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Abstract

Labeled graphs are widely used to model complex data in many domains, so subgraph querying has been attracting more
and more attention from researchers around the world. Unfortunately, subgraph querying is very time consuming since it
involves subgraph isomorphism testing that is known to be an NP-complete problem. In this paper, we propose a novel
coding method for subgraph querying that is based on Laplacian spectrum and the number of walks. Our method follows
the filtering-and-verification framework and works well on graph databases with frequent updates. We also propose novel
two-step filtering conditions that can filter out most false positives and prove that the two-step filtering conditions satisfy
the no-false-negative requirement (no dismissal in answers). Extensive experiments on both real and synthetic graphs show
that, compared with six existing counterpart methods, our method can effectively improve the efficiency of subgraph
querying.
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Introduction

Labeled graphs, which include both vertex- and edge-labeling,

have been widely used to model complicated structures and

schemaless data in many domains such as social network [1,2],

chemistry [3,4], image analysis [5,6], and XML documents [7,8].

This triggers the needs for effective graph pattern discovery, and

the most compelling one is subgraph querying.

The subgraph query problem is to retrieve all the supergraphs

of a given graph from a graph database. It can be defined as

follows: for a large graph database D~fD1, D2, :::, Dng and a

query graph Q, subgraph query is to find all the graphs Di

(i~1,2,:::,mƒn) such that Q is a subgraph of Di. Fig. 1 shows an

example of subgraph query, where the graph database consists of

graphs D1,D2,D3 and D4, and Q is the query graph. Obviously,

only graph D3 contains Q.

However, it is intractable to find all supergraphs of a query

graph from a large graph database, since subgraph query must

conduct subgraph isomorphism testing, which is a NP-complete

problem [9,10]. In order to address this problem, the filtering-and-

verification framework is commonly adopted by most existing

methods. These methods first extract some ‘‘useful’’ graph features

and build indexes for them; then, in the filtering phase, they

traverse the indexes to prune most false positives and generate the

candidate graph set; after that, in the verification phase, they

validate the candidate graphs with subgraph isomorphism testing

and obtain the answer set.

Among the existing subgraph query methods, some of them,

such as GraphGrep [11], gIndex [12], FG-Index [13], Treepi

[14], Tree+delta [15] and SwiftIndex [16], build the inverted

indexes for features that are substructures extracted from graph

databases. The path extracted by GraphGrep is too simple and

leads to low filtering efficiency [12]. Other methods have to re-

mine frequent substructures and re-build indexes from scratch for

the databases with frequent updates, so are quite time consuming

[17].

Closure-tree method [18] uses clustering techniques to build

indexes. It clusters a set of graphs into several groups, and each

group is referred to as a graph closure. The graph closures are

then used as nodes to build an index tree. By traversing the index

tree, this method finds out a disqualified node via the pseudo

subgraph isomorphism testing, and all graphs contained in this

node are pruned. As Closure-tree uses the expensive pseudo

subgraph isomorphism testing to filter out false positives, it costs

too much time in the filtering phase [19,20].

There are subgraph query methods, for example GCoding [17]

and LsGCoding [21], which use graph coding methods to build

indexes. These methods extract high-quality features from graphs,

and map them into numerical space to generate graph codes. For

a specific feature, if its corresponding code in a query graph is

greater than that of a graph Dt, the query graph is not a subgraph

of graph Dt. So, Dt can be filtered as a false positive. According to

this logic, these methods build indexes based on codes to filter out

false positives. Moreover, these methods individually encode each

graph. When the graph database is updated with lots of insertions

and deletions, these methods do not need to re-compute graph

codes and re-build the indexes from scratch. However, the subtree

extracted by GCoding represents partial structure, which degrades

its filtering efficiency; and Laplacian matrix used in LsGCoding

only represents graphs with unlabeled edges, which makes

LsGCoding can only process graphs with unlabeled edges.
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In order to conduct subgraph query on labeled graphs, we

propose a novel Laplacian spectrum and the number of walks

based Graph Coding (LnGCoding) method by extending

LsGCoding method. The extended method LnGCoding can

generate new codes, which include the vertex labels and the labels

of adjacent edges consisting of the labels of edges, Laplacian

spectrum, and the number of walks. These are new features and

not contained in the codes of LsGCoding. Based on the new codes,

a novel index tree and a novel two-step filtering conditions are

proposed in LnGCoding. Since the codes contain more informa-

tion, LnGCoding not only conducts subgraph querying on labeled

graphs, but also effectively filters out most false positives.

Moreover, it works well in the databases with frequent updates.

Extensive experiments on both real and synthetic data show that

our proposed method LnGCoding can improve the efficiency of

subgraph query, especially on dense graphs with labeled edges.

Methods

In this section, we present the novel coding method and its

application in subgraph query. At first, we introduce the

definitions of vertex and graph codes, the properties of graph

features, and the coding method based on these graph features.

Then, we state the index building method based on the novel

graph codes, and provide the filtering conditions generation

method. Finally, based on the indexes and the filtering conditions,

we present the filtering-and-verification framework for subgraph

query. Note that, a labeled graph is abbreviated to a graph in the

rest of this paper.

Definitions of Vertex and Graph Codes
In our method, the vertex and graph codes are based on

Laplacian spectrum and the number of walks. Therefore, we first

give the definitions of adjacency matrix, Laplacian matrix and

spectrum, walk and path. Then, based on these definitions, we

define the vertex and graph codes.

Definition 1 (Adjacency Matrix of Graph). Given a graph G with n

vertices, its adjacency matrix is defined as MG~(m(i,j))n�n, where

m(i,j)~
1, if vertex vi is adjacent tovertex vj ,

0, otherwise:

�

Definition 2 (Laplacian Matrix and Laplacian Spectrum of Graph).

Given a graph G with n vertices, its Laplacian Matrix is defined as

LMG~(l(i,j))n�n, where

l(i,j)~

Deg(vi), if i~j ,

{1, if i=j and vertex vi is adjacent tovertex vj ,

0, otherwise,

8><
>:

and Deg(vi) is the degree of vertex vi.

All eigenvalues of LMG are called graph G’s Laplacian Spectrum.

Definition 3 (Walk and Path). A walk in graph G consists of a pair

(V , E) of sequences, where V is a vertex sequence: v0,v1,:::,vk, and E is an

edge sequence: e0,e1,:::,ek{1. For i~0,1,:::,k{1, each successive pair

vi,viz1 of a vertex is adjacent in G, and edge ei has vi and viz1 as terminal

vertices.

A path is a walk with no repeated edges.

For a path, no edge occurs more than once in the edge

sequence. This is different from a walk. The length w of a walk (or

path) is the number of edges which occur in the walk (or path).

Definition 4 (Vertex Code). Given a graph G and a vertex v[G, the

vertex code vCode of v is a quadruple:

vCode(v,G)~vL(v),Ae(v),Laps(v),Nw(v)w,

where L(v) is a length-lv (lv is a integer) counter string that denotes the vertex

label of v, Ae(v) is a length-le (le is a integer) counter string that denotes the

labels of adjacent edges from v, Laps(v) is the Laplacian spectrum of

neighborhood graph of v, and Nw(v) is a length-lv counter string that denotes

the number of walks of length W (W is an integer) from v. Note that, the

counter string is an array of multi-digit counters, where each element counts the

occurrences of the specified vertices/edges/walks in a graph; And the adjacent

edge labels of v are two-tuples, consisting of the labels of edges and the label of

the terminal vertex that is on the same edge as v.

Fig. 2 shows vCode(v2,Q) of vertex v2[Q, which occurred in

Fig. 1. For the sake of convenience, the first two largest Laplacian

eigenvalues are used to denote the Laplacian spectrum of each

vertex, and the length W of walks is set to 2.

Definition 5 (Graph Code). Given a graph G with n vertices, and that

vertex code of vertex vi is denoted as vCode(vi,G)~vL(vi),
Ae(vi),Laps(vi),Nw(vi)w, for i~0,1,:::,n{1. The graph code

gCode of G is defined as a quadruple:

gCode(G)~vL(G),Ae(G),Lapsseqs(G),Nw(G)w,

where L(G),Ae(G),Lapsseqs(G) and Nw(G) are defined as follows:

1. L(G)½j�~
Pn{1

i~0 L(vi)½j�,j~0,1,2,:::,lv{1;

2. Ae(G)½j�~
Pn{1

i~0 Ae(vi)½j�,j~0,1,2,:::, le{1;

Figure 1. An Example of Subgraph Query. Four labeled graphs (a) Graph D1 , (b) Graph D2, (c) Graph D3 , and (d) Graph D4 compose the
database, and (e) Graph Q is a query graph.
doi:10.1371/journal.pone.0097178.g001
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3. Lapsseqs(G)j = The ranked Laplacian spectrum Laps(vi)½j� of all

vertices with non-ascending order, j~0,1,i~0,1,2,:::,n{1;

4. Nw(G)½j�~
Pn{1

i~0 Nw(vi)½j�,j~0,1,2,:::,lv{1.

Fig. 3 shows the graph code of graph Q. Where L(Q), Ae(Q)
and Nw(Q) are generated by combining L(vi), Ae(vi) and Nw(vi)
codes of all vertices vi (i~0,1,2,3,4) with the element-wise ADD

operation. Here, the element-wise ADD operation of counter

strings C1~vC1½0�,C1½1�,:::,C1½k�w and C2~vC2½0�,
C2½1�,:::,C2½k�w is defined as vC1½0�zC2½0�,C1½1�zC2½1�
,:::,C1½k�zC2½k�w, and C[fL,Ae,Nwg. For Lapsseqs(Q), we

rank all the corresponding eigenvalues Laps(vi)½k� in the non-

ascending order, and the results Lapsseq1 and Lapsseq2 are its

Laplacian spectrum sequences Lapsseqs.

The Properties of Graph Features
In our coding method, the codes consist of the following

features: i) the labels of vertices and adjacent edges, ii) Laplacian

spectrum, and iii) the number of walks. Since these features have

the following properties, we can use them to efficiently and

effectively filter out false positives.

The labels of vertices and adjacent edges. This is the first

graph feature in our proposed method. As we all know, for each

vertex (or edge) of a graph, there exists a corresponding vertex (or

edge) in its supergraph. Based on this, we have the lemma as

follows.

Lemma 1 Let graph G1 be a subgraph of graph G2, for a specific label l,

the number of vertices (or edges) with label l in G1 is not more than the number

of vertices (or edges) with label l in G2.

Applying the converse-negative proposition of Lemma 1 to

vertices and graphs, we have the following corollaries.

Corollary 1 Given two graphs G1 and G2, and the two vertices v[G1

and u[G2 have the same vertex label. If there exists a specific adjacent edge

label l, and the number of adjacent edges with label l of vertex v is more than

the number of adjacent edges with label l of u, then u is not a corresponding

vertex of v.

Corollary 2 Given two graphs G1 and G2, if there exists a specific label

l, and the number of vertices (or adjacent edges) with label l in G1 is more than

the number of vertices (or adjacent edges) with label l in G2, then G1 is not a

subgraph of G2.

Laplacian spectrum. We choose Laplacian spectrum as the

second feature, since there exists a relationship between the

Laplacian spectrum of a graph and the Laplacian spectra of its

subgraphs, and this relationship can be used to efficiently filter out

false positives.

In order to prove there does exist the relationship, we first

introduce Min{Max Theorem [22] as follows.

Theorem 1 (Min{Max Theorem). Given a real symmetric matrix

An|n (n is an integer), and its eigenvalues are n{1ƒ n{2ƒ:::ƒ 0.

Figure 2. vCode(v2,Q). The vertex v2 and graph Q both occurred in Figure 1.
doi:10.1371/journal.pone.0097178.g002

Figure 3. gCode(Q). All of vCode(vi ,Q) (i~0,1,2,3,4) are combined to the gCode(Q).
doi:10.1371/journal.pone.0097178.g003
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min

w1
�!

, w2
�!

,:::,wn{k
���!

[Cn

f max

x!=0, x![Cn, x!\ w1
�!

, w2
�!

,:::,wn{k
���!(

x!�A x!

x!� x!
)g~lk,

and

max

w1
�!

, w2
�!

,:::,wn{k
���!

[Cn

f min

x!=0, x![Cn, x!\ w1
�!

, w2
�!

,:::,wn{k
���!(

x!�A x!

x!� x!
)g~lk,

where wn{k
���! (0 ƒ k ƒ n-1) and x! are n-dimensional vectors, and x!� is

the transposition of x!.

In Algebraic Graph Theory [23], according to the properties of

Laplacian matrices, the Laplacian matrix of a graph is a real

symmetric matrix, and each eigenvalue of a Laplacian matrix is

not less than zero. Thus, the Laplacian matrix of a graph is a real

symmetric positive semidominant matrix. Applying Min-

MaxTheorem to the positive semidominant matrixes, we can

have the following corollary.

Corollary 3 Let An|n and Bn|n be two real symmetric matrices,

and their eigenvalues be ln{1ƒ ln{2ƒ:::ƒ l0 and bn{1ƒ

bn{2ƒ:::ƒb0, respectively. If matrix (B{A) is a positive semidominant

matrix, then for each k[ 0,1,2,:::,n{1 , lkƒbk holds.

Proof. According to Min{Max Theorem, the eigenvalues of B
can be represented as follows:

bk(B)~bk(B{AzA)

~ min

w1
�!

, w2
�!

,:::,wn{k
���!

[Cn
f max

x!=0, x![Cn , x!\ w1
�!

, w2
�!

,:::,wn{k
���!

(
x!�(B{AzA) x!

x!� x!
)g

~ min

w1
�!

, w2
�!

,:::,wn{k
���!

[Cn
f max

x!=0, x![Cn , x!\ w1
�!

, w2
�!

,:::,wn{k
���!

(
x!�(B{A) x!

x!� x!
z

x!�(A) x!

x!� x!
)g

~ck(B{A)zlk(A)

where ck is the k-th eigenvalue of matrix (B{A). As

matrix(B{A) is a positive semidominant matrix, the k is not

less than zero. Thus, we have

bk(B)~ck(B{A)zlk(A)§0zlk(A)~lk(A):

According to Corollary 3, if two real symmetric matrices A and

B satisfy that matrix (B{A) is a real symmetric positive

semidominant matrix, the eigenvalues of B is not less than that

of A. Since the Laplacian matrix of each graph is a real symmetric

positive semidominant matrix, we can apply Corollary 3 to a

graph and its subgraphs, and thus have the following theorem.

Theorem 2 For graph G1 with m vertices and graph G2 with n

(mƒn) vertices, suppose 1) the matrix Am|m is the Laplacian matrix of G1,

and Bn|n is the Laplacian matrix of G2; 2) the eigenvalues of matrix A are

lm{1ƒ lm{2ƒ:::ƒ l0, and the eigenvalues of matrix B are

bn{1ƒbn{2ƒ:::ƒb0. If G1 is a subgraph of G2, then for each

k~0,1,:::,m{1, Laplacian spectra of G1 and G2 satisfy

lk(G1)ƒbk(G2).

Proof. (sketch) Since G1 is a subgraph of G2, we can first generate

a new graph G3 by adding (n{m) vertices to graph G1, and these

vertices occur in G2 but not in G1; and then achieve the n|n

Laplacian matrix A’ of G3 by adding (n{m) elements 000 to the

m|m matrix A. This ensures that G3 is also a subgraph of G2, and

A’ have the same non-zero eigenvalues as A. Meanwhile, we

generate a new graph G4 by removing the edges in G3 from G2.

And Laplacian matrix of G4 can be denoted as matrix (B{A’).
For a given graph, its Laplacian matrix is a real symmetric positive

semidominant matrix. Thus, Laplacian matrices A’, B and

(B{A’) are all real symmetric positive semidominant matrices.

According to Corollary 3, for each k[f0,1,2,:::,n{1g, we have

lk(G3)ƒbk(G2). Furthermore, for each k[f0,1,2,:::,m{1g,
lk(G1)ƒbk(G2) holds.

Applying the converse-negative proposition of Theorem 2 to

Laplacian spectra of graphs, we have a useful corollary as follows.

Corollary 4 Given two graphs G1 with m vertices and G2 with n

vertices (mƒn), Laplacian spectrum of G1 is lm{1ƒ lm{2ƒ:::ƒl0,

and Laplacian spectrum of G2 is bn{1ƒbn{2ƒ:::ƒb0. If there exists an

integer k (0ƒkƒm{1) such that l k(G 1)wb k(G 2), then graph G 1 is not

a subgraph of graph G2.

The number of walks. Paths of a graph are easier to extract

and manipulate than trees and subgraphs, so GraphGrep [11] uses

paths as index features. The indexes built on this kind of features

are usually huge especially when graph databases are large and

diverse, thus this method can be inefficient [12]. However, we find

that the number of walks of length k[N between two terminal

vertices can also preserve the basic information of a graph, and the

walks of a graph are much more easy to extract and manipulate

than paths. Inspired by this, we extract the metrics including the

number of walks with specific length as the feature for graph

coding and further indexing.

Generally speaking, for each walk from vertex vi to vertex vj in a

graph, there must exist a corresponding walk from vi
0 (corre-

sponding to vi) to vj
0 (corresponding to vj ) in its supergraph. Thus,

we have the following lemma.

Lemma 2 Given two graphs G1 and G2, and G1 is a subgraph of G2.

For a vertex vi[G1, there exists a corresponding vertex vi
0 [G2, and v’i

satisfies that the number of walks of length W from vi to all vertices with label

l in graph G1 is not more than the number of walks of length W from vi
0 to all

vertices with label l in graph G2.

Applying the converse-negative proposition of Lemma 2 to

vertices and graphs, we have two useful corollaries as follows.

Corollary 5 Given two graphs G1 and G2, and the vertices v[G1 and

u[G2 have the same vertex label. If there exists a specific vertex label l, and the

vertex label l satisfies that the number of walks of length W from v to all

vertices with label l in graph G1 is more than the number of walks of length W

from u to all vertices with label l in graph G2, then u is not a corresponding

vertex of v.

Corollary 6 Given two graphs G1 and G2, if there exists a specific

vertex label l, and it satisfies that the number of walks of length W from all

vertices to all vertices with label l in graph G1 is more than the number of

LnGCoding
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walks of length W from all vertices to all vertices with label l in graph G2, then

G1 is not a subgraph of G2.

According to the above corollaries, we can use these features to

filter out false positives. In order to speed up the comparisons

between graph features, we map these features into the numerical

space to generate vertex and graph codes. In the following

subsection, we discuss how to generate vertex and graph codes.

The Proposed Coding Method
In this subsection, we present the novel coding method

consisting of three parts: i) L and Ae coding, ii) Laplacian

spectrum coding, and iii) Nw coding.

L and Ae coding. For a vertex v, as stated in former section,

L(v) is a length-lv counter string to denote its vertex label, and Ae(v)

is a length-le counter string to denote its adjacent edge label. For

each distinct vertex (or adjacent edge) label, we use hash function

to set K(§1) out of lv (or le) elements to 1. Then, L(v) is directly

generated from the hash function of vertex label, and the code of

each adjacent edge is directly generated from the hash function of

adjacent edge label. By adding all adjacent edge codes with the

element-wise ADD operation, we can generate Ae(v).

For a graph G, L(G) and Ae(G) are generated by adding L(v) and

Ae(v) of all vertices with the element-wise ADD operation.

In Fig. 4, we use vertex v2 and graph Q as examples to illustrate

the generation process of the L and Ae codes.

Figs. 4(a) and 4(b) are the hash functions of vertex label and

adjacent edge label, respectively. For convenience sake, we denote

distinct vertex (or adjacent edge) label by setting K to be 1.

For vertex v2, L(v2) is the counter string of v2 in the hash

function of vertex label. In order to generate Ae(v2), we first extract

all the adjacent edges of vertex v2: va, Bw, va, Cw and vc,

Cw. Then, we use hash function of adjacent edge label to encode

each adjacent edge. Finally, we add these adjacent edge codes to

generate Ae(v2), as shown in Fig. 4(c).

For graph Q, we combine the L(vi) and Ae(vi) of all vertices vi

(i~0,1,2,3,4) to generate its L(Q) and Ae(Q) codes by performing

the element-wise ADD operation, as shown in Fig. 4(d).

Laplacian spectrum coding. Suppose graph G has n

vertices. For each vertex v, we first generate its Level-N Spanning

Graph, and then choose some Laplacian eigenvalues of Level-N

Spanning Graph to generate its Laplacian spectrum Lap(v). The

Level-N Spanning Graph of a vertex is defined as follows.

Definition 6 (Level-N Spanning Graph). Given a graph G and a

vertex v[G, Level-N Spanning Graph of v, denoted as LNSG(G, N, v),

1. for each vertex v’[G, if the length of walk between v and v’ is not more

than N, vertex v’ is in LNSG(G,N,v);

2. for each edge e[G, if the two terminal vertices of e are both in LNSG(G,

N, v), edge e is in LNSG(G,N,v).

According to the above definition, Level-N Spanning Graph of a

vertex is unique. By ranking the Lap(v) of all the vertices in graph G

in non-ascending order, we obtain Lapsseqs(G).

In order to better understand the Level-N Spanning Graph,

Table 1: Algorithm 1 lists the generation process of LNSG(G, N, v).

In Table 1: Algorithm 1, Lines 1–2 initialize the vertex set and

edge set of LNSG(G, N, v), respectively. Line 3 adds vertex v to the

vertex set of LNSG(G, N, v). Line 4 uses the function SEEK(v, G, N)

to find the other vertices in LNSG(G, N, v). The Function SEEK(v,

G, N) uses the depth-first-search to traverse graph G and finds out all

vertices in LNSG(G, N, v). Lines 5–9 look for all edges of LNSG(G, N,

v). For a edge, if its two terminal vertices are both in the vertex set

of LNSG(G, N, v), we add this edge to the edge set of LNSG(G, N, v).

Fig. 5 depicts the examples of Level-N Spanning Graph in

graphs Q and D3, which both shown in Fig. 1. Fig. 5 (a) shows

some Level-N Spanning Graphs for vertices v0, v1, v2 and v4 in

graph D3. Fig. 5(b) shows some Level-N Spanning Graphs for

vertices v0, v1, v2 and v3 in graph Q. Obviously, Level-N Spanning

Figure 4. L and Ae coding for graph Q. In this figure, (a) is the hash function of vertex label, (b) is the hash function of adjacent edge label, (c) is
the generating process of L and Ae codes for vertex v2, and (d) is the generating process of L and Ae codes for graph Q.
doi:10.1371/journal.pone.0097178.g004
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is a subgraph representing the local structure around v, where v is a center

vertex, and the vertices and edges in LNSG(G, N, v) must satisfy the follows:



Graph of v0, v1, v2 and v3 in Q are the subgraphs of that of v4, v2,

v1 and v0 in D3, respectively.

From Fig. 5, we also find that there exists the relationship of

LNSG between two vertices, which are described by Lemma 3 as

follows.

Lemma 3 Let G1 and G2 be two graphs, and v[G1 and v’[G2 be two

vertices which have the same vertex label, if G1 is a subgraph of G2 and v’ is

the corresponding vertex of v in G2, then Level-N Spanning Graph of vertex

v is a subgraph of the Level-N Spanning Graph of vertex v’.
Proof. According to the subgraph isomorphism relationship, for

each vertex u (u=v) in LNSG(G1, N, v), there exists a

corresponding vertex u’ (u’=v’) in graph G2. For each edge e in

LNSG(G1, N, v), there exists a corresponding edge e’ in graph G2.

According to the definition of Level-N Spanning Graph, there

exists a walk of length w (1ƒwƒN ) between vertices u and v in

LNSG(G1, N, v). For graph G2, there also exists a corresponding

walk of length w between vertices u’ and v’. Thus, vertex u’ is in

LNSG(G2, N, v’). That is, the corresponding vertex of each vertex

in LNSG(G1, N, v) is in LNSG(G2, N, v’). Similarly, all the

corresponding edges of LNSG(G1, N, v) are also in LNSG(G2, N,

v’). Thus, LNSG(G1, N, v) is a subgraph of LNSG(G2, N, v’).
In the proposed method, we extract some Laplacian eigenvalues

of LNSG(G, N, v) to generate Laps(v), and generate Lapsseqs(G) via

ranking the Laps(v) of all the vertices.

In Fig. 6, we use graph Q as example to illustrate the generating

process of Laps(v) and Lapsseqs(G). We first compute Laplacian

spectrum of each vertex v in graph Q, and extract first two largest

Laplacian eigenvalues Eigenvalue1 and Eigenvalue2 to generate

Laps(v). According to non-ascending order, we rank the corre-

sponding eigenvalues Eigenvalue1 and Eigenvalue2 of all vertices to

generate Lapsseqs(Q), which contains two Laplacian spectrum

sequences Lapsseq1 and Lapsseq2. For convenience sake, we choose

first two largest eigenvalues to denote Laps(v), and the level N of

LNSG is set to 2.

Nw coding. A length-lv counter string is used to code Nw(v)

(or Nw(G)), which is the number of walks of length W . It is

generated from the W-th power of graph G’s adjacency matrix. In

Algebraic Graph Theory [23], there exists a lemma with respect to

the number of walks of length W as follows.

Lemma 4 Let MG be the adjacency matrix of graph G, then the number

of walks of length W from the i-th vertex of G to the j-th vertex is (MG
W )ij

that is the entry in row i and column j of the W-th power of MG .

Given graph G and its adjacency matrix MG , if the entry in row

i and column j of MG is 1, there exists a walk of length 1 between

the i-th vertex and the j-th vertex in G. Similarly, the entry in row i

and column j of the W-th power of adjacency matrix (MG
W ) is k if

and only if there exists k(§0) walks of length W between the i-th

vertex and j-th vertex, where the vertices in a walk can be

repetitive. Fig. 7 shows the MQ and MQ
2 of graph Q, respectively.

With the W-th power of adjacency matrix MG
W of graph G, for

each vertex vi[G, we first extract all its walks of length W, and

generate tuple v � ,Label(vj)w by recording the label of the

terminal vertex vj in each walk. For the distinct tuple

v � ,Label(vj)w, we use the hash function of walks to set K

out of lv elements to 1. Then, we map each tuple v � ,Label(vj)w

into the numerical space by using the hash function of walks, and

the result is Nw(v � ,Label(vj)w). Finally, we add

Nw(v � ,Label(vj)w) of all walks to generate Nw(vi) with

element-wise ADD operation. Similarly, we add Nw(vi) of all

vertices to generate Nw(G). Note that, tuple v � ,Label(vj)w is

used to represent all the walks of length W from vertex vi to vertex

vj , regardless the vertices or edges between them are same or not;

And symbol 0 � ’ just represents the other vertices and edges

appeared in a walk.

In Fig. 8, we use vertex v2 and graph Q as examples to illustrate

the generation process of Nw(v2) and Nw(Q).

Fig. 8(a) is the hash function of walks, where we represent the

distinct walk by setting 1 (K~1) out of lv elements to 1, and the

length W is set to 2. For vertex v2, we first extract its four walks of

length 2: three walks v � ,Aw and one walk v � ,Dw according

to MQ
2 in Fig. 7, and generate Nw(v � ,Aw) and Nw(v � ,Dw)

according to the hash function of walks. By adding Nw(v � ,Aw)

and Nw(v � ,Dw) with element-wise ADD operation, we obtain

Nw(v2), as shown in Fig. 8(b). For graph Q, we add Nw(vi) of all

the vertices vi (i~0,1,2,3,4) to get Nw(Q), as shown in Fig. 8(c).

With the help of the above methods, we can extract these graph

features and generate the corresponding codes. By combining L(v),

Ae(v), Laps(v) and Nw(v) of the vertex v in a graph, we can generate

vCode(v, Q), as shown in Fig. 2. By combining L(vi), Ae(vi), Laps(vi)

and Nw(vi) of all the vertices vi in graph Q, we can generate graph

code gCode(Q), as shown in Fig. 3.

Index Building
Based on the coding method, we build a graph index named

LnGCode-Tree, which can improve the filtering efficiency. The

construction method of the LnGCode-Tree is presented below.

LnGCode-Tree is based on the GCode-Tree, which is first

proposed in GCoding [17]. Similar to S-Tree [24] and GCode-

Tree, LnGCode-Tree is also used to handle the signature files, and

can be efficient for reducing the number of pairwise comparisons.

LnGCode-Tree is a balanced tree as well, and each index node in

LnGCode-Tree has at least m (mƒ2) and at most M

((Mz1)=2§m) children. Different from GCode-Tree, we use

the labels of vertices and adjacent edges and the number of walks

Table 1. Algorithm 1 Level-N Spanning Graph Generation.

Input: G is a graph, v is a vertex in G, N is the Level number of LNSG;

Output: LNSG(G,N,v);

1: LNSG V : = �;//The vertex set

2: LNSG E: = �;//The edge set

3: LNSG V : = LNSG V
S
fvg;

4: SEEK(v,G,N);

5: for each edge e [ G do

6: if two terminal vertices of e are in LNSG V then

7: Insert the edge e into LNSG E;

8: end if

9: end for

10: return LNSG(G,N,v);

Function: SEEK(v,G,N)

1: if N~~0 then

2: return;

3: end if

4: for each neighbor vertex u of vertex v do

5: if u does not exist in LNSG V then

6: Insert the vertex u into LNSG V ;

7: SEEK(u,G,N{1);

8: end if

9: end for

doi:10.1371/journal.pone.0097178.t001
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to build LnGCode-Tree, while GCoding just uses the labels of

vertices and adjacent edges to build GCode-Tree.

Fig. 9 is a LnGCode-Tree, it is built for the graphs in Fig. 1.

The building process can be illustrated as follows.

For each graph Di, its L(Di), Ae(Di) and Nw(Di) codes of

gCode(Di) are used to build index tree. For graphs with the same

L, Ae and Nw codes, a leaf node LNode is built. The code of LNode is

consist of the L, Ae and Nw codes of graphs Di (i~1,2,3,4),

and LNode also contains the identities of these graphs. An

intermediate node INode has m children CNode, its code is

generated as follows: for each element j in INode, INo-

de.L[j] = Max(CNodei.L[j]), INode.Ae[j] = Max(CNodei.Ae[j]), and

INode.Nw[j] = Max(CNodei.Nw[j]), where i~1,:::,m.

After the index tree is built, our method generates novel two-

step filtering conditions, and follows the filtering-and-verification

framework to conduct query processing.

Two-step Filtering Conditions
In this subsection, we present the two-step filtering conditions

according to the properties of the graph features, and prove that

these conditions satisfy the no-false-negative requirement.

Filtering condition of vertices. Applying Corollary 1,

Lemma 3, Theorem 2 and Corollary 5 to vertices, we have a

theorem as follows.

Theorem 3 Let G1 and G2 be two graphs, v[G1 and v’[G2 be two

vertices, and vCode(v,G1)~vL(v),Ae(v), Laps(v),Nw(v)w and

vCode(v’,G2)~vL(v’),Ae(v’),Laps(v’),Nw(v’)w be the codes of

vertices v and v’ respectively. If G1 is a subgraph of G2 and v’ is the

Figure 5. Examples of LNSG in graphs D3 and Q. In the example, (a) includes the graph D3 and the LNSG of vertices v0,v1,v2,v4 ; (b) includes the
graph Q and the LNSG of vertices v0,v1,v2,v3 .
doi:10.1371/journal.pone.0097178.g005

Figure 6. Lap(v) and Lapsseqs(G) coding for graph Q. The Lapsseqs of graph Q is generated by ranking the Laps of all vertices vi (i~0,1,2,3,4).
doi:10.1371/journal.pone.0097178.g006
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corresponding vertex of v, then vCode(v,G1) and vCode(v’,G2) satisfy the

following conditions:

1. L(v’)½i�~L(v)½i�, i~0,1,2,:::,lv{1;

2. Ae(v’)½i�§Ae(v)½i�, i~0,1,2,:::,le{1;

3. Laps(v’)½i�§Laps(v)½i�, i~0,1;

4. Nw(v’)½i�§Nw(v)½i�, i~0,1,2,:::,lv{1.

Proof. Since G1 is a subgraph of G2, and v’ is the corresponding

vertex of v, thus the labels of v’ and v are same and their L codes

are identical as well. That is, their L codes satisfy condition 1).

According to Corollary 1, for each edge label l, the number of

adjacent edges with label l of v’ is not less than that of v, thus their

Ae codes satisfy condition 2). According to Lemma 3 and

Theorem 2, LNSG(G1, N, v) is a subgraph of LNSG(G2, N, v’),
and the Laplacian spectra of LNSG(G1, N, v) and LNSG(G2, N, v’)
satisfy condition 3). According to Corollary 5, for each vertex label

l, the number of walks of length W from v to all the vertices with

label l in G1 is not more than the number of walks of length W

from v’ to all the vertices with label l in G2, thus their Nw codes

satisfy condition 4). Therefore, Theorem 3 is correct.

Theorem 3 shows the relationship between the codes of a vertex

and its corresponding vertex. Applying the converse-negative

proposition of Theorem 3 to vertices, we have the following first

filtering condition.

Filtering condition 1 (Filtering Condition of Vertices). Let G1 and

G2 be two graphs, and vCode(v,G1)~vL(v), Ae(v),Laps(v),Nw(v)w
be the code of vertex v[G1, if there does not exist a vertex v’[G2, and its code

vCode(v’,G2)~vL(v’),Ae(v’),Laps(v’),Nw(v’)w satisfies the follow-

ing conditions:

1. L(v’)½i�~L(v)½i�, i~0,1,2,:::,lv{1;

2. Ae(v’)½i�§Ae(v)½i�, i~0,1,2,:::,le{1;

3. Laps(v’)½i�§Laps(v)½i�, i~0,1;

4. Nw(v’)½i�§Nw(v)½i�, i~0,1,2,:::,lv{1.

then G1 is not a subgraph of G2.

Lemma 5 Filtering Condition of Vertices satisfies no-false-negative

requirement for subgraph query problem.

Proof. (Proof by contradiction) We assume the Filtering Condition of

Vertices does not satisfy the no-false-negative requirement. Let G2

be a graph and G1 be its subgraph, and Filtering Condition of Vertices

do not satisfy the no-false-negative requirement if and only if G2

can be pruned by Filtering Condition of Vertices. That is, for a specific

vertex v[G1, there does not exist a vertex v’[G2, and the vCodes of

v and v’ satisfy the conditions 1), 2), 3) and 4) in Filtering Condition of

Vertices. According to Theorem 3, for each vertex v[G1, there must

exists a corresponding vertex v’[G2, and the vCodes of v’ and v

satisfy the conditions 1), 2), 3) and 4) in Filtering Condition of Vertices.

Thus, graph G2 cannot be pruned by Filtering Condition of Vertices.

This contradicts the assumption. Therefore, Lemma 5 is correct.

Filtering conditions of graphs. Applying Corollary 2,

Lemma 3, Theorem 2 and Corollary 6 to graphs, we have

another theorem as follows.

Theorem 4 Let m and n (mƒn) be the numbers of vertices and

gCode(G1)~vL(G1),Ae(G1),Lapsseqs(G1), Nw(G1)w and

gCode(G2)~vL(G2),Ae(G2),Lapsseqs(G2),Nw(G2)w be the codes

Figure 7. MQ and MQ
2. For the graph Q, (a) is the adjacency matrix of graph Q; (b) is the square of the adjacency matrix of Q.

doi:10.1371/journal.pone.0097178.g007

Figure 8. Nw Coding. For the graph Q, (a) is the hash function of walks; (b) is the generating process of Nw code for vertex v2 ; (c) is the generating
process of Nw code for graph Q.
doi:10.1371/journal.pone.0097178.g008
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of graphs G1 and G2 respectively, if G1 is a subgraph of G2, then their graph

codes gCode(G1) and gCode(G2) satisfy the following conditions:

1. L(G1)½i�ƒL(G2)½i�, i~0,1,2,:::,lv{1;

2. Ae(G1)½i�ƒAe(G2)½i�, i~0,1,2,:::,le{1;

3. Lapsseqs(G1)k½i�ƒLapsseqs(G2)k½i�, i~0,1 a n d

k~0,1,:::,m{1;

4. Nw(G1)½i�ƒNw(G2)½i�, i~2,:::,lv{1.

Proof. (sketch) The conditions 1), 2) and 4) can be directly

derived from Corollary 2 and Corollary 6. Condition 3) is proved

as follows. Since Lapsseqs(G1)k½i� is a sorted list in non-ascending

order, there exist kz1 vertices vj (j~0,1,2,:::,k) in G1, and the

Laplacian eigenvalue lj ½i�§Lapsseqs(G1)k½i�. According to The-

orem 2, for each vertex vj (j~0,1,2,:::,k) in G1, there exists a

corresponding vertex vj
0 in G2, and the Laplacian eigenvalues

lj
0½i�§lj ½i� (j~0,1,2,:::,k). That is, Lapsseqs(G1)k½i�ƒ

Lapsseqs(G2)k½i� (i~0,1). Thus the condition (3) is correct.

Applying the converse-negative proposition of Theorem 4 to

graphs, we have the second filtering condition.

Filtering condition 2 (Filtering Condition of Graphs). Let m and n

(mƒn) be the numbers of vertices and gCode(G1)~vL(G1),
Ae(G1), Lapsseqs(G1),Nw(G1)w and gCode(G2)~vL(G2),
Ae(G2),Lapsseqs(G2), Nw(G2)w be the codes of graphs G1 and G2

respectively, if gCode(G1) and gCode(G2) do not satisfy the following

conditions:

1. L(G1)½i�ƒL(G2)½i�, i~0,1,2,:::,lv{1;

2. Ae(G1)½i�ƒAe(G2)½i�, i~0,1,2,:::,le{1;

3. Lapsseqs(G1)k½i�ƒLapsseqs(G2)k½i�, i~0,1 a n d

k~0,1,:::,m{1;

4. Nw(G1)½i�ƒNw(G2)½i�, i~2,:::,lv{1.

then G1 is not a subgraph of G2.

Lemma 6 Filtering Condition of Graphs satisfies the no-false-negative

requirement for subgraph query problem.

Proof. Similar to Lemma 5, this lemma can be proved by

contradiction according to Theorem 4.

Filtering and Verification
Based on the index and filtering conditions, we follow the

filtering-and-verification framework to query subgraphs.

Firstly, we use two-step filtering conditions to filter out false

positives. In the first step, we traverse the LnGCode-Tree of graph

database with Filtering Condition of Graphs. Specifically, the graph

code gCode(Q) of query graph Q is compared with the

intermediate node INodek. If there exists an element i, and it

satisfies one of these conditions: i) gCode(Q):L½i�wINodek:L½i�; ii)

gCode(Q):Ae½i�wINodek:Ae½i�; or iii) gCode(Q):Nw½i�w
INodek:Nw½i�, then the children of INodek are pruned; otherwise,

the graph code gCode(Q) is compared with each child of INodek.

For the leaf node LNodek, if there exists an element i, and it

satisfies one of these conditions: i) gCode(Q):L½i�wLNodek:L½i�;
ii) gCode(Q):Ae½i�wLNodek:Ae½i�; or iii) gCode(Q):Nw½i�w
LNodek:Nw½i�, then the graphs contained in LNodek can be

pruned as false positives; otherwise, the graphs contained in

LNodek are added to candidate graphs. After traversing

LnGCode-Tree, LnGCoding filters out some false positives, so

the graph database is reduced. Then we compare the Lapsseqs of

the query graph with those of the reduced graph database, since

LnGCode-Tree only includes L and Ae, Nw codes. Through this

step, we obtain the primary candidate graph set for the query

graph.

This step can be illustrated by the graphs in Fig. 1 and the

corresponding LnGCode-Tree in Fig. 9. When traversing INode2,

we find that gCode(Q):Ae½0�~1wINode2:Ae½0�~0, thus graphs

D1 and D2 are pruned. When traversing LNode4, we find that

gCode(Q):Ae½2�~1wLNode4:Ae½2�~0, so graph D4 is pruned.

Then, by comparing the Lapsseqs of query graph Q and graph D3,

we find D3 is a candidate of Q.

In the second step, we use Filtering Condition of Vertices to filter out

more false positives. Specifically, we compare each vertex code of

the query graph with all the vertex codes of each graph in the

primary candidate graph set until all the candidate vertices of this

vertex have been found. By now, the candidate graph set and the

candidate vertex set are generated.

In Fig. 10, we use graph Q as query graph and D3 as the

primary candidate graph set to illustrate the second step filtering

process.

The vertex codes of all vertices in graphs D3 and Q are shown in

Fig. 10(a). After filtering with Filtering Condition of Vertices, we

generate the candidate vertex set of each vertex in query graph Q,

as shown in Fig. 10(b). For each vertex in Q, there exist the

corresponding candidate vertices in D3. Thus, D3 is a candidate

graph of Q.

After the filtering is finished, in the verification phase, we use

the state-of-the-art subgraph isomorphism algorithm VF2 [25,26]

to validate each candidate graph, and obtain the supergraph set

for a query graph.

Figure 9. An example of LnGCode-Tree.
doi:10.1371/journal.pone.0097178.g009
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Experimental Results and Discussion

In this section, after introducing the data source, the benchmark

methods and parameter setting, and the evaluation criteria, we

report the experimental results on efficiency comparison of the

different methods, and test the scalability of our method.

Data Source
In this study, both real and synthetic graph databases are used.

Real graph database. The AIDS antiviral screen database

contains 43,905 classified chemical molecules, and is publicly

available. Many researchers such as Yan et al. [12], Shang et al.

[16], Zou et al. [17], and He and Singh [18] used one of its subset

to test their methods, we chose it as benchmark data as well.

The subset consists of 10,000 graphs as default database. On

average, each graph has 25.4 vertices and 27.3 edges, which

means that most of graphs in this real graph database are sparse

graphs. Six query graph sets Q4, Q8, Q12, Q16, Q20 and Q24 are

used to validate the efficiency of subgraph querying methods. Each

query graph set Qi (i~4,8,12,16,20,24) consists of 1,000 query

graphs with i edges.

Synthetic graph database. GraphGen [27] is a synthetic

graph generator. In order to test the performance of existing

methods on dense graphs, Han et al. [19,20] used it to generate

the synthetic graph database Synthetic.10K.E30.D5.L50. The

cardinality of the synthetic database is 10,000, the average size of

graphs is 30, the density for each graph is 0.5, and the number of

vertex/edge labels is 50.

Benchmark Methods and Parameter Setting
Benchmark methods. The representative methods gIndex

[12], FG-Index [13], Tree+delta [15], SwiftIndex [16], GCoding

[17], and Closure-tree [18] are selected to be compared with our

method. Since LsGCoding [21] aims at coding graphs with

unlabeled edge, and optimizes the subgraph isomorphism

algorithm according to the properties of graphs with unlabeled

edge, thus in our experiments on graph databases with labeled

edges, we do not compare LsGCoding with our method.

All these methods are implemented on the iGraph framework

[19,20], this enables fair performance comparisons for different

methods.

Parameter setting. Our proposed method has three param-

eters: the level of LNSG, the number of first largest Laplacian

eigenvalues, and the length of walks. Fig. 11 shows the impact of

these parameters on the real graph database.

Fig. 11(a) shows the impact of the level of LNSG on the

candidate set size. It indicates that when we choose more levels of

LNSG, the candidate set size will become smaller. However, the

more levels of LNSG we choose, the more time will be consumed

in computing Laplacian spectrum. Moreover, choosing 3 or more

levels cannot lead to significant reduction in the candidate set size.

Therefore, the level N of LNSG is set to 2.

Fig. 11(b) shows the impact of Laplacian eigenvalues on the

candidate set size. We observe that choosing more Laplacian

eigenvalues can reduce the size of the candidate graph set, but will

result in the larger graph code database and more code

comparison time. At the same time, choosing 4 or more Laplacian

eigenvalues cannot lead to significant reduction in the candidates

set size. Therefore, we choose the first three largest eigenvalues in

our method.

Fig. 11(c) shows the impact of the length of walks on the

candidate set size. From it we know that longer length of walks will

result in more computation time of matrix MW , and choosing 3 or

greater length cannot lead to significant reduction in the candidate

set size. Thus we set the length W to 2.

As recommended in [17] and [28], the length of L, Ae and Nw

codes are set to 30 (i.e. lv~le~30).

For methods gIndex, FG-Index, Tree+delta, SwiftIndex,

GCoding and Closure-tree, the recommended parameter values

are used. That is, for all substructures based index methods, the

support threshold is set to 10%, and the maximum feature size

maxL is set to 10. For gIndex and SwiftIndex, cmin is set to 2. For

FG-Index, d is set to 0.1. For gIndex, the same size-increasing

function as in [12] is followed. For GCoding, the level N of LNPT

is set to 2 and the number of eigenvalues to 2.

Evaluation Criteria
A subgraph query algorithm usually consists of two processes: i)

coding and indexing, and ii) subgraph querying. In this section, we

briefly introduce some criteria metrics used to evaluate the

efficiency of these two parts.

Figure 10. A Filtering Example. For the labeled graphs D3 and Q, (a) lists the vCodes of all vertices in D3 and Q; (b) lists the candidate vertices set
for each vertex in Q.
doi:10.1371/journal.pone.0097178.g010
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Criteria for coding and indexing. The coding and indexing

time and the index size for both graph codes and the index tree are

used in this process.

a. Coding and Index Time. The coding and indexing time is the

run time used to encode both graphs and their vertices and

build the index tree. A less coding and indexing time means

higher performance in this process.

b. Index Size. The index size is the size of space used to store

both the graph codes and the index tree. In the filtering phase,

much time is spent on accessing a larger index, so it partly

impacts the filtering efficiency.

Criteria for subgraph querying. The candidate set size, the

filtering time, the verification time and the response time are used

in this process.

a. Candidate Set Size. The candidate set size is the number of

candidate graphs for each query graph. For each subgraph

query algorithm, a smaller candidate set size implies higher

filtering efficiency.

b. Filtering Time. For each subgraph query method, the

Filtering time is the run time to traverse the index to filter

out false positives and generate the candidate set. A less

filtering time implies higher filtering efficiency.

c. Verification Time. For each subgraph query method, the

verification time is the run time to verify each candidate and

generate the result set. A less verification time implies higher

verification efficiency.

d. Response Time. For each subgraph query method, the

response time is defined as the sum of the filtering time and

the verification time. A less response time means the higher of

querying efficiency.

Our experiments evaluate the efficiency of different subgraph

query methods. For each subgraph query method, the run time is

the most important criterion in each phase. Thus, in the first

phase, the coding and index time is the primary criterion; and in

the second phase, the response time is the primary criterion.

Performance on Real Graph Database
Performance of coding and indexing. Fig. 12 shows the

performance of the seven methods on the real graphs in the coding

and indexing process.

Coding and Indexing Time. Fig. 12(a) shows the coding and

indexing time of all the seven methods on the real graph database.

From it we observe that, with the increasing of database size from

2 K to 10 K, the coding and indexing time of each methods is

increasing.

Compared with Closure-tree, since LnGCoding must compute

the expensive Laplacian spectrum, thus the coding and indexing

time in LnGCoding is more than that of Closure-tree.

In the coding based index methods, LnGCoding computes not

only the Laplacian spectrum but also the number of walks. Thus,

the coding and indexing time in LnGCoding is the larger than that

of GCoding.

For the substructure based index methods, they extract graph

features via expensive frequent subgraph or subtree mining. Thus,

their coding and indexing time is greater than that of LnGCoding.

In a word, the coding and indexing time of our method is much

less than that of the substructure based index methods, and is

comparable with those of GCoding and Closure-Tree.

Index Size. Fig. 12(b) shows the index sizes of the seven methods

on the real graph database. From it we know that, when the

database size is increasing from 2 K to 10 K, the index size of

each method is also increasing.

The index size of Closure-tree is more than that of LnGCoding,

since the coding based index methods both map the information of

graph features into the numerical spaces, which can save the store

space.

The index size of LnGCoding is more than that of GCoding,

since the code in LnGCoding consists three parts: the labels of

vertices and adjacent edges, the Laplacian spectrum, and the

number of walks; while the code in GCoding contains two parts:

the labels of vertices and adjacent edges, and the graph spectrum.

Since FG-Index generates all frequent subgraphs and all

infrequent edges for completeness, its index size is greater than

that of LnGCoding. For the other substructure based index

methods, their index sizes are less than that of LnGCoding,

because the sizes of mined features or the numbers of mined

features are small [19].

Performance of querying. Fig. 13 shows the performance of

the seven methods on the real graphs in querying process.

Candidate Set Size. Fig. 13(a) shows that, when query graph set is

varying from Q24 to Q4, the candidate set size of each method is

increasing. This is because the answer set is increasing. When

query size is larger, such as Q24 and Q20, the candidate set sizes of

the clustering based and coding based index methods are less than

those of the substructure based index methods; while when the

query size is smaller, such as Q8 and Q4, the candidate set sizes of

the clustering based and coding based index methods are greater

than those of the most substructure based index methods. The

reason is that for these substructure based index methods, more

Figure 11. Impacts of Parameters on Candidate Set Size. (a) Level of LNSG; (b) Laplacian eigenvalues; (c) Length of Walk.
doi:10.1371/journal.pone.0097178.g011
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Figure 12. Performance of Coding and Indexing on Real Data. (a) Coding and Indexing Time; (b) Index Size.
doi:10.1371/journal.pone.0097178.g012

Figure 13. Performance of Querying on Real Data. (a) Candidate Set Size; (b) Filtering Time; (c) Verification Time; (d) Responde Time.
doi:10.1371/journal.pone.0097178.g013
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features are mined on the smaller sized graphs than on the larger

sized graphs.

Closure-tree prunes more false positives than that of LnGCod-

ing, since it conducts the pseudo subgraph isomorphism testing,

which is similar to the exact subgraph isomorphism algorithm.

Different from the graph spectrum in GCoding, LnGCoding

uses Laplacian spectrum and the number of walks as graph

features, thus the candidate set size of LnGCoding is less than that

of GCoding.

For the substructure based index methods, since their mined

index features are less for larger sized query graphs than for

smaller sized query graphs, their candidate set sizes are greater

than those of LnGCoding when the query graph sets are Q24 and

Q20. When the size of the query graph is smaller, such as Q12, Q8

and Q4, the candidate set sizes of gIndex, Tree+delta and

SwiftIndex are less than those of LnGCoding. FG-Index generates

the largest candidate set size, this is because it traverses the index

to find a subset of mined features which is a subgraph of the query

graph. This means it does not find out all subgraphs of a query

graph from its index.

Filtering Time. Fig. 13(b) shows that, when the query graph set is

varying from Q24 to Q4, the filtering time of the clustering based

and coding based index methods is increasing, while the filtering

time of the substructure based index methods is decreasing. The

reason is that for the substructure based index methods, there are

less index features in query graph set Q4 than in Q24, thus there

are less comparisons between the query graph and the index

features in Q4 than in Q24.

From Fig. 13(b) we also know that the filtering time of Closure-

tree is the largest, as it conducts the pseudo subgraph isomorphism

testing that is quite time consuming.

The vertex and graph codes of LnGCoding are more complex

than those of GCoding, and the code comparison of the former is

more expensive than that of the latter. Thus, the filtering time of

LnGCoding is slightly greater than that of GCoding.

For the substructure based index methods, since their index

sizes are less than that of LnGCoding, they traverse the index to

filter out false positives with less time. Thus, the filtering time of

most of them is less than that of LnGCoding.

Verification Time. Fig. 13(c) shows that, when the query graph set

is varying from Q24 to Q4, the verification time of most methods

are increasing.

Under the iGraph framework, Closure-tree employs a java

bytecode analyzer to verify candidates, while LnGCoding uses the-

state-of-art subgraph isomorphism algorithm VF2 [25] to verify

candidates. Although Closure-tree has the smaller candidate set

size than that of LnGCoding, the verification time of Closure-tree

is more than that of LnGCoding.

For the graph coding based index methods, the candidate set

size of LnGCoding is slightly less than that of GCoding, so the

verification time of the former is also slightly less than that of the

latter.

For the substructure based index method FG-Index, its

verification time is less than that of LnGCoding for query graph

set Q4, and is more than those of LnGCoding for other query

graph sets. The reason is that FG-Index employs a verification free

strategy: when the query graph is an indexed feature, it directly

reports the answer set without verification. Since Q4 has most

indexed features for all query graph sets, the verification time of

FG-Index is less than those of the other methods.

The verification time of gIndex is slightly less than those of

LnGCoding for query graph sets Q24 and Q20. The reason lies in

that, the candidate set sizes of gIndex are slightly more than those

of LnGCoding, and the index size of gIndex is much less than that

of LnGCoding, so its cost for finding the candidate graphs is less

than that of LnGCoding. For other query graph sets, the

verification time of gIndex is less than those of LnGCoding, since

the candidate set sizes of gIndex are much less than those of

LnGCoding on these query graph sets.

The verification time of LnGCoding is less than those of Tree+
delta for query graph sets Q24 and Q20, and is greater than those

of Tree+delta for query graph sets Q16, Q12, Q8 and Q4. It is

because the candidate set sizes of the former are much less than

those of the latter for query graph sets Q24 and Q20, and the

candidate set sizes of the former are greater than those of the latter

for query graph sets Q16, Q12, Q8 and Q4.

Due to the sizes of candidate set, the verification time of

LnGCoding is less than those of SwiftIndex for query graph sets

Q24, Q20 and Q16, and is greater than those of SwiftIndex for

query graph sets Q8 and Q4. For query graph set Q12, the

verification time of LnGCoding is slightly more than that of

SwiftIndex, since the candidate set size of SwiftIndex is slightly

more that of LnGCoding for query graph set Q12, and the index

size of SwiftIndex is much less than that of LnGCoding.

Response Time. Fig. 13(d) shows that, when the query graph set is

varying from Q24 to Q4, the response times of most methods are

increasing.

The filtering time and the verification time of Closure-tree both

are the largest, so its response time is the biggest.

Since the filtering time of LnGCoding is much less than that of

GCoding, and its verification time is smaller than or comparable

to that of the latter, the response time of LnGCoding is less than

that of GCoding. This means that LnGCoding performs best on

the real graph database among the clustering based and coding

based index methods.

For the substructure based index method SwiftIndex, its filtering

time is much less than those of LnGCoding on all query graph sets,

so the response time is less than those of the latter as well.

For the query graph set Q24, the filtering time of LnGCoding is

much less than that of gIndex, thus its response time is less than

that of the latter. For other query graph sets, the filtering time and

verification time of LnGCoding both are greater than those of

gIndex, so its response time is greater than those of the latter.

For the query graph sets Q24 and Q20, the filtering time of

LnGCoding is much less than those of Tree+delta, and the

verification time of LnGCoding is much less than those of FG-

Index, thus its response time is less than those of Tree+delta and

FG-Index. For other query graph sets, the filtering time of

LnGCoding are greater than or much greater than those of Tree+
delta and FG-Index, thus its response time is greater than those of

Tree+delta and FG-Index.

According to the experimental results on real data, our method

works well with larger query size. For the small query size, our

method is faster than GCoding and Closure-Tree, but slower than

the substructure based index methods.

In a word, for the real data experiment, the response time of

LnGCoding is not as good as substructure-based methods like

SwiftIndex, but LnGCoding outperforms these substructure-based

methods regarding coding and indexing.

Performance on Synthetic Graphs
Performance of coding and indexing. Fig. 14 shows the

performance of the seven methods on the synthetic graphs in the

coding and indexing process.

Coding and Indexing Time. Fig. 14(a) shows the coding and

indexing time of the seven methods on the synthetic graph

database. From it we know that, with the increase of the database

LnGCoding
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size, the coding and indexing time of each method is also

increasing.

Since LnGCoding must compute the expensive graph spectrum,

thus the coding and indexing time of LnGCoding is greater than

that of Closure-tree.

When computing graph spectrum, GCoding generates Level-N

Path Tree (LNPT ) and LnGCoding generates LNSG. However,

LNPT is built by adding reduplicate vertices, and LNSG is

generated without any reduplicate vertices. Fig. 15 shows the

differences between LNSG and LNPT of vertex v0 in graph D2,

which occurred in Fig. 1.

From Fig. 15 we observe that LNSG(D2, 2, v0) contains 4

vertices, but LNPT(D2, v0, 2) contains 8 vertices. Obviously,

LNPT(D2, v0, 2) contains four reduplicated red vertices: one

vertex v1, one vertex v2 and two vertices v3. Since the

computational complexity of graph spectrum is O(N3) (N is the

number of vertices), GCoding is much more time consuming than

LnGCoding, specially when the graph is dense. In the synthetic

graph database, most graphs are dense. Thus, the coding and

indexing time of LnGCoding is less than that of GCoding.

Meanwhile, we can see that LNPT does not contain the cycles

occurred in the graph, which degrades the filtering efficiency.

For the substructure based index methods, the coding and

indexing time of gIndex is the largest due to it mines much more

features, and the coding and indexing time of Tree+delta and

SwiftIndex is smaller than that of LnGCoding because the mined

features are less.

In a word, the coding and index time of our method is much less

than that of gIndex and GCoding, and is comparable with the

fastest method Tree+delta.

Index Size. Fig. 14(b) shows the index size of the seven methods

on the synthetic graph database. From it we know that, with the

increase of database size, the index size of each method is also

increasing.

Since most of synthetic graphs are dense, LnGCoding must use

more space to store the Laplacian spectrum. Thus, the index size

of LnGCoding is greater than that of Closure-tree.

For the coding based index methods, GCoding generates

LNPT by adding some reduplicate vertices while LnGCoding

generates LNSG without any reduplicate vertices, thus the index

size of LnGCoding is smaller than that of GCoding.

For the substructure based index methods, the mined features of

gIndex are much more than those of others, so its index size is

greater as well. Moreover, the mined index features of these

substructure based index methods are smaller subgraph or

substructures, thus the index size of LnGCoding is bigger than

those of these methods.

Performance of querying. Fig. 16 shows the performance of

the seven methods on the synthetic graphs in querying process.

Candidate Set Size. Fig. 16(a) shows the candidate set sizes of the

seven methods on the synthetic graph database. We observe that,

when the query graph size is varying from Q24 to Q4, the

candidate set size of each method is increasing, this is because the

answer set size of each method is increasing.

Closure-tree conducts the pseudo subgraph isomorphism testing

in the filtering phase, thus its candidate set size is less than that of

LnGCoding.

For the coding based index methods, GCoding and LnGCoding

roughly have the same number of candidates.

For the substructure based index methods, the candidate set

sizes of Tree+delta are less than those of LnGCoding on query

graph sets Q24, Q20 and Q16, since it takes too much time to filter

out false positives on these query graphs. For other query graph

sets, the candidate set sizes of LnGCoding are smaller than those

of Tree+delta. For the other substructure based index methods, as

their index features are not effective for dense graphs, their

candidate set sizes are greater than those of LnGCoding.

Filtering Time. Fig. 16(b) shows the filtering time of the seven

methods on the synthetic graph database.

Since Closure-tree conducts the pseudo subgraph isomorphism

testing to filter out false positives, thus its filtering time is much

greater than that of LnGCoding.

For the coding based index methods, GCoding filters out more

false positives than that of LnGCoding, thus its filtering time is

greater than that of LnGCoding.

For the substructure based index methods, gIndex has the most

mined features, and the sizes of most index features are small. For

the query graph sets Q24, Q20 and Q16, gIndex uses ineffective

features to minimize the number of candidates, thus its filtering

time is greater than those of LnGCoding on these query graph

sets. For other query graph sets, its filtering time is less than those

of LnGCoding.

Figure 14. Performance of Coding and Indexing on Synthetic Data. (a) Coding and Indexing Time; (b) Index Size.
doi:10.1371/journal.pone.0097178.g014
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Figure 15. LNSG and LNPT of v0 [ D2.
doi:10.1371/journal.pone.0097178.g015

Figure 16. Performance of Query Processing on Synthetic Data. (a) Candidate Set Size; (b) Filtering Time; (c) Verification Time; (d) Responde
Time.
doi:10.1371/journal.pone.0097178.g016
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The filtering time of Tree+delta is also greater than that of

LnGCoding except for Q4. This is because that the query graphs

contain many cycles in dense graph database, and Tree+delta

mines too many graph features to its ‘‘delta’’, which is very time

consuming.

The mined features of FG-Index and SwiftIndex are not

effective for dense graph database, they filter out much less false

positives than LnGCoding. Thus, their filtering time are less than

that of LnGCoding for all query graph sets.

Verification Time. Fig. 16(c) shows the verification time of the

seven methods on the synthetic graph database. From it we know

Figure 17. Performance on Graphs with Varying Sizes. (a) Coding and Indexing Time; (b) Index Size; (c) Candidate Set Size; (d) Filtering Time;
(e) Verification Time; (f) Responde Time.
doi:10.1371/journal.pone.0097178.g017

Figure 18. Performance on Graphs with Varying Vertex Labels. (a) Coding and Indexing Time; (b) Index Size; (c) Candidate Set Size; (d)
Filtering Time; (e) Verification Time; (f) Responde Time.
doi:10.1371/journal.pone.0097178.g018
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that, with the decrease of the query graph size, the verification

time of each method is also increasing. This is because the

candidate set size of each method is increasing.

Since Closure-tree follows iGraph’s original implementation

exactly using a java bytecode analyzer, thus its verification time is

greater than that of LnGCoding.

For the coding based index methods, the candidate set size of

GCoding is slightly less than that of LnGCoding, so its verification

time is slightly smaller than that of LnGCoding.

For the substructure based index method Tree+delta, its

candidate set sizes are less than those of LnGCoding for query

graph sets Q24, Q20 and Q16, so its verification time is smaller

than those of LnGCoding on these query graph sets. As for the

other query graph sets, since the candidate set sizes of Tree+delta

are greater than those of LnGCoding, its verification time is also

greater than those of LnGCoding.

For the other substructure based index methods, their candidate

set sizes are much more than those of LnGCoding, thus their

verification time is also greater than those of LnGCoding. Note

that, the verification time of FG-Index is not the least for query

graph set Q4, since there are not many frequent features on query

graph set Q4.

Response Time. Fig. 16(d) shows the response time of the seven

methods on the synthetic graph database.

Since Closure-tree has the more filtering time and verification

time than those of LnGCoding, thus its response time is bigger

than that of LnGCoding.

For the coding based index methods, the filtering time of

LnGCoding is much less than that of GCoding, thus its response

time is less than that of GCoding.

The substructure based index method Tree+delta takes much

more time to filter out false positives, thus its response time is

greater than that of LnGCoding except for Q4.

For the other substructure based index methods, their filtering

time is much less than that of LnGCoding for Q4, thus their

response time is less than that of LnGCoding on query graph set

Q4. As for the other query graph sets, these methods’ verification

time is much greater than those of LnGCoding, thus their response

time is greater than those of LnGCoding. Thus, the response time

of LnGCoding is the least among all methods except for query

graph set Q4, and our method performs best on dense graph

database.

In a word, for the synthetic data with dense graphs, LnGCoding

has the best response time and similar coding and indexing time as

the fastest methods; FG-Index and SwiftIndex are close compet-

itors to LnGCoding regarding both evaluation measures.

From the experiments over both real and synthetic graph data,

we can find that, although none of these methods outperforms

others on all the databases, our proposed method does outperform

competitors when graphs are dense.

Scalability Test
In order to evaluate the scalability of LnGCoding, we conduct

experiments on the synthetic graph data with different sizes and

distinct vertex labels.

The synthetic graph data consists of the ten graph databases

that are generated with a graph generator, which is developed by

Kuramochi and Karypis [29] and also used in [18] and [17], by

varying the cardinality and the vertex labels. Three subsets are

selected as the query graph sets to test the scalability of our

method.

Performance on graphs with varying sizes. In this

experiment, we generated five databases D5K, D10K, D20K,

D30K and D40K by varying the database cardinality. For database

DnK (n~5,10,20,30,40), nK (i.e. n|1000) graphs are included.

The query graph sets are Q10, Q15 and Q20, where each query

graph set Qi consists of 1,000 query graphs with i edges.

Fig. 17 shows the performance of our method on graphs with

varying sizes. From it we observe that, with the increase of

database size, the coding and indexing time and index size are

almost linearly increasing. However, increasing rates of the

candidate set size, the filtering time, the verification time, and

the response time are much smaller except for the query graph set

Q10, since its candidate set size grows much faster than those of

Q15 and Q20. This indicates our method performs well on

databases with different sizes.

Performance on graphs with varying vertex labels. In

this experiment, we also generated five databases D10L, D20L,

D30L, D40L, D50L by varying the vertex label. For database DnL

(n~10,20,30,40,50), the number of vertex labels is n. The query

graph sets are Q10, Q15 and Q20, where each query graph set Qi

consists of 1,000 query graphs with i edges.

Fig. 18 shows performance of our method on graphs with

varying vertex labels. From it we know that, with the increase of

the number of labels, 1) the coding and indexing time and the

index size are decreasing except for the graphs with 10 labels, 2)

the trends of the candidate set size, the filtering time, the

verification time, and the response time are increasing but the

growth rates are small or very small. This means our method

works well on the graphs with varying vertex labels.

Conclusions

In this paper, we propose a novel graph coding method

LnGCoding, which utilizes the combination of Laplacian spec-

trum and the number of walks for subgraph querying over labeled

graphs.

Our method first extracts some new graph features, and then

maps these features into the numerical space to generate the vertex

and graph codes. A novel index is built to improve the filtering

efficiency. We also present novel two-step filtering conditions

taking the properties of graph features into account, and the

correctness is proved.

In order to evaluate the performance, extensive experiments on

both real and synthetic data have been conducted. Experimental

results show that, compared with the other six methods, our

method works very well, especially when graphs are dense.

In the future, we plan using our graph coding method to explore

similarity graph querying and supergraph querying.
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