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Abstract

Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include
Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-
assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but
research on M. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate
spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in
white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical
framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer
prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and
surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion
of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovis identified
that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the
influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle
interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test
positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or
in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial
assessment of potential environmental factors that could be incorporated into additional modeling efforts as more
knowledge of deer herd factors and cattle farm prevalence is documented.
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Introduction

Bovine tuberculosis (bTB) is a bacterial disease (Mycobacterium

bovis) in livestock and wildlife that results in United States

Department of Agriculture-mandated depopulation of cattle herds

costing farmers millions in lost revenue throughout the world

[1,2]. Preliminary efforts by the Michigan Department of

Agriculture-Animal Industry Division (MDA) have created proto-

cols that farmers could follow to reduce potential for M. bovis

infection of cattle in Michigan’s Modified Accredited Zone (MAZ)

[3]. Basic risk-assessment efforts were needed, however, to address

the spatial context of disease epidemiology (i.e., infection

probability if a farm is adjacent to a bTB-infected farm) and

dynamics of primary reservoirs in the MAZ (i.e., white-tailed deer

[Odocoileus virginianus]).

The influence of wildlife activity on transmission of M. bovis

depends on possible hosts and their ability to transmit disease [4–

6]. Direct observation of farms in Michigan, USA documented

that indirect interactions between cattle and white-tailed deer were

dominated by use of pastures and silage storage areas but deer fed

from hay racks or silage troughs on only one occasion [7].

Visitation of farm yards and cattle-use areas by sixteen GPS-

collared white-tailed deer was documented in Michigan’s MAZ

and deer were documented using confined feeding areas, water

tubs, and pastures [8]. Prevalence of M. bovis in deer was as high as

10–12% in some townships but currently can range from 2 to

$5% in some townships due to changes in management

regulation for deer and feeding on some cattle farms [3,9,10].

Reoccurrence of M. bovis in farms depopulated of cattle in

Michigan would suggest an environmental or mammalian host

source of re-infection as several farms have become re-infected

with M. bovis on $2 separate occasions often spanning 3–7 years

between re-infection [3,11]. Under natural shaded conditions on

pastures, survival of M. bovis in cattle feces was documented to

span up to 5 months post-application during winter but only up to

2 months during spring and summer [12]. Effluent plots tested

positive for M. bovis for up to 29, 13, and 35 days post application

for soil, radishes, and lettuce, respectively, in a study in raised
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garden plots (lined plywood boxes) [13]. Although environmental

and anthropogenic variables that influence odds of contracting a

disease have been addressed in North America [3,14], only

recently has the spatial matrices incorporating proximity to

adjacent infected individuals been successfully modeled in disease

epidemiology research with advances in software (i.e., WinBUGS;

[15–17]). Understanding the spatial dynamics of M. bovis will

increase our ability to predict future spread or occurrences and

variables influencing these occurrences across the MAZ in the

northern, lower peninsula of Michigan.

To incorporate spatially explicit data, likelihood of infection

probabilities within a geographically designed grid can be

determined for cattle herds that tested positive for M. bovis and

incorporated into a Bayesian hierarchical framework. Although

on-farm management practices are believed to influence M. bovis

transmission, consensus on the most important farm-level factor

responsible for transmission is absent and varied across studies in

Europe and North America ([11,18,19] but see [3] for a detailed

summary). Spatially explicit data on environments that cattle

farms occupy is often lacking for researchers attempting to

understand the underlying distribution of disease in the landscape

and has not been modeled in this system since discovery of M. bovis

in a free-ranging white-tailed deer in 1975. Our objectives were to

model odds of infection with M. bovis in cattle farms at the herd

level using Bayesian hierarchical analysis by incorporating

prevalence of M. bovis in the deer population, environmental

variables, spatial structure, and unstructured spatial heterogeneity

across the MAZ in Michigan. An understanding of conditions that

sustain survival of M. bovis in the environment would be valuable

to our ability to focus surveillance for the disease and predict

future spread or occurrences outside of the MAZ in Michigan.

Materials and Methods

Study area
We conducted our study in the northern, lower peninsula of

Michigan in the MAZ. The 8,062 km2 study area included the

entirety of Alcona, Alpena, Montmorency, Oscoda, and Presque

Isle counties (Fig. 1). The area encompassed the majority of the

cattle farms where M. bovis has been found in Michigan. Our study

area surrounds Deer Management Unit 452 that has been defined

as the bovine tuberculosis core area by the Michigan Department

of Natural Resources (MDNR) due to the high prevalence of M.

bovis in free-ranging deer and the presence of M. bovis-positive

cattle on farms (Fig. 1; [20,21]). Vegetation categories present in

our study area included: developed that included roads, develop-

ment, and barren land; grass that included pasture/hay fields and

native grasses; agriculture that included crops other than forage;

forest that included upland hardwood stands (Quercus alba, Acer

rubrum, and A. saccharum), aspen stands (Populus tremuloides and P.

grandidentata), hardwood/aspen mixed stands, upland conifer stands

(Pinus glauca, P. banksiana, and P. resinosa), and hardwood/conifer

mixed stands, and swamp that included lowland conifer forests/

swamps (P. glauca, P. mariana, Thuja occidentalis, Abies balsamea. and

Latrix laricinea). Elevations in the area ranged from 150–390 m

above sea level and the mean annual temperature was 6.6uC, the

mean rainfall was 72.5 cm, and there was a mean snowfall of

175 cm [22].

To link the disease status (positive or negative) of each farm in

the sample to deer herd and environmental-level predictors, we

first overlaid a 565 km square grid having a resolution of 25

square kilometers (hereafter referred to as grid cell), which is equal

to a quarter township in size. We selected quarter townships as the

proper resolution given that township would likely be too coarse a

scale and section would be too fine a resolution for model

convergence based on previous research with Bayesian hierarchi-

cal models [17]. There were a total of 368 grid cells covering the

MAZ and we assigned each farm in our study to its appropriate

grid cell.

Observation component
Cattle farm data. Our data included 762 cattle farms of

known infection status (observation component) provided by the

Michigan Department of Agriculture and Rural Development

(MDA) from mandatory testing of cattle on an annual basis. Based

on current knowledge that indirect transmission (i.e., environ-

mental source) of M. bovis to cattle may be important, we used

replicates for each farm that tested positive on $1 occasion over

the 11 year span of our study (58 positive, 704 negative) with

positive farms coded as 1 and negative farms coded as 0. We

included a farm each time it tested positive for M. bovis and this

was deemed warranted because conditions of that farm or host

characteristics in the area were responsible for continued infections

of M. bovis and replicates would weigh environmental character-

istics of farms that tested positive on .1 occasion. Because farms

that tested positive for M. bovis were depopulated of cattle then re-

populated prior to subsequently testing positive, each farm was

considered an independent observation for the purposes of our

study design. Each farm was tested annually for M. bovis but we did

not include additional negatives as replicates because that would

have likely masked the effects of the positives that we were

attempting to model for odds of infection.

We included all cattle farms in this region because we wanted to

determine the environmental drivers of disease that were not

associated with farm practices and remained unaltered when cattle

farms were depopulated or permanently closed (e.g., surrounding

habitats, soil composition). Furthermore, we did not include any

farm-level covariates (e.g., herd size, feeding practices) in our

models because farm mitigation strategies were initiated by the

MDA during our study [3], would be difficult to quantify and

standardize across the study region, and would only be considered

a contamination source (e.g., cattle fed in deer habitat) but would

not influence environmental persistence or survival of M. bovis in

the landscape.

Process component
Host-level variables. The MDNR provided section-level

data on deer prevalence for M. bovis from 1995 to 2009. We

limited our analysis to white-tailed deer prevalence for 2005 to

2009 because deer herd management, ban on baiting deer, and

mitigation of on-farm practices indicated that deer prevalence has

stabilized within the past 5 years thus, more reflective of current

deer prevalence [10,23]. Apparent prevalence of M. bovis in deer

was determined for each grid cell by dividing the total number of

deer testing positive by the total number of deer tested resulting in

percent prevalence that was entered into models. Annual deer

densities were provided by the MDNR from 2005 to 2009 at the

county level for the MAZ based on Sex-Age-Kill reconstruction

technique or additional methods if available [24,25]. We averaged

deer density over the time period to match deer prevalence (2005–

2009) that resulted in a single estimate of deer density per grid cell.

Due to the logistical constraints of estimating deer densities at a

fine scale, such as to the section-level, we used the only available

data to represent deer densities in our study site as deer per square

kilometer. We did not select mean deer prevalence or mean deer

density for the entire span of sampling of cattle farms because we

were interested in modeling the effects of more recent deer

Bayesian Hierarchical Analysis of M. bovis
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prevalence that likely would be influenced by initiation of deer and

on-farm management practices in 1996.

Environmental-level variables. We hypothesized a priori

that M. bovis patterns on farms were structured in part by spatial

heterogeneities in features of the landscape, therefore, we

identified four environmental-level predictors of infection based

on optimal survival characteristics of M. bovis identified in the

literature [3]. Proportion of sand content in the soil was selected

because dry sandy loam soils at the proper pH and moisture

promoted bacteria growth [26,27]. Proportion of the landscape

ponding frequently and proportion of swamp/wetland were

selected because the duration of standing water occurring in

non-wetlands (ponding) and soil characteristics of inundated areas

(wetlands) were conducive to long-term survival of M. bovis [27,28].

Mean soil pH was selected because soil pH from 5.8 to 6.9 was

conducive to culture of M. bovis at the optimum temperature

(37uC) for survival [27,29]. Sand (where ‘‘sand’’ was defined as soil

particles with size .2 mm), landscape ponding frequently, and soil

pH was determined using the Advanced Mode of the Soil Data

Viewer available through the National Resources Conservation

Service of the US Department of Agriculture in ArcMap 9.x

(ArcMap; Environmental Systems Research Institute, Redlands,

CA, USA). Soil Data Viewer provides interactive mapping

software to query the Soil Survey Geographic (SSURGO)

database and descriptive characteristics for each soil type. Sand

was expressed as the percent sand within a soil type polygon (,2

ha resolution) for each soil map unit [30]. Each grid cell was thus

potentially composed of multiple soil type polygons with varying

sand contents. Therefore, we calculated the mean percent sand for

each 25 km2 grid cell using a weighted average based on the area

of the various soil type polygons and their associated sand content.

Similarly, in the Advanced Mode of the Soil Data Viewer, we

identified the proportion of each grid cell that ponded frequently

with frequently defined as ‘‘ponding occurs, on the average, more

than once in 2 years and the chance of ponding is .50% in any

year [30].’’ Similar to sand and ponding frequently, we calculated

Figure 1. Sampling grid (25 km2 cells) that contained all cattle farms tested for bovine tuberculosis within the Modified Accredited
Zone (5 counties in bold) in the upper, lower peninsula of Michigan. Deer Management Unit 452 (dashed polygon) is considered the bovine
tuberculosis core area for surveillance in white-tailed deer (Outset). Cattle farms that tested negative (yellow circles) and positive (black crosses) for
Mycobacterium bovis used in Bayesian Hierarchical models overlayed on percent sand within a portion of the study area in the upper, lower peninsula
of Michigan (Inset).
doi:10.1371/journal.pone.0090925.g001
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the mean soil pH for each 25 km2 grid cell using a weighted

average based on the area of the various pH polygons and their

associated pH value.

We used the National Land Cover Database of 2006 (NLCD)

that was created from Landsat 7 imagery to determine the

proportion of swamp/wetland across the study site (MRLC 2007).

To standardize analyses across the MAZ, we reclassified land

cover from the NLCD into 8 categories used in Kaneene et al.

[11]: hardwood forest, coniferous forest, mixed forest, open areas

and shrubs, wetland/swamp, agricultural use, open water, and

other (industrial, residential). We extracted the proportion of

wetland/swamp from NLCD within each grid cell with all

environmental-level variables, except soil pH, presented as a

percentage in a grid cell in modeling efforts. Skewness of data and

correlation among covariates was assessed but data transforma-

tions and exclusions were not considered necessary prior to

entering into models.

Statistical analysis
We used a Bayesian hierarchical model structure [31,32] with

logistic regression models (described below) to examine how recent

TB prevalence at the deer herd-level and landscape factors

influenced the probability of a farm being infected, while adjusting

for the other covariates and spatial structure in the data [33]. To

adjust for latent spatial effects we included two types of random

effects that captured both the influence of the local neighborhood

(i.e., cells sharing a border or vertex with each 25-km2 grid cell;

CAR) in determining spatial clustering of M. bovis, as well as any

spatially independent influences occurring at the 25-km2 spatial

resolution of our grid (HET). Our models were constructed

hierarchically to accommodate the fact that information from

multiple levels (i.e., fixed-effects and spatial random effects) was

being used to estimate individual-level infection probabilities.

Taking a Bayesian approach, we used Markov Chain Monte Carlo

(MCMC) simulation methods available within the program

WinBUGS [34] to produce the unnormalized joint posterior

density for the parameters of interest across all models examined

based on the product of the data likelihood and the prior densities

for each parameter. We used this approach to estimate the

posterior marginal probability distributions for the parameters

governing the influence of the host- and environmental-level, and

spatial random effects predictors on the probability of infection.

For each model we ran three independent Markov chains with

varying initial values for 350,000 iterations and discarded the first

100,000. We thinned the Markov chains by keeping every

twentieth iteration for inference. To determine if the three

Markov chains used for each model had converged on the same

posterior distribution, we used the statistical program R with the

package boa [35] and employed several graphical and quantitative

diagnostics, including autocorrelation plots, trace plots, and

univariate corrected scale reduction factors for each parameter.

To assess simultaneous convergence of all parameters for the top

models, we calculated the multivariate potential scale reduction

factor [32,36,37]. All inferences were based on the mean of each

parameter’s marginal posterior distribution.

Likelihood functions
The observation component of the data likelihood specifies each

farm’s observed M. bovis infection status as a Bernoulli random

variable with parameter Qij :

Yij jQij*Bernoulli(Qij),

where Yij is the infection status of the ith farm for i = 1, …, n from

the jth grid cell for j = 1, …, m, and Qij represents the probability

of infection. Thus, given the probability of infection we assume

each farm’s infection status is conditionally independent.

The process component of the data likelihood models, via the

logit link function, defined as the probability of infection as a

function of individual, environmental and spatial covariates as well

as random effects that account for spatial variability:

logit(Qij)~mzx
0
ijbzhjzQj , ð1Þ

where m defines the baseline M. bovis infection probability, x
0
ij is the

transpose of a k|1 matrix of covariates for the ith farm from the

jth grid cell, b is a k|1 vector of parameter estimates for these

covariates, hj is a random effect for the jth grid cell capturing extra-

binomial variability over the entire study region at the individual

quarter township scale (HET; i.e., 25 km2), and wj is a random

effect term for the jth grid cell that models the extra-binomial

variability associated with local disease clustering (CAR; i.e., grid

cells closer together will have similar infection probabilities due to

proximity of cattle farms and pastures).

Prior distributions
We assumed non-informative N (0, 100,000) prior distributions

for each of the b parameters, and an improper (flat) prior over the

entire real line for m. For the random effect describing region-wide

heterogeneity (HET), we assumed the following:

hj *
iid

N 0,s2
h

� �
: ð2Þ

To describe the spatial structure, we assumed an intrinsic

Gaussian conditional autoregressive prior with a sum to zero

constraint [31] for the local clustering random effect (CAR):

Qj jQjz *iid N
1

njz

X
iinjz

Qi,
s2

c

njz

 !
, ð3Þ

where njz is the number of grid cells that share a border or vertex

with the jth grid cell. Thus, the random effect of the jth grid cell is

conditional on the values of its njz (usually = 8) neighboring cells.

Adjacency matrices were created with the Adjacency for Win-

BUGS Tool in ArcMap that provides a matrix relating one areal

unit to a collection of neighboring areal units in text files for use in

WinBUGS.

Because of the marginal specification for s2
h and conditional

specification for s2
c of the random effects, we generated prior

distributions for the precisions (i.e.,
1

s2
h

and
1

s2
c

) using simulations

in WinBUGS where we varied the values of the parameters and

determined the parameter values that created an expectation of

,0.5 for the psi metric [38], where psi is as follows:

psi~
sc

sczsh

ð4Þ

.
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These simulations attempted to ensure an equal emphasis on

the priors of the standard deviations of the random effects [31].

Based on our simulation results we defined

1

s2
h

, Gamma(10.368,3.22) and
1

s2
c

, Gamma(1.0,1.0).

Model Selection
To test our original hypothesis that environmental variables

would influence the odds of M. bovis infection, our set of candidate

models for logistic regression consisted of 12 different structures

with strictly additive effects on the logit scale (Table 1). The 12

logistic regression models represented all possible combinations of

deer and environmental variables, as well as inherent regional and

local spatial structure of the data. Viewing these 12 models as

competing hypotheses, we used deviance information criterion

(DIC) [15,33,39] to compare the models’ respective fits to the data

from sampled farms, and then estimated parameters and

examined goodness-of-fit and other metrics for the top models.

For model comparison we used DIC weights [33], which allow for

an intuitive comparison of the evidence in the data for each

candidate model. The weights are considered a measure of the

strength of evidence in the data for ith model being the ‘‘best’’

model of those within the candidate set, and therefore provide a

measure of model selection uncertainty [33,39].

We used parameter estimates from the top model to calculate

odds ratios for the effect of variables on M. bovis infection odds

among farms in that area. Model averaging was not appropriate

because DIC, unlike BIC and AIC, is not based on any assumption

of a ‘‘true’’ model and is primarily concerned with short-term

predictive ability [33]. We treated host-level (deer prevalence, deer

density) and environmental-level predictors (percent sand, soil pH,

proportion of wetland/swamp, and area that ponded frequently)

as a group of variables, such that they were all entered or removed

from the models together (Table 1). To examine the goodness-of-

fit of the top model from our candidate set we conducted a

numerical posterior predictive check [32]. We examined correla-

tion and trace plots, as well as the estimates of the corrected scale

reduction factor for each parameter and multivariate potential

scale reduction factors and determined that that the three chains

for each model had converged (data not shown). For each dataset,

the top models selected via our model selection procedures and

their corresponding estimates were similar regardless of prior

specification (data not shown; [33]).

Results

Out of the 762 cattle farms tested on an annual basis, 704 were

negative while 37, 9, and 1 tested positive for M. bovis on 1, 2, and

3 occasions, respectively. Of our 12 models determined a priori, the

top two models combined to account for over 95% of the summed

weights of all models considered. Models weights of 95% provided

strong assurance that some combination of these 2 models and

their parameters reflected the underlying infection-generating

process far better than other models in the candidate set (Table 1).

Parameters in the top model included deer herd factors and local

landscape features suggesting that these factors increased the odds

of M. bovis infection to cattle in the northern, lower peninsula of

Michigan (Table 2). As documented since initial diagnosis of a

positive white-tailed deer in 1975, deer apparent prevalence

ranged from 0.0% to 5.2% and was the most supported variable in

the top model (odd ratio = 1.004, 95% CI = 1.001 to 1.007;

Table 2). Sand within the vicinity of sampled farms was by far the

most supported environmental variable and ranged from 37% to

79% on farms that test positive whereas sand ranged from 17% to

88% for cattle farms that tested negative for M. bovis (Fig. 1). The

odds of infection for M. bovis increased by about 4% for every 1%

increase in sand in the area (odd ratio = 1.036, 95% CI = 1.01 to

1.07; Table 2).

Our analyses also identified that an unstructured random effect

(HET) dominated over spatial structure (CAR) in influencing the

odds of M.bovis infection (odd ratio = 3.36, 95% CI = 1.69 to

10.91; Table 2). Inclusion of the unstructured random effect in

both our top models would suggest that additional covariates are

driving odds of M. bovis infection and not spatial occurrence of

M. bovis-positive farms in our study area.

Discussion

Our findings support the premise that deer herd-related factors

play an important role in sustaining M. bovis presence in the

northern, lower peninsula of Michigan similar to that found in

previous research [11,40]. Because mitigation measures have been

implemented to reduce deer access to feeding and cattle use areas

[3], we focused our analysis simply on deer density and deer

prevalence in the area without reference to farm practices. Farm

practices have been the primary focus of most efforts to control M.

bovis transmission between reservoirs and hosts [11,18,41,42] but

are difficult to standardize and document for inclusion in modeling

efforts. Bayesian hierarchical models provide the ability to assess

spatially the influence of region-wide cattle farm and host-level

variables while adjusting for additional covariates [31,43]. The

bias that may have been introduced by entering 36% of cattle

farms more than once into our models was deemed warranted to

achieve our objectives of assessing environmental factors that may

lead to continued presence of M. bovis on cattle farms.

Furthermore, we don’t deny that farm-management practices

Table 1. Model selection results for the candidate set of
models investigating the effect of covariates on the
probability of bovine tuberculosis infection from 2005–2010
in Modified Accredited Zone in Michigan, USA using non-
informative N (0, 0.00001) prior distributions for the fixed
effects parameters and diffuse gamma priors for the random
effects with farm-level factors removed.

Model Terms Dbar Dhat pD DIC DDIC Weights

Deer + ------ + HET + Envir 272.9 226.4 46.5 319.4 0.0 0.6386

Deer + ------ + HET + ------ 276.2 231.5 44.7 320.9 1.5 0.3073

------ + ------ + HET + Envir 275.9 227.5 48.4 324.4 4.9 0.0540

Deer + CAR + ------ + ------ 289.0 235.5 53.5 342.4 23.0 0.0000

------ + CAR + ------ + Envir 290.5 231.7 58.8 349.3 29.8 0.0000

Deer + CAR + ------ + Envir 298.1 232.0 66.1 364.2 44.7 0.0000

Deer + CAR + HET + ------ 302.3 224.8 77.5 379.8 60.4 0.0000

------ + CAR + HET + Envir 309.3 226.2 83.1 392.3 72.9 0.0000

Deer + ------ + ------ + Envir 387.9 380.9 7.0 394.9 75.5 0.0000

Deer + ------ + ------ + ------ 394.2 391.2 2.9 397.1 77.6 0.0000

------ + ------ + ------ + Envir 405.5 400.7 4.8 410.3 90.8 0.0000

Deer + CAR + HET + Envir 317.1 222.1 95.0 412.0 92.6 0.0000

‘‘Deer’’ represents deer herd factors: apparent prevalence of deer and deer
density. ‘‘Envir’’ represents the environmental variables: percent sand, percent
ponding frequently, percent swamp/wetland, and mean soil pH in each
sampled farms quarter township grid cell. ‘‘HET’’ represents the random effect
capturing region-wide heterogeneity and ‘‘CAR’’ is the random effect capturing
local clustering.
doi:10.1371/journal.pone.0090925.t001
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are important in M. bovis infection on cattle farms, however, it is

very difficult to accurately represent or measure one of these farm

practices in a standardized format for hundreds of farms to include

in our models. For this reason, we selected objectives that would

look at determining new facet in understanding M. bovis infection

(i.e., environmental variables) as opposed to conducting another

study that suggested a different farm practice was responsible for

bTB infection in cattle farms as documented in previous research

[11,18,41,42].

Although deer densities in the area have been reduced to about

10–15 deer/km2 since 1994 and deer prevalence has remained at

just below 2% overall at the DMU 452-level [10], the role of a

primary host for M. bovis in this region is still influencing

transmission of M. bovis based on our study. Including mean deer

prevalence for the duration of the study (i.e., 1998–2009) in our

models would likely have yielded similar results to our current

modeling effort but the role of the host would still be supported

nonetheless. Due to public pressure about low deer densities and

continued occurrence of cattle positive for M. bovis on an annual

basis, reducing deer densities further is likely not possible.

Relatedly, even with our conservative estimate of prevalence of

M. bovis in deer (i.e., 2005–2009), deer prevalence was in the most

supported model even though the odds ratio would likely have

been greater if we included 1998–2009.

Our study identified environmental variables that were not

possible to assess in previous modeling efforts that can further

assist agencies in their attempts to eradicate M. bovis in Michigan.

Environmental variables have been documented to contribute to

presence or viability of infectious agents of disease in several areas

in North American and Europe [17,44,45] although environmen-

tal sampling has yet to identify M. bovis on cattle farms in this

region [46,47]. Variables to consider should be based on a priori

knowledge of the disease agent studied and mechanisms that may

hinder or promote survival. Survival of M. bovis has been linked to

moist, humid environments that maintain the proper soil type and

pH [48–50]. Our top model indicated that a combination of

landscape variables played an important role in determining

infection probability for M. bovis on farms which was the impetus

for us to select a combination of covariates that were conducive to

moist, humid environments with low sunlight exposure on the

landscape (e.g., wetlands, ponding frequency, soil types). Percent

sand was a significant predictor and increased the odds of M. bovis

infection by 3.6% for every 1% increase in proportion of sandy soil

in the local area (Table 2). Survival of M. bovis has been linked to

soil type, temperature and pH [3,29,48] but research in natural

settings has limited the advancement of knowledge in this area.

The exact composition of sandy soils or functional role of these

soils that make them conducive to the survival of M. bovis likely

requires further research. Sandy soils are defined as having loose

particle sizes (. 2 mm) with structural integrity during desiccation

that may promote survival of M. bovis when associated with

wetlands and areas that routinely have standing water. Moraines

that have steep slopes and sandy, well-drained soils dominated by

northern hardwood forests were linked to infection of white-tailed

with M. bovis [51] but are confounded by the fact that they

characterize preferred deer habitat in years with heavy oak mast

production. Based on prevalence studies on white-tailed deer and

our current study of farms positive for M. bovis, environmental or

landscape-specific characteristics would appear to be a logical

focus of future studies and potential assessment of viable M. bovis

detection in soils or water. Areas that contain these sandy, well-

drained soils in northern hardwood forests likely provide moist,

humid microclimates conducive to survival of M. bovis for extended

periods of time and should be considered for focused surveillance

for M. bovis in deer and cattle as well as the focus of future on-farm

mitigation measures.

Since initial detection of M. bovis in farms over a decade ago,

farms have tested positive on an annual basis. Even after

considerable efforts have been implemented to reduce deer

densities, limiting or preventing aggregation of deer (e.g., ban on

baiting of deer), and limiting deer-cattle interactions through on-

farm mitigation measures, Michigan still does not have M. bovis-

free status. Although modeling efforts are unable to include

movements of cattle between farms and its influence on

movements and spread of M. bovis, repeated positive tests have

occurred on numerous farms since the first farm tested positive in

1998 [28]. Repeated positive tests would suggest that potentially

an environmental source conducive to survival of the bacteria may

be responsible for maintaining M. bovis in the region. Mycobac-

teria have waxy, lipid-rich cell walls that are relatively resistant to

biocides used in decontamination procedures thus complicating

management of the disease.

Unlike previous work in this region, we were able to assess

spatial processes that may be influencing the transmission or

presence of M. bovis using a Bayesian hierarchical modeling

framework [31,43]. We identified that unstructured spatial

heterogeneity (HET) was included in the top two models

explaining infection of M. bovis on farms. If probability of infection

Table 2. Mean parameter estimates, standard deviation (SD), Monte Carlo error (MC error), odds ratios (OR), and 95% credible
intervals for best-fitting model investigating the effect of covariates on the probability of bovine tuberculosis infection from
2005–2010 in Modified Accredited Zone in Michigan, USA.

Parameter Mean SD MC error 2.50% Median 97.5% OR 95% CI

Intercept 23.401 2.886 0.02 29.219 23.317 2.031 0.0333 0.00 to 7.622

Deer density 20.2219 0.1454 0.00 20.515 0.219 0.056 0.8001 0.60 to 1.06

Deer prevalence 0.4147 0.1412 0.00 0.137 0.414 0.697 1.004 1.001 to 1.007

Percent wetland 20.0209 0.0262 0.00 20.074 20.020 0.029 0.9793 0.93 to 1.03

Percent sand 0.0357 0.0152 0.00 0.007 0.035 0.067 1.0363 1.01 to 1.07

Soil pH 0.04212 0.3368 0.00 20.591 0.035 0.732 1.0430 0.55 to 2.08

Percent ponding 0.0240 0.035 0.00 20.043 0.023 0.095 1.0243 0.96 to 1.10

HET 1.213 0.4819 0.00 0.524 1.128 2.39 3.3636 1.69 to 10.91

‘‘HET’’ represents the random effect capturing region-wide.
doi:10.1371/journal.pone.0090925.t002
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was driven by spatial structure or clustering of disease (i.e.,

contiguous grid cells more alike than 2 arbitrary grid cells) at our

site, we would have expected spatial structure (CAR) to be

included in our top models but the opposite occurred [43].

Unstructured spatial heterogeneity would suggest that additional

covariates that we may not have accounted for in our models were

also influencing the disease across our study region. As stated

previously, movement of cattle between farms and additional on-

farm practices is controlled or mitigated to some extent for some

farms but is very difficult to enforce and has been documented to

be the cause of contamination of several cattle farms within and

outside of the MAZ [21]. Our unstructured spatial heterogeneity

could simply be on-farm practices not included in our modeling

effort or additional environmental covariates conducive to survival

or destruction of M. bovis such as slope/aspects conducive to direct

exposure to ultraviolet light.

Although host prevalence in DMU 452 and clustering of cattle

farms were considered important in M. bovis infection in previous

research [11,52], our results suggest that less spatially structured

components in the landscape are influencing continued occur-

rence of M. bovis in cattle on farms in Michigan. Considering the

logistics of managing the host and reservoir through the northern,

lower peninsula of Michigan, management efforts could focus on

environmental and landscape characteristics that are potentially

supporting the continued presence of M. bovis in Michigan.

Landscape characteristics that are conducive to survival of M. bovis

such as habitat inundated with standing water, soil composition,

and prime deer habitat should be the focus of future management

and research. On-farm mitigations should focus efforts in areas at

high risk for continued survival of M. bovis prior to mandating

complete risk mitigation of farms for an entire area such as DMU

452 (1,479 km2) or the 5 county study area (8,062 km2). Focused

surveillance and management of on-farm practices in reservoirs for

disease in domestic livestock would provide a logistically feasible

approach to combating a disease in an endemic area as well as

new areas that the disease has recently been introduced or spread

from the endemic area.

Acknowledgments

We thank the Michigan Department of Natural Resources for deer-related

data used in this manuscript. We thank Daniel J. O’Brien, Michigan

Department of Natural Resources, for a helpful review of an earlier draft of

this manuscript. Any use of trade, firm, or product names is for descriptive

purposes only and does not imply endorsement by the U.S. Government.

Author Contributions

Conceived and designed the experiments: WDW RS MV KCV.

Performed the experiments: WDW RS. Analyzed the data: WDW. Wrote

the paper: WDW RS MV KCV.

References

1. de Lisle GW, Bengis RG, Schmitt SM, O’Brien DJ (2002) Tuberculosis in free-

ranging wildlife: detection, diagnosis and management. Review Science

Technology, OIE 21: 317–334.

2. Kaneene J, Thoen CO (2004) Tuberculosis. Journal of the American Veterinary

Medical Association 224: 685–691.

3. Walter WD, Anderson CW, Smith R, Vanderklok M, Averill JJ (2012) On-farm

mitigation of transmission of tuberculosis from white-tailed deer to cattle:

literature review and recommendations. Veterinary Medicine International

2012: 1–15.

4. Clifton-Hadley RS, Wilesmith JW, Stuart FA (1993) Mycobacterium bovis in the

European badger ( Meles meles ): epidemiological findings in tuberculosis

badgers from a naturally infected population. Epidemiology and Infection 111:

9–19.

5. Griffin JM, Hahesy T, Lynch K, Salman MD, McCarthy J, et al. (1993) The

association of cattle husbandry practices, environmental factors and farmer

characteristics with the occurrence of chronic bovine tuberculosis in dairy herds

in the Republic of Ireland. Preventive Veterinary Medicine 17: 145–160.

6. Corner LAL (2006) The role of wild animal populations in the epidemiology of

tuberculosis in domestic animals: How to assess the risk. Veterinary

Microbiology 112: 303–312.

7. Hill JA (2005) Wildlife-cattle interactions in northern Michigan: implications for

the transmission of bovine tuberculosis Thesis. Logan: Utah State University. 1–

58 p.

8. Berentsen AR, Miller RS, Misiewicz R, Malmberg JL, Dunbar MR (2013)

Characteristics of white-tailed deer visits to cattle farms: implications for disease

transmission at the wildlife-livestock interface. European Journal of Wildlife

Research: In press.

9. O’Brien DJ, Schmitt SM, Fierke JS, Hogle SA, Winterstein SR, et al. (2002)

Epidemiology of Mycobacterium bovis in free-ranging white-tailed deer,

Michigan, USA, 1995-2000. Preventive Veterinary Medicine 54: 47–63.

10. O’Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE (2011) Management of

bovine tuberculosis in Michigan wildlife: Current status and near term prospects.

Veterinary Microbiology 151: 179–187.

11. Kaneene JB, Bruning-Fann CS, Granger LM, Miller R, Porter-Spalding BA

(2002) Environmental and farm management factors associated with tuberculosis

on cattle farms in northeastern Michigan. Journal of the American Veterinary

Medical Association 221: 837–842.

12. Williams RS, Hoy WA (1930) The viability of B. tuberculosis (bovinus) on

pasture land, in stored faeces and in liquid manure. Journal of Hygeine 30: 413–

419.

13. Van Donsel DJ, Larkin EP (1977) Persistence of Mycobacterium bovis BCG in

soil and on vegetables spray-irrigated with sewage effluent and sludge. Journal of

Food Protection 40: 160–163.

14. Carstensen M, DonCarlos MW (2011) Preventing the establishment of a wildlife

disease reservoir: a case study of bovine tuberculosis in wild deer in Minnesota,

USA. Veterinary Medicine International 2011: 1–10.

15. Farnsworth ML, Hoeting JA, Hobbs NT, Miller MW (2006) Linking chronic

wasting disease to mule deer movement scales: a hierarchical bayesian approach.
Ecological Applications 16: 1026–1036.

16. Osnas EE, Heisey DM, Rolley RE, Samuel MD (2009) Spatial and temporal
patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in

Wisconsin. Ecological Applications 19: 1311–1322.

17. Walter WD, Walsh DP, Farnsworth ML, Winkelman DL, Miller MW (2011)

Soil clay content underlies prion infection odds. Nature Communications 2: 1–6.

18. Hutchings MR, Harris S (1997) Effects of farm management practices on cattle
grazing behaviour and the potential for transmission of bovine tuberculosis from

badgers to cattle. The Veterinary Journal 153: 149–162.

19. Mathews F, Lovett L, Rushton S, Macdonald DW (2006) Bovine tuberculosis in

cattle: reduced risk on wildlife-friendly farms. Biology Letters 2: 271–274.

20. O’Brien DJ, Schmitt SM, Berry DE, Fitzgerald SD, Vanneste JR, et al. (2004)
Estimating the true prevalence of Mycobacterium bovis in hunter-harvested

white-tailed deer in Michigan. Journal of Wildlife Diseases 40: 42–52.

21. Okafor CC, Grooms DL, Bruning-Fann CS, Averill JJ, Kaneene JB (2011)

Descriptive epidemiology of bovine tuberculosis in Michigan (1975–2010):
lessons learned. Veterinary Medicine International 2011.

22. Hughey BD (2003) Are there "hot spots" of bovine tuberculosis in the free-

ranging white-tailed deer ( Odocoileus virginianus ) herd of northeastern
Michigan? Thesis. East Lansing: Michigan State University. 1–86 p.

23. Okafor CC, Grooms DL, Bruning-Fann CS, Averill JJ, Kaneene JB (2011)
Descriptive epidemiology of bovine tuberculosis in Michigan(1975-2010): lessons

learned. Veterinary Medicine International 2011: 874924.

24. Eberhardt LL (1960) Estimation of vital characteristics of Michigan deer herds.
East Lansing: Department of Conservation.

25. Creed WA, Haberland F, Kohn BE, McCaffery KR (1984) Harvest
management: the Wisconsin experience. In: Halls LK, editor. White-tailed

deer ecology and management. Harrisburg.

26. Phillips CJC, Foster CRW, Morris PA, Teverson R (2002) Genetic and
management factors that influence the susceptibility of cattle to Mycobacterium

bovis infection. Animal Health Research Reviews 3: 3–13.

27. Mitscherlich E, Marth EH (1984) Microbial survival in the environment:

bacteria and rickettsiae important in human and animal health. Berlin: Springer-
Verlag. 1–802 p.

28. Miller R, Kaneene JB (2006) Evaluation of historical factors influencing the

occurrence and distribution of Mycobacterium bovis infection among wildlife in
Michigan. American Journal of Veterinary Research 67: 604–615.

29. Phillips CJC, Foster CRW, Morris PA, Teverson R (2003) The transmission of
Mycobacterium bovis infection to cattle. Research in Veterinary Science 74: 1–

15.

30. USDA NRCS (2007) Soil Data Viewer 5.2 User Guide. United States
Department of Agriculture, Natural Resources Conservation Science.

31. Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis
for spatial data. New York: Chapman and Hall/CRC. 1–448 p.

32. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. New
York: Chapman and Hall/CRC. 1–696 p.

Bayesian Hierarchical Analysis of M. bovis

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e90925



33. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian

measures of model complexity and fit. Journal of the Royal Statistical
SocietySeries B (Statistical Methodology) 64: 583–639.

34. Spiegelhalter D, Thomas A, Best N, Lunn D (2003) WinBUGS Version 1.4 user

manual. Cambridge: MRC Biostatistics Unit. 1–60 p.
35. Smith BJ (2007) boa: an R package for MCMC output convergence assessment

and posterior inference. Journal of Statistical Software 21: 1–37.
36. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple

sequences. Statistical Science 7: 457–472.

37. Brooks SP, Gelman A (1998) General methods for monitoring convergence of
iterative simulations. Journal of Computational and Graphical Statistics 7: 434–

455.
38. Eberly LE, Carlin BP (2000) Identifiability and convergence issues for Markov

chain Monte Carlo fitting of spatial models. Statistics in Medicine 19: 2279–
2294.

39. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a

practical information-theoretic approach. New York: Springer-Verlag. 1–488 p.
40. Miller R, Kaneene JB, Fitzgerald SD, Schmitt SM (2003) Evaluation of the

influence of supplemental feeding of white-tailed deer ( Odocoileus virginianus )
on the prevalence of bovine tuberculosis in the Michigan wild deer population.

Journal of Wildlife Diseases 39: 84–95.

41. Knust BM, Wolf PC, Wells SJ (2011) Characterization of the risk of deer-cattle
interactions in Minnesota by use of an on-farm environmental assessment tool.

American Journal of Veterinary Research 72: 924–931.
42. Brook RK (2010) Incorporating farmer observations in efforts to manage bovine

tuberculosis using barrier fencing at the wildlife-livestock interface. Preventive
Veterinary Medicine 94: 301–305.

43. Besag J, York J, Mollie A (1991) Bayesian image restoration, with two

applications in spatial statistics. Annals of the Institute of Statistical Mathematics
43: 1–59.

44. Imrie CE, Korre A, Munoz-Melendez G (2009) Spatial correlation between the

prevalence of transmissible spongiform diseases and British soil geochemistry.

Environmental Geochemistry and Health 31: 133–145.

45. Fine AE, Bolin CA, Gardiner JC, Kaneene JB (2011) A study of the persistence

of Mycobacterium bovis in the environment under natural weather conditions in

Michigan, USA. Veterinary Medicine International 2011: 1–12.

46. Witmer G, Fine AE, Gionfriddo J, Pipas M, Shively K, et al. (2010)

Epizootiological survey of bovine tuberculosis in northern Michigan. Journal

of Wildlife Diseases 46: 368–378.

47. Fine AE, O’Brien DJ, Winterstein SR, Kaneene JB (2011) An effort to isolate

Mycobacterium bovis from environmental substrates during investigations of

bovine tuberculosis transmission sites (cattle farms and wildlife areas) in

Michigan, USA. ISRN Veterinary Science.

48. Duffield BJ, Young DA (1985) Survival of Mycobacterium bovis in defined

environmental conditions. Veterinary Microbiology 10: 193–197.

49. Young JS, Gormley E, Wellington EMH (2005) Molecular detection of

Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in soil. Applied

and Environmental Microbiology 71: 1946–1952.

50. Jackson R, de Lisle GW, Morris RS (1995) A study of the environmental survival

of Mycobacterium bovis on a farm in New Zealand. New Zealand Veterinary

Journal 43: 346–352.

51. Miller R, Kaneene JB, Schmitt SM, Lusch DP, Fitzgerald SD (2007) Spatial

analysis of Mycobacterium bovis infection in white-tailed deer ( Odocoileus

virginianus ) in Michigan, USA. Preventive Veterinary Medicine 82: 111–122.

52. O’Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE, Hickling GJ (2006)

Managing the wildlife reservoir of Mycobacterium bovis: The Michigan, USA,

experience. Veterinary Microbiology 112: 313323.

Bayesian Hierarchical Analysis of M. bovis

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e90925


