalities and are orderless.

The Bag-of-Visual Words (BoV) model, by far the most popular

matching method to date, maps the local feature set into a fixed-

length histogram. The process consists of two main phases: (i)

Feature quantization assigns every local feature to the nearest

visual words in a dictionary. The dictionary would generally have

been obtained off-line through a clustering process on a large local

feature set. (ii) Spatial pooling counts occurrences of visual words

in the image (or in spatial regions) to form a histogram

representation. BoV shares some advantages with global feature

based representations. For example, visual similarity can be

efficiently measured using a linear kernel on the histograms, or by

using more accurate additive homogeneous kernels [8,9]. How-

ever, quantization error (i.e. the difference between a local feature

and its assigned visual word), is known to degrade the effectiveness

[10]. Furthermore, the spatial context information of local features

is ignored in BoV.

A plethora of extensions have built on the foundation of BoV.

Many aim to reduce local feature quantization error, such as soft

assignment coding [11] [12], local coding [13] [14] and sparse

coding [15]. These use multiple visual words with locality or
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sparsity constraints to represent local features more accurately.

Super-vector coding [16] and aggregated coding [17] approximate

the Fisher vector [18] to achieve a better representation by

exploiting first and/or second-order statistics from features in

different image layouts. Further improvements in matching

accuracy can be obtained by using image layout to introduce

rough spatial correspondence between images, such as the spatial

pyramid structures in [16,19]. Spatial information could also be

exploited to derive semantic mid-level features [20–24].

Apart from BoV, kernel based methods define visual similarity

based on the set-level kernel, which is derived directly from the

kernels in local feature space. Generally, this process [25,26] first

calculates local kernels over pairs of features, before aggregating

the local kernels into set-level kernels. Parsana et al. [27] modifies

the calculation of local kernels by integrating spatial information.

Meanwhile, Boiman et al. [10] and Rematas et al. [28] proposed

Nearest Neighbor (NN) classification techniques, called Naive

Bayes Nearest Neighbor (NBNN), to classify images under the

naive Bayes assumption. This employs the nearest image-to-class

distance as a set-level kernel.

Although these methods are effective, many become impractical

for large scale image sets due to the high computational and

memory costs implicit in the calculation of local kernels. Several

authors therefore use approximation techniques to reduce

complexity. For example, NBNN uses a KD-tree implementation

to approximate the nearest neighbor distance. Similarly, Efficient

match kernels (EMK) [29] map local features to a low-dimensional

feature space using constrained kernel singular value decomposi-

tion (CKSVD). Some other authors estimate a probabilistic

distribution on sets of local features, and then derive similarity

using distribution-based distance metrics [30–32].

In fact BoV-based and kernel-based methods are closely related.

We will show in the next section how a local feature based visual

matching framework can be derived to unify them both. From a

local feature based visual matching perspective, we can see that the

local kernel measuring the similarity between feature pairs, or

between features and their reconstruction, plays an important role.

Existing local kernels are mostly defined using Euclidean distance

or its derivatives, based either explicitly or implicitly on a Gaussian

noise assumption. However, such an assumption may not be valid

for gradient based local features, e.g. SIFT and HoG, as has been

demonstrated by several authors: For example, in [33] Jia et al.

showed that the statistics of gradient based local features often

follow a heavy-tailed distribution, which undermines the motiva-

tion for using Euclidean metrics. Similarly, Wu et al. [34] showed

that a histogram intersection kernel (HIK) is more effective than

Euclidean distance for supervised/unsupervised learning tasks with

histogram feature. Meanwhile, second-order SIFT statistics with

appropriate non-linearities were also shown to improve visual

similarity measurement [35]. Some feature embedding methods

have been shown to yield large performance improvements when

used with linear SVM, such as square-root embedding [36,37].

Contributions
Motivated by recent progress in feature coding techniques [13–

15], we develop a local coding based matching kernel (LCMK)

method for efficient and effective visual matching. The proposed

LCMK method shares the non-Euclidean assumption with

[35,36]. Yet a key difference is that we aim to learn an embedding

function directly in the Hilbert space derived from a non-linear

local kernel. Specifically, the method proposed in this paper has

the following novel properties:

N We show that the existing BoV and kernel based methods can

be unified using a more general local feature based visual

matching, in which the effectiveness and efficiency of

constructing a local kernel matrix is an important factor.

N Both BoV and kernel based methods can achieve efficiency by

approximating an effective non-linear kernel, using a linear

kernel with a non-linear embedding function. By contrast, we

propose to learn the embedding function from the Hilbert

space derived from the local kernel directly.

N The proposed LCMK method combines the advantages of

both BoV and kernel based similarity measurements, yet will

be shown to achieve a linear computational complexity. It is

therefore an efficient and scalable method for measuring image

level similarity.

The effectiveness of this method is demonstrated through image

classification experiments on various datasets, including 15-Scenes,

Caltech101/256 [19] [38] and PASCAL VOC 2007 and 2011

[39] [40]. The experimental results show superior performance

compared to the state-of-the-art techniques based on SIFT

features.

The rest of this paper is organized as follows. A general

definition of local feature based visual matching is firstly

introduced, following which, two main categories of similarity

measurement are briefly reviewed and discussed. Next, the

proposed method, to compute a compact image-level representa-

tion from local kernels, is presented in detail. This includes the

analysis of its complexity in comparison with other methods.

Finally, the experimental results are presented and analysed. The

paper ends with a conclusion and discussion of potential future

work.

Methods

Visual Matching
This section begins with a general definition of visual matching

based local feature representation. Both BoV and kernel based

methods are then reviewed from a visual matching point of view.

Finally we discuss the relationship between these two methods in

detail.

Specifically, assume that we are given two images

X~fxi[Rd , i~1, 2,. . . , mg, Y~fyj[Rd , j~1,2, . . . ,ng, where

xi,yj are d-dimensional local features extracted from the images. A

generic image-level similarity measurement can be defined as

S(X,Y)~f (½k(xi,yj)�),Vxi[X, yj[Y ð1Þ

where ½k(:)� is the local kernel matrix over feature pair

combinations of X,Y, and f (:) is the mapping function from local

kernel matrix to set-level kernel.

For a collection of N images X~fXig,i~1,2, . . . ,N , there are

M local features extracted xi[Rd ,i~1,:::,M, MwwN . Visual

matching can be stated as obtaining the image-level similarity

matrix S~Si, j ,i, j~1,2, . . . ,N from local kernel matrix

K~½ki, j �, i, j~1,2, . . . ,M. The time complexity of visual match-

ing is O(M2), and the storage requirement for similarity kernel

matrix S is O(N2), growing quadratically with the size of the

image set. This leads to serious scalability problems.

BoV based Matching Methods. Given a dictionary of D

visual words C~fci[Rdg, i~1,2, . . . ,D, feature quantization

approximates local feature x with its reconstruction

LCMK for Image Classification
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x̂x&Cq(x) ð2Þ

where q(x) is the coefficient vector,

q(x)~½q1(x),q2(x), . . . ,qD(x)�T[RD:

Generally, optimal q(x) can be obtained by minimizing the

quantization error Ex{x̂xE2
2. The simplest feature quantization

uses hard-assignment coding, which encodes local features to

their nearest visual word giving a coefficient vector q(x) with

one and only one nonzero entry. By contrast, soft-assignment

coding represents local features as a linear combination of

several visual words with respect to sparsity or locality

constraints [15,41].

q(x)~ arg min
q[RD

Ex{CqE2
2zlV(q) ð3Þ

where V(:) is a regularization term on the quantization

coefficient vector. In sparse coding, the regularization term is

in L1-norm form [15],

V(q)~EqE1~
XD

i~1

Dqi D

In local coding, an additional locality constraint is considered

V(q)~Ed8qE1~
XD

i~1

Ddi8qi D

where di~ exp (
{Ex{ciE2

2

s2
) is the distance from feature x to

visual word ci , and 8 denotes element-wise product. In practice, a

sum-to-one operator can be applied on quantization coefficient

vector q to achieve shift-invariance [15,41].

After feature quantization, a pooling operator is generally

needed to summarize the quantization coefficient vectors over a

whole image or over large image regions. Generally, Lp-norm

operator fp(:) can be used [20,42,43],

h(X)~fp(q(X ))~(
1

m

Xm

i~1

q(x)p)
1
p ð4Þ

where h(X) is a D-dimensional histogram vector. The parameter p
is used to control the type of pooling operator: p~1, fp(:) denotes

average-pooling, and a convenient histogram representation is

obtained; p~? denotes max-pooling, which captures the most

significant quantization coefficients in an image.

Finally, visual similarity between images X,Y can be defined

over image-level representation h(X),h(Y) efficiently

SB(X,Y)~k(h(X),h(Y)) ð5Þ

k(:) is the kernel function measuring the visual similarity

between BoV representations. Several popular kernel functions for

image classification are listed below:

N Linear kernel: k(X,Y)~XTY

N Intersection kernel: k(X,Y)~
XD

i~1
min (Xi,Yi)

N Hellinger kernel: k(X,Y)~
ffiffiffiffiffiffiffi
XY
p

N x2 kernel: k(X,Y)~
XY

XzY

Kernel based Visual Matching. Given the local kernels

k(xi,yj),i~1,2, . . . ,m,j~1,2, . . . ,n between two sets of features, a

straightforward kernel based visual matching can be defined using

SK (X,Y)~
1

mn

Xm

i~1

Xn

j~1

k(xi,yj)
p ð6Þ

where p is the exponent parameter to control the importance of

the local kernel, with p = 1 equating to the sum match kernel in

[25], and other values of p affecting the bias given to local kernels.

In NBNN [10], the image-to-class similarity is used instead of

the image-to-image one, which can be formulated as

SK (X,Y)~
1

m

Xm

i~1

arg max
xj[C

k(xi,xj)

where xi is the local feature in image X, and xj is the local feature

in class C.

Suppose there is a non-linear mapping y from feature space to a

Hilbert space y : R?H, induced by local kernel

k(x,y)~y (x)Ty (y). Eqn.6 can then be rewritten as

SK (X,Y)~
1

mn

Xm

i~1

Xn

j~1

½y (xi)
Ty (yj)�

p

~½1
m

Xm

i~1

(y (xi)
p)�T½1

n

Xn

j~1

y (yj)
p�

~y (X)Ty (Y)

ð7Þ

Despite their effectiveness, kernel based matching methods are

generally computationally complex. Several approximations have

thus been introduced to improve efficiency, such as PMK [32],

EMK [29] etc.

Discussion

BoV based methods aggregate the local features into a single

vector representation, which allows more efficient similarity

measurement. The simplest way for aggregation is to average

the feature vectors in an image. However, this may lose much

information about underlying image content due to the diverse

distribution characteristics of local features.

In BoV, a dictionary of visual words is trained off-line for

partitioning the local feature space into Voronoi cells according to

their distributions. In fact, these visual words act as a coordinate

system. By mapping local features to the new coordinates during

the feature quantization stage, pooling can be conducted on

features in the same Voronoi cell without losing much informa-

tion.

Kernel based methods aggregate the local kernels from different

feature sets to derive a similarity measurement, which is close to

our definition of visual matching in Eqn. (1). However, the

computational complexity and storage requirement is too high for

LCMK for Image Classification
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large scale image sets. A better way might be a combination of the

advantages of both methods.

This is possible since both BoV and kernel based methods can

be unified from a visual matching perspective. Specifically, from

eqns. (4) and (5), BoV based similarity measures can be

represented using

SB(X,Y)~k
1

m
½
Xm

i~1

q(xi)
p�

1
p,

1

n
½
Xn

j~1

q(yj)
p�

1
p

 !
ð8Þ

which is similar to eqn. (7) with a linear kernel, by considering q(x)
as a low-dimensional embedding of y (x).

It can be seen from eqn.(1) that the base kernel over a pair of

local features plays an important role in matching based methods.

However, existing methods generally use Euclidean distance to

define a base kernel k(:), which may not be optimal for histogram

based feature vectors, such as SIFT and HoG. To address this

issue, previous methods generally find an explicit mapping

function to approximate the non-linear kernel at either image or

feature levels.

Unlike existing methods, we propose an efficient local coding

based visual matching method, which aims to combine the

strengths of both BoV and kernel based methods. The assumption

is that local features for image classification, when densely

extracted from the image, may exhibit intrinsic manifold

structures. The soundness of this assumption has been supported

by the success of recently proposed local coding methods [12,13].

Similarity Measurement via Proposed Efficient Local
Coding based Matching Kernel

As mentioned, most local feature based matching methods are

developed using Euclidean distance functions under the Gaussian

noise assumption, probably for the sake of efficiency. However,

local features, e.g. SIFT and HoG, generally follow a heavy-tailed

distribution [21]. Euclidean based similarity measures may

therefore yield a poor matching accuracy and have undesirable

side-effects. Recent works, such as Laplacian sparse coding [44]

and local coding [12,13], demonstrate that improved matching

accuracy is achievable by exploiting manifold structures during

feature quantization.

In the following sections, we first describe the process of learning

an embedding matrix from the Gaussian kernel, and then derive

our proposed LCMK method for efficient visual matching, which

aims to design a local kernel matrix that can incorporate

neighborhood information for finding manifold structures in

feature space. A low-dimensional embedding function is then

learned by approximating this local kernel matrix.

Learning embedding from the Gaussian kernel. Suppose

that we are given a set of randomly selected training features

X~fxig, i~1,2, . . . ,n. Let K denote the kernel matrix defined on

data set X. There is an implicit feature mapping from Euclidean

space to a Hilbert space H, y : Rn?H, derived from a Gaussian

kernel k(xi,xj)~ exp ({
E(xi{xjE2

s2
). We aim to learn a D-

dimensional projection fW(xi)[RDg, i~1,2, . . . ,n that can best

approximate the original kernel matrix K.

Firstly, a set of D anchor points C~fcig, i~1,2,:::D can be

obtained by applying k-means clustering on data set X. Let Z be

the basis vectors Z~½y (c1),y (c2), . . . ,y (cD)�, i~1,2, . . . ,D,

y (x) can then be approximated using

q(x)~ arg min
q[RD

DDy (x){ZqDD22 ð9Þ

where q(x) is a D-dimensional coefficient vector. Since eqn. (9) is

convex quadratic, a closed-form solution can be found

q(x)~(ZTZ){1 ZT y (x) ð10Þ

By replacing y (x) with Zq(x), the original kernel function

k(x,y) can be approximated as

k(x,y) &½Zq(x)�T½Zq(y)�

~y (x)TZ(ZTZ){1ZTy (y)

~kZ(x)Tk{1
ZZ kZ(y)

ð11Þ

where kZ(x)~ZTy (x)[RD, and kZZ~ZTZ[RD|D. Since k{1
ZZ is

positive definite, it can be decomposed as GT G~k{1
ZZ using

Cholesky-decomposition. The local kernel can be further written

as

k(x,y) &kZ(x)TGTGkZ(y)

¼D W (x)TW (y)
ð12Þ

where W (x)~GkZ(x) is a D-dimensional embedding of y (x).

Since local features generally follow a non-Gaussian distribu-

tion, it is beneficial to incorporate the neighborhood information

in kernel matrices (i.e. kZZ and kZ (x)) to exploit the latent

manifold structures. An intuitive way is to add a locality constraint

to eqn. (9).

q(x)~ arg min
q[RD

DDy (x){ZqDD22zlV(q) ð13Þ

where V (q) is the regularization term defined in eqn. (3).

However, due to the non-convexity of eqn. (13), there is no

closed-form solution. A computationally complex optimization

procedure e.g. the feature sign algorithm [15], is generally

required.

Another possible way is to use spectral analysis methods, such as

Locality Preserving Projection (LPP) [45], Laplacian Eigenmap

(LE) [46]. Given the data set X[Rd | n, spectral analysis methods

generally need to construct an un-direct graph represented by an

n | n adjacency matrix W, in which each non-zero entry wi j

denotes the similarity between neighboring data. The spectral

embedding matrix A[Rd | l can constructed using eigenvectors

a0, . . . ,al{1, ordered according to their corresponding eigenvalues

l0v . . . vll{1, where eigenvector a and eigenvalue l are

obtained by solving the generalized eigen-decomposition problem

as follows,

XLXTa~lXMXTa ð14Þ

where M is a diagonal matrix with each entry Mii~
X

j
wi j ,

and L is a Laplacian matrix L~M{W. The computational

complexity and storage requirement of constructing such graph is

O(n2), quadratic with the number of data points. For kernel based

LPP, additional computation of the kernel matrix is needed. To
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address this issue, we propose to learn the embedding from the

kernel matrix derived using the local coding technique.

Learning embedding from local coding based

kernel. Our proposed algorithm for learning embedding matrix

from the local coding based kernel is shown in Table 1. Given a

set of D anchor points C~fcig, i~1,2,:::D, we propose to use

following local coding of feature x, referring to the weight matrix

construction step in LPP [45]

qi(x)~
exp ({cDDx{ci DD22)), if ci[NNr(x)

0, elsewhere

(
ð15Þ

where parameter c[R and r is the number of nearest anchor

points. We found empirically that setting r~5 and c~10 can

achieve reasonable results. This local coding scheme is similar to

the feature quantization in BoV method. The major difference is

that in BoV, the quantization coefficient vectors are pooled

together for image-level representation; whereas in LCMK, these

vectors are used to approximate the kernel matrix kZZ in eqn.(11).

Let Q (X) denote the quantization coefficient matrix of data set X,

Q (X)~½q(x1),q(x2), . . . ,q(xn)�[RD| n.

kZZ&Q̂Q(X)Q̂Q(X)T ð16Þ

where Q̂Q~M{1=2Q is the normalized coefficient matrix. M is the

row sum of Q. The local kernel between feature pair in eqn.(11)

can then be defined as

k(x,y)~q(x)Tk-1
ZZ q(y) ð17Þ

where kZ(x) is replaced by the quantization coefficient vector

q(x). According to [47], there is a close relationship between Q̂QTQ̂Q

and Q̂QQ̂QT. From the perspective of spectral analysis, the matrix

Q̂QTQ̂Q may be considered as an approximation of the weight matrix

using the anchor points instead of the whole training set. The time

complexity of constructing the coefficient matrix Q is O(nD),
which scales linearly with n when the number of anchor points is

fixed.

Since kZZ is positive definite, k{1
ZZ~BTB. Eqn.(17) can then be

simplified as

k(x,y)~q(x)TBTBq(y)~q̂q(x)Tq̂q(x) ð18Þ

where q̂q(x)~Bq(x).
Similarity measurement and complexity analysis. Given

two images X~fxi[Rd , i~1,2, . . . ,mg, Y~fyj[Rd , j~1,2, . . . ,

ng, the image-level similarity can be measured by substituting the

local kernel in eqn.(7) with eqn.(18):

SK (X,Y) ~Y(X)TY(Y))

~½1
m

Xm

i~1

q̂q(xi)
p�T ½1

n

Xn

j~1

q̂q(yj)
p�

~½Bm

1

m

Xm

i~1

q(xi)
p�T ½Bn

1

n

Xn

j~1

q(yj)
p�

ð19Þ

where Bm~ 1
m

Pm
i~1 Bp. Since Y(X) is finite and can be

computed explicitly, we can first extract the image-level represen-

tation in a similar way to BoV, then apply the embedding on the

image-image level representation.

Note that in practice, embedding matrix B can be learned off-

line, simultaneously with construction of anchor points. The time

complexity of the proposed LCMK method mainly consists of (i)

local coding of the features, and (ii) feature embedding and

aggregating to form an image-level representation. Given a set of n
features X extracted from an image, the time complexity of local

coding in eqn.(15) tends towards O(nD), which scales linearly with

n when the number of anchor points D is fixed. Furthermore, we

use the efficient approximate r-nearest-neighboring algorithm and

KD-tree implementation of [48] to reduce the computational

complexity of feature embedding caused by a large number of

anchor points. The time complexity of feature embedding and

aggregating to image-level representation in eqn.(19) is basically

O(D2). Overall, the computational cost of LCMK is much lower

than that required to evaluate the matching kernel, which scales

quadratically with M, the number of local features extracted from

the whole image set, since MwwD. Compared to the BoV based

visual similarity, the computational cost is slightly higher due to

computation of embedding of the image representation. However,

as will be seen in the following section, performance is much

better.

Experiments

To evaluate the effectiveness of the proposed LCMK method,

we conduct extensive image classification experiments on 15-

Scenes, Caltech101/256 and PASCAL VOC 2007/2011 datasets.

Datasets
Some examples from Caltech101, Caltech256 and PASCAL

VOC 2007/2011 are shown in Fig. 1. We can see that in

Caltech101, most images are well aligned and basically without

occlusion. We use Caltech101 because there are many algorithms

that have been evaluated on it. Caltech256 is more challenging

than Caltech101 due the large number of object classes, more

Table 1. Algorithm 1: Learning embedding from local coding based matching kernel:LCMK.

Input: n local features xi[Rd ,i~1,2, . . . ,n; number of anchor points K ;

Output: Embedding matrix B

1. Generate D anchor points using k-means algorithm;

2. Obtain the adjacency matrix using local coding technique Q~½qij �,i~1,2, . . . ,n,j~1,2, . . . ,D according to eqn.(15);

3. Calculate kZZ using eqn.(16);

4. Calculate the embedding matrix B using BTB~k̂k{1
ZZ

doi:10.1371/journal.pone.0103575.t001
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diverse poses, background clutter and sizes. Compared to

Caltech101/256, each image in the PASCAL VOC 2007 dataset

may contain multiple labels. For example, ‘‘person’’ is the most

common concept, appearing alongside many other concepts such

as ‘‘dog’’, ‘‘horse’’, ‘‘bottle’’, ‘‘chair’’ and ‘‘boat’’, etc.

Caltech 101 and Caltech 256 datasets. In the Caltech101

dataset, there are 9144 images with 101 categories plus a

‘background’ category. The number of images in each category

ranges from 31 to 800, and the image size is about 3006200

pixels. All 102 categories are used in the experiments. In the

Caltech-256 dataset, there are 30,607 images from 256 categories

plus a ‘background’ category. The number of images in each

category ranges from 80 to 800.

PASCAL VOC 2007 dataset. The PASCAL-VOC 2007

dataset [39] consists of 9963 images from 20 classes. These images

include indoor and outdoor scenes, close-ups and landscapes, and

strange viewpoints. The dataset is divided into three parts: (i) a

training set of 2501 images, (ii) a validation set of 2510 images and

(iii) a test set comprising 4952 images.

PASCAL VOC 2011 dataset. We also conduct evaluation

experiments on PASCAL-VOC 2011 [40], which consists of

14,961 images from 20 classes. Following the standard experiment

setup for VOC 2011, we use 5717 images for training and 5823

images for testing. In general, the VOC datasets are challenging

because the images are daily photographs that have been obtained

from Flickr, with varying sizes, resolutions, viewing angles,

illumination, appearances of objects, poses and occlusions.

15-Scenes datasets. In the 15-Scenes dataset, there are 4485

images with 15 categories, which are taken from the COREL

collection, personal photographs and Google image search. The

number of images in each category ranges from 200 to 400. The

average image size is about 3006250. Some examples of each

category are shown in Fig. 2.

Experiment Settings
As shown in [8,19,20], the image classification framework

generally consists of (i) local feature extraction, (ii) feature

Figure 1. Some examples from Caltech101/256 and PASCAL VOC 2007/2011 datasets. a) Caltech101. b) Caltech-256. c) PASCAL VOC 2007/
2011.
doi:10.1371/journal.pone.0103575.g001
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quantization, (iii) spatial pooling and (iv) classifier learning stages

We follow this framework except that we replace stage (ii) with

feature embedding using the proposed LCMK method, as shown

in Fig. 3.

In our experimental setting, images are first resized to keep the

maximum size less than or equal to 300 pixels for the Caltech101/

256 data set, while for PASCAL VOC 2007, the maximum size is

set to 500 pixels. For local feature extraction, dense SIFT features

are extracted on patches with three scales, i.e.

16|16,24|24,32|32, with step-size 4 for Caltech101/256,and

step-size 2 for PASCAL VOC.

In feature embedding, a set of D anchor points is obtained by

applying k-means clustering on a 1e6 sized randomly selected

training set. Following [8], we set D~4096 for the Caltech101/

256 dataset, and D~24,576 for PASCAL VOC. The embedding

matrix B is learned off-line on the training set.

To incorporate spatial layout information, the linear version of

spatial pyramid matching kernel [13,15] is used, which adopts

three levels of 1|1,2|2 and 3|1 spatial divisions to introduce

the rough spatial correspondence. The max-pooling operator is

applied on embedded features belonging to each spatial division.

The image is finally represented as the concatenated vector of each

spatial division.

In classifier learning, the libsvm toolbox [49] is used to train the

classifier for image classification. For the Caltech101/256 dataset,

to keep consistency with the existing methods, we randomly split

the image dataset into 5 pairs of training/test subset and report the

mean classification accuracy.

Experimental results
Experiment results on 15-scenes dataset. For the 15-

Scenes dataset, 100 images per category are randomly selected as

the training set, with the remainder selected as the test set.

Furthermore, the training images are repeated with left-to-right

mirroring to increase the size of the training set.

We learn the embedding matrix based on the 8192 anchor

points trained on the randomly selected SIFT features. The

performance is slightly better than the one learned with 4096

anchor points, which has performance: mAP(stdv) = 86.260.2%.

The mean average precision (mAP) of 5 rounds of classification

result is shown in Table 2. The classification accuracy of each

category is shown in Fig. 2.

We can see that, by learning the embedding with our proposed

LCMK method, the mAP result has been significantly improved,

compared to LLC [13] and sparse coding [15]. The reason is

perhaps that sparse coding mainly focuses on representing the

local features with several visual words in the dictionary to reduce

quantization error. LLC methods exploit the manifold structure in

the original feature space, which shows a certain superiority over

the sparse coding. To the best of our knowledge, the highest

current performance for the Scenes-15 dataset using SIFT features

is reported to be mAP(stdv) = 89.7560.5% using the Laplacian

sparse coding method [44]. Laplacian sparse coding considers the

dependence of the sparse codes at the expense of efficiency. A

computationally complex iterative optimization procedure is

needed to construct the visual codebook and feature quantization.

In our proposed LCMK, we learn the embedding function from

the Hilbert space derived from the local kernel matrix, which may

exploit the manifold structure better. The performance of

Macrofeatures [20] and LLC+ [41] is close to our results. In the

Macrofeature method, discriminative training of the codebook is

performed. LLC+ uses a similar idea to the Fisher Vector [18],

which uses an image-dependent codebook derivative to represent

the image, which is a high-dimensional representation.
Experiment results on Caltech 101 and Caltech 256

datasets. In this experiment, we first investigate the perfor-

mance of LCMK for visual object classification on the Caltech101

dataset. Following the standard experimental settings, we train

classifiers on 30 images, and test on no more than 50 images per

category. A set of 4096 anchor points is used to learn the

embedding matrix. We conduct 10 rounds of evaluation, and

report the performance in Table 3.

From this, we can see that our LCMK method outperforms

most of the listed algorithms, including Fisher Vector [18], and

O2P [35]. The Fisher Vector exploits the first- and second-order

statistics of the local features within a spatial region for better

image representation. O2P leverages recent advances in compu-

tational differential geometry, which takes advantage of the

Riemannian structure of the space of the symmetric positive

definite matrices to summarize sets of local features inside regions.

The performance of Fisher Vector and O2P show that appropri-

ately pooling the sets of local features can significantly improve

performance. Our proposed LCMK method could be easily

combined with the Fisher Vector and O2P methods, since feature

embedding is just a front-end processing of the local features. We

leave this as our future work.

Figure 2. Mean accuracy of each category on 15-Scenes dataset.
doi:10.1371/journal.pone.0103575.g002
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Figure 3. Image representation using local coding based spectral embedding.
doi:10.1371/journal.pone.0103575.g003

Table 2. Image classification results using 15-Scenes dataset in terms of mAP and stdv(%).

Method Result

BoV [19] 81.40(0.39)

Sparse Coding [15] 80.3(0.5)

Macrofeature [20] 85.6(0.2)

LLC [13] 81.6(-)

LLC+ [41] 84.21

LCMK 86.3(0.3)

doi:10.1371/journal.pone.0103575.t002

LCMK for Image Classification

PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e103575



To further evaluate the scalability of the proposed LCMK

method, with respect to more image categories and more images,

we perform evaluations on the Caltech256 dataset with similar

experimental settings as those used for Caltech101. We report the

performance over 5 random trials in Table 4, with increasing

training images selected per category. As shown, the performance

of LCMK is consistently superior to the other listed algorithms,

including Sparse Coding [15], LScSPM [44], Super Vector [16],

LLC [13], LLC+ [41], O2P [35], Fisher Vector [18] and HMP

[50].

Experiment results on PASCAL VOC 2007 and 2011

datasets. We evaluate our LCMK approach on the more

challenging PASCAL VOC 2007 and 2011 datasets. For the VOC

2007 evaluation, we simply use the union of original training and

validation divisions as the training set for classifier learning. The

classification accuracy is measured using Average Precision (AP)

based on the precision/recall curve. To maintain consistency with

other reported results, we use the PASCAL toolkit to evaluate our

proposed method. We refer to the detailed experiment results

reported in [8]. That is, we learn feature embedding using 24,576

anchor points from 1e6 SIFT features sampled with step size 2. We

also tried learning feature embedding using 4096 anchor points,

yielding an AP of about 56.1%, worse than the figure we achieve.

A possible explanation is that the latent manifold structure of

visual objects with diverse sizes may not be effectively found by

learning the embedding function from the randomly selected

training features. Increasing the size of anchor points may improve

the performance.

The experimental results are shown in Table 5. We can see that

the proposed LCMK method outperforms LLC [13] as well as the

winner of the PASCAL VOC 2007 [39]. The highest perfor-

mance, with AP = 64.0%, was achieved by the Super Vector

Coding method [16]. However this is achieved by applying several

non-trivial modifications such as using LDA to compute an SVM

kernel, and exploit second-order information as does the Fisher

Vector [8]. Without these modifications, the performance of Super

Vector coding is about AP = 58.2%, which is inferior to ours.

To further validate the efficiency and effectiveness of the

proposed LCMK method, we also conduct the evaluation using

the PASCAL VOC 2011 dataset. We report the experimental

results of our proposed LCMK method with different codebook

sizes, i.e. 4096, 8192,16,384 and 24,576, shown in Table 6. The

best MAP we achieved is about 52.8%, outperforming results

reported in [51] with the same experiment setup.

Conclusion and Future Work

This paper first presented a unified definition of visual matching

for local feature based representation. The existing BoV and

kernel based methods were then reviewed from a visual matching

Table 3. Image classification results using Caltech101 dataset in terms of mAP and stdv(%).

Method Result

BoV [19] 76.95(0.39)

NBNN [10] 73.0(-)

Sparse Coding [15] 73.2(0.5)

LLC [13] 73.4(-)

O2P [35] 79.3(0.5)

Fisher Vector [18] 77.8(0.6)

HMP [50] 76.8(-)

LCMK 80.2(0.4)

doi:10.1371/journal.pone.0103575.t003

Table 4. Image classification results using Caltech256 dataset in terms of mAP and stdv(%).

method/Training Images 15 30 45 60

BoV [38] 28.30 34.10 - -

NBNN [10] - 42.7(-) - -

Sparse Coding [15] 27.73 34.02 37.46 40.14

LScSPM [44] 30.0 35.74 38.54 40.43

Super Vector [16] 36.72 43.77 47.24 50.98

LLC [13] 34.36 41.19 45.31 47.68

LLC+ [41] 35.2(-) 42.8(-) 47.5(-) 51.2(-)

O2P [35]1 - 42.6(0.4) - -

Fisher Vector [18] 38.5(0.2) 47.4(0.1) 52.1(0.4) 54.8(0.4)

HMP [50] 40.5(0.4) 48.0(0.2) 51.9(0.2) 55.2(0.3)

LCMK 43.3(0.3) 51.5(0.2) 54.4(0.5) 57.9(0.4)

doi:10.1371/journal.pone.0103575.t004

LCMK for Image Classification

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e103575



T
a

b
le

5
.

Im
ag

e
cl

as
si

fi
ca

ti
o

n
re

su
lt

s
u

si
n

g
P

A
SC

A
L-

V
O

C
0

7
d

at
as

e
t

in
te

rm
s

o
f

m
A

P
(%

).

m
e

th
o

d
/o

b
je

ct
cl

a
ss

a
e

ro
b

ic
y

c
b

ir
d

b
o

a
t

b
o

tt
b

u
s

ca
r

ca
t

ch
a

ir
co

w

W
in

n
e

r
o

f
V

O
C

0
7

[3
9

]
7

7
.5

6
3

.6
5

6
.1

7
1

.9
3

3
.1

6
0

.6
7

8
.0

5
8

.8
5

3
.5

4
2

.6

LL
C

+
[4

1
]

7
8

.0
7

0
.9

5
5

.3
7

2
.1

3
1

.5
6

9
.2

8
0

.9
6

2
.8

5
5

.3
5

1
.4

LL
C

[1
3

]
7

4
.1

6
4

.9
5

1
.5

6
8

.3
2

7
.2

6
2

.9
7

8
.4

6
1

.4
5

4
.4

4
7

.2

Fi
sh

e
r

V
e

ct
o

r
[1

8
]

7
9

.0
6

7
.4

5
1

.9
7

0
.9

3
0

.8
7

2
.2

7
9

.9
6

1
.4

5
6

.0
4

9
.6

Su
p

e
r

V
e

ct
o

r
[1

6
]

7
9

.4
7

2
.5

5
5

.6
7

3
.8

3
4

.0
7

2
.4

8
3

.4
6

3
.6

5
6

.6
5

2
.8

LC
M

K
7

6
.9

6
6

.1
5

5
.6

7
0

.2
4

0
.6

6
6

.3
7

7
.2

6
2

.2
7

7
.2

4
8

.7

m
e

th
o

d
/o

b
je

ct
cl

a
ss

ta
b

le
d

o
g

h
o

rs
e

m
-b

ik
e

p
e

rs
o

n
p

la
n

t
sh

e
e

p
so

fa
tr

a
in

tv
M

A
P

W
in

n
e

r
o

f
V

O
C

0
7

[3
9

]
7

7
.5

6
3

.6
5

6
.1

7
1

.9
3

3
.1

6
0

.6
7

8
.0

5
8

.8
5

3
.5

4
2

.6
5

9
.4

LL
C

+
[4

1
]

5
7

.0
4

7
.9

8
0

.2
6

9
.6

8
4

.7
3

1
.7

4
6

.1
5

4
.6

8
0

.2
5

4
.3

6
1

.7

LL
C

[1
3

]
5

2
.8

4
4

.6
7

8
.1

6
8

.5
8

3
.7

2
9

.9
5

1
.0

5
5

.5
7

8
.6

5
3

.6
5

9
.3

Fi
sh

e
r

V
e

ct
o

r
[1

8
]

5
8

.4
4

4
.8

7
8

.8
7

0
.8

8
5

.0
3

1
.7

5
1

.0
5

6
.4

8
0

.2
5

7
.5

6
1

.7

Su
p

e
r

V
e

ct
o

r
[1

6
]

6
3

.2
4

9
.5

8
0

.9
7

1
.9

8
5

.1
3

6
.4

4
6

.5
5

9
.8

8
3

.3
5

8
.9

6
4

.0

LC
M

K
5

3
.6

4
5

.4
7

8
.6

6
6

.0
8

3
.9

2
9

.7
4

9
.4

5
6

.3
7

7
.4

5
3

.7
6

0
.2

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

3
5

7
5

.t
0

0
5

T
a

b
le

6
.

Im
ag

e
cl

as
si

fi
ca

ti
o

n
re

su
lt

s
u

si
n

g
P

A
SC

A
L-

V
O

C
2

0
1

1
d

at
as

e
t

in
te

rm
s

o
f

m
A

P
(%

).

co
d

e
b

o
o

k
si

z
e

/o
b

je
ct

cl
a

ss
a

e
ro

b
ic

y
c

b
ir

d
b

o
a

t
b

o
tt

b
u

s
ca

r
ca

t
ch

a
ir

co
w

4
0

9
6

7
5

.9
4

6
.4

4
0

.6
5

0
.0

1
8

.7
7

4
.1

5
2

.2
5

5
.1

4
5

.8
2

1
.9

8
1

9
2

7
7

.8
4

9
.6

4
4

.8
5

3
.8

1
9

.5
7

6
.4

5
5

.0
5

8
.1

4
8

.6
2

6
.6

1
6

3
8

4
7

8
.6

5
1

.3
4

8
.1

5
5

.8
2

2
.6

7
7

.2
5

6
.6

6
1

.4
5

1
.8

2
6

.7

2
4

5
7

6
7

8
.3

5
1

.3
5

0
.4

5
8

.0
2

4
.7

7
7

.9
5

8
.2

6
1

.3
5

2
.1

2
6

.5

co
d

e
b

o
o

k
si

z
e

/o
b

je
ct

cl
a

ss
ta

b
le

d
o

g
h

o
rs

e
m

-b
ik

e
p

e
rs

o
n

p
la

n
t

sh
e

e
p

so
fa

tr
a

in
tv

M
A

P

4
0

9
6

3
9

.1
4

3
.3

4
3

.4
5

8
.2

7
1

.1
2

0
.7

4
4

.4
3

7
.1

6
5

.1
4

7
.3

4
7

.5

8
1

9
2

3
9

.2
4

5
.0

4
3

.7
5

8
.1

7
4

.1
1

7
.5

4
5

.0
4

2
.1

6
6

.4
5

3
.6

4
9

.8

1
6

3
8

4
4

2
.2

4
7

.2
4

8
.1

6
0

.8
7

6
.2

1
9

.7
4

5
.8

4
3

.2
6

8
.5

5
5

.3
5

1
.8

2
4

5
7

6
4

3
.0

4
7

.6
4

8
.2

6
0

.4
7

7
.0

2
4

.2
4

6
.8

4
3

.9
7

0
.5

5
5

.8
5

2
.8

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

3
5

7
5

.t
0

0
6

LCMK for Image Classification

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e103575



point of view, showing that local kernels defined over feature pairs

plays an important role.

Since local features such as SIFT and HoG generally follow a

heavy-tailed distribution, general Euclidean based local kernels

may therefore yield poor matching accuracy and have undesirable

side-effects. To address this issue, we proposed a local coding

based matching kernel based method, termed LCMK, to exploit

the manifold structure in the Hilbert space derived from the local

kernel matrix. LCMK further combines advantages of both BoV

and kernel based methods, and a linear computational complexity

can be achieved. LCMK can therefore perform efficient and

effective visual matching on large scale datasets. An evaluation

conducted on image classification tasks using standard data sets

reveals the superiority of the proposed LCMK method. However,

especially for image classification on the more challenging

PASCAL VOC 2007 dataset, there appears to still be potential

to further improve performance, such as by exploiting second

order information, using spectral embedding methods etc.

We anticipate that our future work will include: (i) Conducting

experiments on more challenging large-scale ImageNet datasets to

further validate the generalization capability of the LCMK

method, (ii) To potentially incorporate the spatial pooling explored

in Fisher Vector and O2P methods, which can exploit second

order statistics, and (iii) to apply the proposed visual similarity

measure to image retrieval tasks.
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