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Abstract

Pseudo-absence selection for spatial distribution models (SDMs) is the subject of ongoing investigation. Numerous
techniques continue to be developed, and reports of their effectiveness vary. Because the quality of presence and absence
data is key for acceptable accuracy of correlative SDM predictions, determining an appropriate method to characterise
pseudo-absences for SDM’s is vital. The main methods that are currently used to generate pseudo-absence points are: 1)
randomly generated pseudo-absence locations from background data; 2) pseudo-absence locations generated within a
delimited geographical distance from recorded presence points; and 3) pseudo-absence locations selected in areas that are
environmentally dissimilar from presence points. There is a need for a method that considers both geographical extent and
environmental requirements to produce pseudo-absence points that are spatially and ecologically balanced. We use a novel
three-step approach that satisfies both spatial and ecological reasons why the target species is likely to find a particular geo-
location unsuitable. Step 1 comprises establishing a geographical extent around species presence points from which
pseudo-absence points are selected based on analyses of environmental variable importance at different distances. This
step gives an ecologically meaningful explanation to the spatial range of background data, as opposed to using an arbitrary
radius. Step 2 determines locations that are environmentally dissimilar to the presence points within the distance specified
in step one. Step 3 performs K-means clustering to reduce the number of potential pseudo-absences to the desired set by
taking the centroids of clusters in the most environmentally dissimilar class identified in step 2. By considering spatial,
ecological and environmental aspects, the three-step method identifies appropriate pseudo-absence points for correlative
SDMs. We illustrate this method by predicting the New Zealand potential distribution of the Asian tiger mosquito (Aedes
albopictus) and the Western corn rootworm (Diabrotica virgifera virgifera).
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Introduction

Spatial distribution models (SDMs) have been used to model

species distribution for conservation, biological control introduc-

tions and, particularly, to predict invasive species establishment

and spread [1]. Despite some shortcomings, SDMs are very

popular. This popularity has largely been driven by greater data

availability coupled with increasing sophistication of models as

well as computer technology [2,3,4]. Correlative SDMs model a

species distribution by inferring its environmental niche from

known presence locations. Correlative models are popular as the

alternatives, mechanistic or process-based models, are not always

achievable due to their requirement of extensive knowledge of the

environmental and physiological requirements of the species [5,6].

A major criticism and source of uncertainty in correlative SDM

predictions is the lack of true absence information for accurate

species distribution predictions [7,8]. Determining true absences

for species distribution prediction is a difficult task. A species could

be absent for reasons other than simply because the location is not

environmentally suitable [1,9]. Possible scenarios include: 1) the

species has not reached the locality due to natural or human

barriers, 2) the species has not been detected despite being present,

or 3) it is excluded due to competition. Other potential reasons

could also be that the species has become locally extinct despite the

environment being favourable or temporarily absent due to

migratory behaviour.

Three main approaches are used to compensate for missing

absence information. 1) Simple presence-only models, 2) enhanced

presence-only models, and 3) presence-absence models. The

choice is often influenced by the quality and quantity of presence

data and research objectives such as whether a potential or

realized species distribution is the target [2].

Simple presence-only models are models that require only

presence data to map species distribution or calculate a habitat

suitability index. These models constrain environmental require-

ments for the species to within the extent of the available presence

points using various distance or polygon rules to predict the species

distribution [10]. Models like BIOCLIM [11] and DOMAIN [12]

are good examples of simple presence-only models.

Enhanced presence-only models use presence-only data coupled

with background environmental variables and their interactions

which are key to understanding the realized niche of the species.

These models give a more accurate species distribution prediction

than simple presence-only models [2]. Examples of enhanced

presence-only models include, maximum entropy (MAXENT) [3],

ecological niche factor analysis (ENFA) [9], and the presence and
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background learning algorithm (PBL) [13]. All presence-only

models are sensitive to biases in presence data as all information

for the species distribution is primarily dependent on the presence

points. Background sampling in presence-only models is often

mistaken for selecting pseudo-absence points. However, back-

ground data sampling (instead of using the whole background) in

such models is usually done to shorten computation time when

using large or very high resolution datasets [3,14].

Presence-absence models use both presence and absence

information to predict habitat suitability and/or species distribu-

tion. In cases where real absences are not available, various

techniques are used to generate pseudo-absence points. There are

a number of models used for presence-absence modelling. Some

are regression based models like generalized linear models (GLM)

and generalized additive models (GAM) that have been frequently

used. While other novel machine learning and classification

models like artificial neural networks (ANN), support vector

machines (SVM) and naı̈ve Bayes (NB) have only recently been

used for ecological modelling [15,16]. These models can be

roughly classified based on their algorithms as regression,

classification and machine learning. This is not a strict category

as some models mix various types of algorithms. One character-

istic presence-absence models have in common is that a set of true

or pseudo-absence locations are needed to model habitat

suitability or species distributions.

The disagreement among studies that have evaluated these

three types of models [3,15,17,18,19,20,21] shows that each type

has merits depending on the modelling context, such as:

availability of presence data, characteristics of the predictor data

and the modelling expertise available. Presence-only models work

best when there is a reasonable sample of presence information for

the target species, preferably with minimal bias [3,9]. If the

available presence data is incomplete or uncertain, presence-

absence models are thought to produce more robust results. That

is because absence and/or pseudo-absence points can minimize

over-prediction and extrapolation into unknown areas [15,22]. It

is always better, statistically, to develop a model that predicts based

on negatives (in our case absences or zeros) and positives

(presences or ones) than only using positives, provided that the

negative data are reliable [23]. Availability of true absence points

is very limited in reality, thus to obtain the advantage of presence-

absence models reliable pseudo-absences are required. A number

of studies have proposed different, often contradicting pseudo-

absence selection methods [4,7,10,24,25,26]. Even with contrast-

ing recommendations about pseudo-absence selection methods,

these studies agree that the quality of pseudo-absence data directly

affects the accuracy of model predictions.

Types of Pseudo-absence Selection Methods
Simple random pseudo-absence selection. This method

involves taking pseudo-absence points from the background data

at random usually excluding known presence points. No prior

information about the presence and background data is incorpo-

rated to the selection procedure [7,27]. A variation of this method

is when available true absence records are included along with the

selected random pseudo-absence points [28].

Pseudo absence points with limited geographical

extent. This method involves selection of pseudo absence points

within (or outside) a certain geographic distance from presence

points. Some studies use trial and error where pseudo-absence

locations are selected from an area encompassed by varying radii

around known presence points. The ideal distance (radius) is

chosen based on model performance results [4,10,19,24]. There

are also cases where the radius is chosen arbitrarily or based on

expert knowledge about the species [17].

Pseudo-absence points based on environmental

variables. Models that use this method are often referred to

as a two-step-pseudo absence selection method. The method

involves prior profiling of environmental data into classes

[20,25,29] using niche analysis models such as ENFA, MDE

[30], BIOCLIM [31], statistical methods like the Poisson point

process method [26], or simply removal of the known environ-

mentally suitable locations from background data before selecting

pseudo-absences. Once the least suitable areas are identified by

such profiling, pseudo-absence points are selected at random.

Many studies report increased accuracy using this approach.

Moreover, judging from recent studies [25,26,32] it seems this

method has become a standard.

To recapitulate, current pseudo-absence selection methods

either optimize for better environmental or spatial discrimination.

There is no existing method that provides a balance between these

two dimensions. Good discrimination between presence and

pseudo-absence points in environmental space alone gives models

clear information about the domains in which the species could or

could not occur. However, if there is no spatial constraint a model

is likely to pick up global or larger scale differences rather than

local variations that result in ‘‘there-are-no-polar-bears-in-the-

Sahara’’ predictions [4]. VanDerWal et al. [24] reported that

geographical/spatial extents of background data affected the

accuracy of model predictions for 12 species. Furthermore,

variable importance varied depending on the size and extent of

background data [24]. This result raises two important questions.

Does bounding background data at a certain distance from the

presence points before pseudo-absence selection affect prediction

accuracy? If so, what distance is appropriate for the species and

predictor variables involved? According to Lobo et al. [4] decisions

about giving either spatial or environmental space more weight

while selecting pseudo-absence points depends on whether the

objective of the study is to model the realized or potential

distribution of the target species. This study progresses the ideas

proposed by Lobo et al. [4] and provides a tested protocol that

incorporates the use of geographically and environmentally

balanced pseudo-absence points for improved habitat suitability

analysis. The full geographic and environmental range of species

in the early stages of invasion is usually unknown, especially of

those transported globally through trade or tourism. This novel

pseudo-absence selection method will be especially useful for

modelling species distributions of invasive species at either a global

or regional level. In this study, comparisons are made between

model predictions based on the three-step method and predictions

that used the three commonly used pseudo-absence selection

techniques. Presence data for two species with varying relative

occurrence area were used for this research. A separate habitat

suitability projection is also made for New Zealand, an area which

was masked out from the global data to investigate the effect of

pseudo-absence methods on model habitat suitability projections

using independent data. New Zealand was chosen because the

species modelled are not currently established in that country. The

first set of presence points is for the species Aedes albopictus, (Skuse)

(Diptera, Culicidae) commonly known as Asian tiger mosquito.

Native to south-east Asia, A. albopictus has invaded the Americas,

Indo-Pacific regions, Australia, Europe and Africa [33]. A.

albopictus has invaded a wide range of environments and is a

vector of at least 22 arboviruses known to cause diseases in humans

and animals [34,35]. The second set of presence points is for the

subspecies Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chry-

somelidae, Galerucinae) commonly known as the western corn

3-Step Pseudo-Absence Selection Method for SDMs
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rootworm (WCR). D. v. virgifera is a known pest of maize

plantations mainly in North America and Mexico. According to

Coats et al. [36], the pest is likely to have been introduced to the

North American continent about 1,000 years ago from its tropical

native origin in Central America. North America is now

considered a native range and source of the recent D. v. virgifera

introductions to Europe [37,38,39,40]. D. v. virgifera is currently a

high risk invasive species, partly because of its recent rapid range

and host expansion throughout Europe, and due to its relatively

quick adaptation to overcome pest control practices [41,42].

Objectives of this study are to determine: 1) whether pseudo-

absences optimised for both the spatial and environmental range

of the species increase model performance and accuracy; and 2)

whether different pseudo-absence selection methods affect models

differentially.

Methods

Biotic Data
The target species A. albopictus and sub-species D. v. virgifera were

chosen for their different relative occurrence area (ROA) in both

geographic (Figure 1) and environmental space. Because A.

albopictus is a critical health hazard, extensive research has been

undertaken in areas of insect control, such that there were 3,029

presence points available for this study acquired from literature,

personal communication with experts and CABI and GBIF

databases (Ikeda et al. unpublished data). Out of the 3,029

presence points, 2,928 were spatially unique with respect to the

resolution of the environmental data used in this study. For D. v.

virgifera, there were 64 presence points available for this study (data

courtesy of GBIF and PRATIQUE). All D. v. virgifera points were

used for modelling as they were all spatially unique with respect to

the data resolution of the environmental layers.

Environmental Data
Data from the BIOCLIM dataset [43] which is derived from a

50-year-average (1950–2000) daily temperature and precipitation

dataset (WORLDCLIM) [44] prepared in 10 arc minute (0.17u)
resolution [43] was used to source the 19 bioclimatic variables

shown in Table 1. A geographical variable, elevation, was also

obtained through the BIOCLIM data portal. Hijmans et al. [44]

reported that the bulk of the elevation dataset was sourced from

NASA’s SRTM [45] global Digital Elevation Model with

additional data from GTOPO30 [46] global elevation data to

cover the above 60uN areas for which there was no SRTM data.

Elevation is known to moderate local climate and it could act as a

natural barrier between suitable areas. Elevation was added to

account for local topographical variations in habitats.

Two of the pseudo-absence selection methods in this study use

plane circular buffers on background data to limit the pseudo-

absence selection within a certain distance from presences. Such

planar buffers cannot be overlaid on data in the geographic

coordinate system without causing poleward distortion. To avoid

this bias, the global (0.17u) and New Zealand extent (300) data

were converted into world Mercator WGS 1984 coordinate system

and UTM-WGS1984-Zone-59S coordinate system respectively.

Both datasets are then resampled into a 15.2 km615.2 km and

0.8 km60.8 km equal area grids using bilinear interpolation.

Optimum cell sizes were determined as follows.

For the global data, the vertical range of the BIOCLIM data

(82uN,56uS) was used to define latitudinal ranges of 40uN,40uS,
between 40uN,60uN & 40uS,56uS, and greater than 60uN. The

optimum cell size was identified by weighting the average of the

mean cell width in each pre-determined latitudinal range by the

number of pixels in the latitudinal range. Weighting along

latitudinal zones was not necessary for the New Zealand data as

the change in horizontal cell size along latitude was small

(,0.02 km). The cell size for New Zealand was calculated by

taking the square root of the product of the average cell width

(0.71 km) and average cell height (0.93 km) in the dataset.

Figure 1. Map of global presence data for A. albopictus and D. v. virgifera.
doi:10.1371/journal.pone.0071218.g001
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All of the 20 variables were combined in one raster dataset with

multiple attributes and converted into a vector point dataset,

which was then exported into an ASCII matrix. Each point in the

matrix represented an area of 231.3 km2 within the global data set

and an area of 0.64 km2 within the New Zealand dataset. The

total area of analysis covers all global landmass except Antarctica

with an area of 135,202,962 km2. The New Zealand data covered

268,042 km2.

A non-New Zealand global dataset was used as a background

for pseudo-absence selection. This is done to provide all models

with a standardized independent dataset (New Zealand) which is

used for habitat suitability projections. An environmental similar-

ity test was undertaken by mapping the New Zealand extent in the

environmental feature space of PCA transformed BIOCLIM data.

There were no New Zealand data points outside the environmen-

tal bounds of data for the rest of the world, ensuring models did

not extrapolate. The full extent global data was used for global

habitat suitability predictions, and the high resolution data was

used for habitat suitability projections in New Zealand.

Simple Random Pseudo-absence Selection (SM1)
Pseudo-absence points are selected randomly from across the

whole study area. Known presence points were removed prior to

random selection making the size of the background data

134,515,972 km2 for A. albopictus and 135,184,400 km2 for D. v.

virgifera. The ratio of presence data to pseudo-absence data is

debated [4,10,20,28]. An unbalanced design where there are more

pseudo-absence points than presence points has been found to

affect performance of some models positively, and others

negatively [10]. That introduces bias in research designs involving

multiple models such as this study. Therefore, an equal number of

pseudo-absence points as presences points were used for the

random selection method and all subsequent pseudo-absence

selection methods used in this study. Random 2,928 and 64 points

were selected for A. albopictus and D.v.virgifera respectively from the

background data.

Spatially Constrained Pseudo-absence Points Selection
(SM2)
This method uses a spatial constraint on background data

before selecting pseudo-absence points. The background data is

extracted within a defined distance from presence points. Previous

applications of this method have often used an arbitrarily chosen

distance [24]. Pseudo-absence points were then chosen at random

from the geographically limited background data. For consistency,

in our study the same distances determined within the 3-step

method were used. These distances were 350 km for A. albopictus

and 3,000 km for D. v. virgifera. Pseudo-absence points were

selected at random from the spatially constrained background

dataset. The background data set for this scenario covered

29,219,485 km2 for A. albopictus and 64,791,235 km2 for D. v.

virgifera.

Environmental Pseudo-absences Point Selection (SM3)
An environmental profiling, similar to other two-step pseudo-

absence generation methods [7,25] was performed on the

background data except that a one class support vector machine

(OCSVM) [47] classifier was used. OCSVM is chosen because it

Table 1. List of variables selected using four pseudo-absence selection methods for the two target species.

No. Variables aaSM1 aaSM2 aaSM3 aaSM4 dvvSM1 dvvSM2 dvvSM3 dvvSM4

V1 Annual Mean Temperature 3 3 3 3 3 3

V2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 3

V3 Isothermality (P2/P7) (* 100) 3 3 3 3 3 3

V4 Temperature Seasonality (standard deviation *100) 3 3 3

V5 Max Temperature of Warmest Month 3 3 3 3

V6 Min Temperature of Coldest Month 3 3 3 3

V7 Temperature Annual Range (P5–P6) 3 3

V8 Mean Temperature of Wettest Quarter 3

V9 Mean Temperature of Driest Quarter 3 3

V10 Mean Temperature of Warmest Quarter 3 3 3 3 3

V11 Mean Temperature of Coldest Quarter 3 3 3 3 3

V12 Annual Precipitation 3 3 3 3 3

V13 Precipitation of Wettest Month 3 3 3 3 3

V14 Precipitation of Driest Month 3 3 3

V15 Precipitation Seasonality (Coefficient of Variation) 3 3 3 3

V16 Precipitation of Wettest Quarter 3 3 3 3 3

V17 Precipitation of Driest Quarter 3 3 3 3 3 3

V18 Precipitation of Warmest Quarter 3

V19 Precipitation of Coldest Quarter 3

V20 Altitude 3 3 3

Total 17 11 14 8 3 4 13 2

*aa =Aedes albopictus, dvv =Diabrotica v. virgifera, SM1= random pseudo-absence selection method, SM2 = spatially constrained random pseudo-absence selection
method, SM3 =2-step environmental profiling pseudo-absence selection method, SM4= 3-step environmental profiling with spatial constraint pseudo-absence
selection method.
doi:10.1371/journal.pone.0071218.t001
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can handle high dimensional data and complex non-linear

relationships between predictors. The OCSVM model was trained

with environmental variable data at presence points. An ensemble

of 100 best performing OCSVM models was used to determine

robust environmentally profiled background classes (Ikeda et al.

unpublished data). Using an ensemble approach rather than the

single best performing model reduced the probability of choosing

an over-fitted model. The OCSVM profiling produced back-

ground data with values between zero and one, which represent

the probability of being similar to the presence data. All

background data points with a probability of 0 (zero-similarity

with presences) were extracted as potential pseudo-absence points.

Random 2,928 and 64 pseudo-absences were selected from this

zero-similarity background data that covered 102,831,933 km2

and 87,744,064 km2 for A. albopictus and D. v. virgifera respectively.

Three Step Pseudo-absence Selection Method (SM4)
The novel three-step method developed here provides a balance

between using the spatial and environmental space for selection of

appropriate pseudo-absence points. The first step is to determine

geographic space for the species by establishing the appropriate

distance by which background data is bound to presence data. In

the second step, an OCSVM model is used to classify the

background data constrained in step 1 into various environmental

classes. In the third step K-means clustering is used to select a

representative sample from all the environmentally dissimilar

points identified in step 2 as pseudo-absence points.

Step 1: Specifying geographical extent. An independent

method based on variable importance analysis was designed to

identify an appropriate distance by which background data is

bounded to presence points. First, multiple datasets were produced

by bounding background data at different radii from presence

points. We chose 50 km, 100 km, 150 km, 200 km, 250 km,

300 km, 350 km, 400 km, and 500 km intervals to test for change

in variable importance (Figure S1). In cases where no change was

observed within the listed intervals the distance was increased by

100 km until change was observed. Variable importance was

analysed by performing principal component analysis (PCA) on

these different background datasets. Variables that contribute the

most (up to 70%) to the first component were identified. The

contribution of these variables versus distance was then plotted

and analysed for any decline in contribution to the first principal

component. The distance at which the contribution of the most

important variables declined or stopped increasing was chosen as

the optimal limit to bound background data. We suggest that

including background data outside the optimum distance could

obscure important information for feature selection. Tuv et al. [48]

and references therein show that unnecessarily large and

redundant background data introduces noise and decreases

predictive power of models. The contribution of the most

important variables to the first principal component declined at

350 km for A. albopictus, and at 3,000 km for D. v. virgifera, these

distances were taken as the optimum boundary of background

data. The area of the background data extracted from within the

optimum distance of presence points was 29,219,485 km2 for A.

albopictus and 64,791,235 km2 for D. v. virgifera.

Step 2: Environmental profiling of background

data. Environmental profiling was performed on the spatially

limited background data identified at step 1 using an OCSVM

[47] classifier. All locations with a probability of 0 (zero similarity

with presence points) were extracted as a potential background for

pseudo-absence selection. This procedure further reduced the

background data at step 1 to 9,925,310 km2 and 12,878,516 km2

for A. albopictus and D. v. virgifera respectively.

Step 3: K-means clustering. K-means clustering was used

to group the zero-similarity locations defined at step 2 into k

clusters according to their environmental value. The parameter k

that determines the number of clusters for K-means clustering was

set to the number of presences available (K= 2,928 for A. albopictus

and K=64 for D. v. virgifera). The centroids, from each cluster in

the environmental feature space, were selected as they best

represented their respective cluster. The projection of the centroids

in the geographic space provided the pseudo-absence points

needed to proceed with the presence–absence modelling.

Model Evaluation and Output Analysis
The four methods of pseudo-absence selection were compared

based on the performance of seven presence-absence models. The

seven models were 1) logistic regression (LOG) [49], 2) classifica-

tion and regression trees (CART) [50] 3) conditional trees

(CTREE) [51]. 4) K-nearest neighbours (KNN) [52]; 5) naı̈ve

Bayes (NB) [53], 6) support vector machines (SVM) [54] and 7)

artificial neural networks (NNET) [55].

Variable selection was carried out using random forests.

Random forest (RF) is a classification algorithm that uses an

ensemble of classification trees. Random forest is chosen because it

does not overfit and also because it is reported to have a good

predictive performance even when noisy variables are included

[56]. Variable selection was performed independently for each

training dataset, as the domain and range of the four types of

pseudo-absences vary in the geo-environmental space. Table 1

shows the list of variables selected for the different scenarios. For

validation, 20% of both the presence and pseudo-absence datasets

were partitioned and set aside for cross-validation while 80% was

used to train the models. Performance of each model was

measured after 10-fold cross-validation with 20 repetitions. The

models were compared based on performance scoring methods

(Table 2).

The threshold p.0.5 was used to convert model predictions

into binary presence-absence maps to obtain predicted presences.

There is evidence that shows predefined thresholds such as used in

this study may lead to a cut-off that does not approximate the true

threshold at which the species is likely to be present [57]. The

optimum threshold based on prevalence is considered to decrease

towards zero for rare species and increases towards one for

generalist species [57]. Both species used in this research are not

rare; thus the bias introduced from erroneous threshold should be

similar. The threshold of 0.5 was used as we were interested solely

in variation arising from pseudo-absence selection methods.

Percentages of predicted presences out of the total study area

were compared for differences in habitat suitability predictions

among models using the different pseudo-absence methods. Model

consensus was analysed for the New Zealand extent, by identifying

how many models using the same pseudo-absence method

predicted similarly over their respective predicted presence maps.

A habitat suitability prediction was produced using the best

model for each pseudo-absence selection scenario at the global

extent and for New Zealand. Model kappa values were used to

select the best model for each pseudo-absence method scenario.

Kappa is chosen because it is a robust performance index which

corrects for prediction success by chance [58]. Habitat suitability

maps are re-projected back onto a geographic co-ordinate system

for visualization.

All analyses were carried out using the free software R [59]

version 2.8.1 and 2.15.1 with packages agricolae [60], class, nnet,

MASS [61], Coin [62], e1071 [63], kernlab [64], klaR [65],

multcomp [66], randomForest [67], SP [68], VarSelRF [69]. The

R software based multi-model framework programmed by Ikeda
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et al. (unpublished data) was used to run the models in a

standardized manner. Data pre-processing and mapping were

done using MATLAB version R2011a [70] and ArcGIS version

10.1 [71].

Results

Pseudo-absences
The environmental range and domain of pseudo-absences from

the 4 pseudo-absence selection methods were different for both

species (Figure 2). Only D. v. virgifera training data points were

plotted as the large number of presence points for A. albopictus

made the plot unintelligible. SM1 pseudo-absences were closely

clustered around presence points with only a few points

discriminated from presence points in the environmental feature

space (Figure 2a). SM2 pseudo-absences were also closely clustered

around presence points (Figure 2b). SM3 (Figure 2c) and SM4

pseudo-absences points (Figure 2d) were clearly discriminated

from presence points. However, the SM4 pseudo-absences were

environmentally further from presence points than the other 3

methods. This is illustrated by their magnitudes on the principal

component axes (Figure 2).

Variable Selection
There was considerable variation in the subset of variables

chosen for each training dataset from the total predictor list of 20.

The 3-step selection method (SM4) gave fewer variables for both

A. albopictus and D. v. virgifera (Table 1).

Model Performance
Out of the 56 models from the various data-method-model

combinations (7 model types64 selection methods62 species), 55

of the models had mean AUC value better than 0.5 meaning all

models predicted better than chance except for one model

(CTREE,SM1,Dvv), which registered a poor performance

(AUC=0.1765). Two-way within subjects analysis of variance

was used to calculate the variance attributed to each factor in the

experiment. The pseudo-absence selection method had a highly

significant (ANOVA, p= 0.0017) effect on model mean AUC

values, but the interaction between model type and selection

method was insignificant. Mean AUC differences due to model

type were not significant according to Tukey’s HSD test (p,0.05).

There was a statistically significant difference in mean AUC of

models using SM1 and SM2 pseudo-absences compared with

models using SM3 and SM4 pseudo-absences (p,0.05) (Figure 3).

The average mean AUC of models using SM1, SM2, SM3 and

SM4 pseudo-absence points was 0.84 (60.21 SD), 0.79

(60.07 SD), 0.95 (60.05 SD), and 0.95 (60.03 SD) respectively.

We used the proportion of the sum of correctly predicted

pseudo-absences and correctly predicted presences out of the total

test data to calculate model accuracy. The ANOVA results for the

mean accuracy values for the same models under different pseudo-

absence selection methods showed that pseudo-absence selection

method has a significant effect on model accuracy (p = 0.00002).

Tukey’s HSD test on model accuracy measurements also gave a

similar result to comparison of mean AUC values; models using

pseudo-absence selection methods SM3 and SM4 have signifi-

cantly better accuracy than models that used SM1 and SM2

pseudo-absences (p,0.05).

Prediction-reality Agreement
The Kappa index was used to compare results between the

different models according to pseudo-absence selection method.

SM1 resulted in 13 out of the 14 models that were between ‘good

– bad’ bands with the exception of one model (SVM, SM1, A. a) in

the ‘excellent’ band (Figure 4). The range of scores for the SM1

method was between 0.59 - 0.82 for A. albopictus and 0.00 - 0.75 for

D. v. virgifera. For method SM2, none of the 14 tested models-

species combinations were in the ‘excellent’ band with Kappa

values between 0.43 - 0.58 over the two species. For method SM3,

model Kappa scores were in the ‘excellent’ band for 9 out of 14

models and in the ‘medium to good’ bands for the remaining 5

models over the two species. For method SM4 model Kappa

scores were in the ‘excellent’ band for 12 out of 14 models and in

the ‘good’ and ‘medium’ bands for the remaining two models over

the two species (Figure 4).

Specificity and Sensitivity
Analysis of variance of the specificity results of the seven models

showed that there is a highly significant difference between

specificity scores of models using different pseudo-absence

selection methods (p,0.0001) over the two species, and the model

type also had a significant contribution towards the variation in the

specificity results (p = 0.011). The lowest mean specificity values

were obtained from models using pseudo-absence selection

Table 2. Model performance indices.

Index Abbreviations Remark

Accuracy = (TP+TN)/(TP+TN+FP+FN) TP = True positive; TN= True negative

FP = False positive; FN= False negative

Kappa = ((OA-EA))/(((TP+FP+TN+FN)-EA)) OA=observed agreement (Accuracy) Values .=0.81 = Excellent;

Where EA= EA= Expected agreement 0.61–0.80 =Good; 0.41–0.60 =Medium;

(TP+FN)(TP+FP)/(TP+FP+TN+FN) 2 0.21–0.40 =Not good; 0.00–0.20 = Bad;

(FP+TN)(TN+TN+FN)/(TP+FP+TN+FN) Values ,0.00 = Very bad

Sensitivity = TP/(TP+FN) 1 - omission error (recall)

Specificity = TN/(TN+FP) 1 - commission error

AUC= A plot of TPR vs. FPR AUC=Area under the ROC* curve Calculated on the test dataset

Where FPR = FP/(FP+TN) TPR = True positive rate (sensitivity) Values .0.7 are considered good

FPR = False positive rate

*ROC: Receiver operating characteristic.
doi:10.1371/journal.pone.0071218.t002
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Figure 2. Pseudo-absence points from the four pseudo-absence selection methods. Pseudo-absence points plotted with presence points
on the first three principal components of the training dataset (Species: D. v. virgifera), (A) SM1, (B) SM2, (C) SM3, and (D) SM4.
doi:10.1371/journal.pone.0071218.g002

Figure 3. Variation of mean AUC values due to model type, pseudo-absence selection method and number and structure of
presence data. Error bars indicate standard errors over replicates. Bars with same letters within a graph are not significantly different (Tukey’s HSD
test p.0.05). (A) model type, (B) pseudo-absence selection method, and, (C) species dataset.
doi:10.1371/journal.pone.0071218.g003
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method SM2, models using SM1 pseudo-absence points also had

low specificity scores but were significantly better than SM2

models (Figure 5). Models that used SM3 and SM4 pseudo-

absence points gave significantly better specificity than SM1 and

SM2. There was a similar trend for sensitivity where the pseudo-

absence selection method had a significant effect on model

sensitivity (p = 0.025). All models with SM3 and SM4 pseudo-

absences scored high sensitivity values (.0.85) for both species

dataset (SM3, mean= 0.90, SD=60.10; SM4, mean= 0.91,

SD=60.02). While models with SM1 and SM2 pseudo-absences

had low sensitivity scores (SM1, mean 0.85, SD=60.14; SM2,

mean 0.81, SD=60.05). There was a considerable between-

species variation with respect to sensitivity scores of models using

SM1 and SM2.

Predicted Presence, Model Consensus and Habitat
Suitability
There were variations with respect to the number and location

of predicted presences by models that used the four different

pseudo-absence selection methods. For the global analysis, models

using the SM4 method resulted in the highest percentage of

predicted presences (mean= 39.29%, SD=617.65), with SM2

and SM3 ranking second (mean= 31.70%, SD=618.24) and

third (mean= 24.82%, SD=610.19) respectively while SM1

(mean=22.77%, SD=611.15) gave the smallest percentage of

predicted presences. For the New Zealand data, methods SM2

(mean=52.42%, SD=630.27), SM3 (mean= 50.30%,

SD=637.11), and SM4 (mean= 51.81%, SD=629.68), gave

very similar predicted presence percentages. The percentage of

predicted presences from models using SM1 pseudo-absences was

significantly lower (mean=9.90%, SD=617.78) than models

using all the other three methods (p = 0.01, p = 0.02, p = 0.01,

Tukey’s HSD test in comparison with SM2, SM3 and SM4

respectively).

The predicted presences for both A. albopictus and D. v. virgifera in

New Zealand were analysed to investigate the level of model

consensus in the predictions. Model consensus was categorized as

follows; prediction by 1 model = no consensus, prediction by 2

models = low consensus, prediction by 3–4 models =moderate

consensus, and prediction by 5–7 models = high consensus.

Predicted presence percentages and model consensus levels are

given in figure 6.

Habitat suitability maps were produced using the best models,

according to Kappa score, for each scenario. For the A. albopictus

dataset, the best performing models based on SM1, SM2, SM3

and SM4 pseudo-absence methods were NNET, KNN, NNET

and SVM respectively. For the D. v. virgifera dataset, the best

performing models based on SM1, SM2, SM3 and SM4 pseudo-

absences methods were NNET, NB, CART, and KNN respec-

tively (Figures 7 & 8).

Habitat suitability map comparisons in the projections range

show that SM1 based maps were dissimilar from SM2, SM3 and

SM4 suitability maps (Figure 9, 10). The SM1 suitability

predictions both for A. albopictus and D. v. virgifera in New Zealand

were limited to very small areas of low to moderate suitability. The

habitat suitability projected using SM2 pseudo-absences identified

72,557 km2 of highly suitable area (.0.9 probability) for A.

albopictus and 92,779 km2 of highly suitable area for D. v. virgifera.

The suitability prediction based on SM3 pseudo-absences

identified no highly suitable locations for A. albopictus and a large

247,883 km2 area of highly suitable area for D. v. virgifera. Habitat

suitability prediction based on the 3-step method (SM4) identified

8,752 km2 of highly suitable area for A. albopictus and 151,569 km2

for D. v. virgifera.

Figure 4. Kappa values of models for the four pseudo-absence selection methods and two species datasets. Aa=A. albopictus, Dvv =D.
v. virgifera, values above the red broken line are in the excellent band of the kappa index.
doi:10.1371/journal.pone.0071218.g004
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Discussion

A number of studies have established that the pseudo-absence

selection method used for SDMs affects model performance

[2,4,10,25,72]. In this study, the effect of pseudo-absence selection

methods on the performance of seven models was investigated.

The results showed that methodological prescription of pseudo-

absence points, similar to the 3-step method developed in this

study, enhances model predictive power. The commonly used

approaches are to constrain the background data geographically

(similar to SM2), or environmental profiling of the background

data (similar to SM3) [10,20,25]. However, some studies have

reported that random pseudo-absence selection method (equiva-

lent to SM1) works best in some contexts. For example, SM1 is

considered to work well with logistic regression models [10] and

when environmental data is too complex to perform environmen-

tal profiling [7]. Jiménez-Valverde et al. [2] and Lobo et al. [4]

suggested that the best way to get potential distribution

representation of a species is by using absences located relatively

near the external boundary of the environmental domain and

Figure 5. The effect of pseudo-absence selection method on mean specificity and sensitivity values. Error bars indicate standard errors.
Bars with same letters are not significantly different (Tukey’s HSD test p.0.05), (A) specificity (B) sensitivity.
doi:10.1371/journal.pone.0071218.g005

Figure 6. Percentages of predicted presences and respective model consensus on predictions in New Zealand. (A), Asian tiger
mosquito (A. albopictus). (B), Western corn rootworm (D. v. virgifera).
doi:10.1371/journal.pone.0071218.g006
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adding geographic proximity if the requirement is to get the

realized distribution representation. In the three-step method, we

quantified these boundaries by utilizing variable importance

analysis over various distances from presence locations. The

challenge was to maintain model performance while introducing

spatial constraint on the potential background data. Environmen-

tally profiled background data without any geographical constraint

usually gives very high model AUC and sensitivity values because

the data are overly and unrealistically discriminated. Rather than

using an arbitrary distance, the 3-step pseudo-absence selection

method utilizes an ecologically meaningful distance to specify

geographic extent of background data, in order to minimize

Figure 7. Global habitat suitability prediction for Asian tiger mosquito (A. albopictus). (A), SM1 pseudo-absences with model NNET (B) SM2
pseudo-absences with model KNN (C), SM3 pseudo-absences with model NNET (D) SM4 pseudo-absences with model SVM. Note: A. albopictus
occurrence data is too dense to overlay on prediction map, refer to Figure 1. Legend key: not suitable = p,0.4, low= 0.4,p,0.5,
moderate = 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g007

Figure 8. Global habitat suitability prediction for Western corn rootworm (D. v. virgifera). (A), SM1 pseudo-absences with model NNET (B)
SM2 pseudo-absences with model NB (C), SM3 pseudo-absences with model CART (D) SM4 pseudo-absences with model KNN. Legend key: not
suitable = p,0.4, low=0.4,p,0.5, moderate = 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g008
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information loss due to the introduced spatial constraint. We

found the optimum distance for the background data extent to be

350 km for the A. albopictus dataset and 3,000 km for D. v. virgifera

dataset. Care should be taken not to associate distance obtained

through variable importance analysis as a constant biogeographic

characteristic of the species. The distance at which background

data is bounded is identified based on the species relative area of

occurrence. As a consequence, it is affected by the number of

presence locations, their distribution and the extent of the study

area. The identified distance must be re-calculated if the presence

data or the extent of the study area changes.

Figure 9. Habitat suitability prediction for Asian tiger mosquito (A. albopictus) in New Zealand. (A), SM1 pseudo-absences with model
NNET (B) SM2 pseudo-absences with model KNN (C), SM3 pseudo-absences with model NNET (D) SM4 pseudo-absences with model SVM. Legend
key: not suitable = p,0.4, low=0.4,p,0.5, moderate = 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g009
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Variable Selection
Variable selection is an essential step in species distribution

modelling. Selected variables and their relationship at the presence

points are the mechanism by which ecological assumptions are

incorporated in correlative species distribution models. Failing to

select the appropriate explanatory variables leads to model results

detached from ecological reality. In this study, we found large

variation between the numbers and types of variables selected

according to presence data and pseudo-absence selection method.

Figure 10. Habitat suitability prediction for Western corn rootworm (D. v. virgifera) in New Zealand. (A), SM1 pseudo-absences with
model NNET (B) SM2 pseudo-absences with model NB (C), SM3 pseudo-absences with model CART (D) SM4 pseudo-absences with model KNN.
Legend key: not suitable =p,0.4, low=0.4,p,0.5, moderate= 0.5,p,0.7, high= 0.7,p,0.9, very high=p.0.9.
doi:10.1371/journal.pone.0071218.g010
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The between-species differences in the variables selected for

each pseudo-absence scenario can be used to assess the effect of

species presence data on variable selection. More variables were

selected for the A. albopictus training dataset than D. v. virgifera in all

pseudo-absence selection methods. This was because the A.

albopictus dataset with 2,928 presence points covers a large area

in geographic and environmental space, requiring more variables

to characterise the training data than the D. v. virgifera dataset that

has 64 presence points over a relatively limited geographic and

environmental range. This result is not unexpected, the larger the

environmental range of the species, the larger number of variables

needed to construct a valid model.

The within-species differences in the variables selected show

that pseudo-absence data has considerable influence on variable

selection. A large number of variables in this case correspond to

inconsistent pseudo-absence points that require a large number of

variables to characterise the training data. The least number of

variables were selected from data using the 3-step method

(Table 1). More conservative variable selection is a result of a

unique interplay of limiting background extent and robust

environmental profiling used in the 3-step method, which

excluded environmentally extreme outliers in the training data

while providing clear environmental classification between pres-

ence and pseudo-absence points.

It is well established that the number of presences and the

environmental data are critical for variable selection and accuracy

of SDM predictions. However, defining appropriate unsuitable

areas by selecting optimal pseudo-absences to contrast with

suitable areas inferred from presence points is equally important.

Model Performance
With respect to model kappa values, SM1 results show that

random pseudo-absence selection method is not consistent either

for the two species or the seven models tested. For example, the

logistic regression model (LOG) performed well for A. albopictus

with a high Kappa value but performed poorly for D. v. virgifera.

This inconsistency is confirmed by Lobo et al. [4] who states that

random pseudo-absence selection methods are unreliable due to

their high dependence on species presence point distribution and

abundance. High model performance using this method can occur

by chance and is unlikely to be repeatable for different species or

model scenarios as shown in this study. SM2 results were low for

all models. Both SM1 and SM2 resulted in significantly low mean

AUC and specificity scores compared with models using SM3 and

SM4 pseudo-absences. SM1 and SM2, therefore, seem not ideal

pseudo-absence selection methods to use in SDMs.

SM3 gave consistently high model performance (Kappa

statistics) except for CTREE and CART models which had

variable performance across the two species. The machine

learning models using SM3 pseudo-absences performed consis-

tently over the two species dataset. SM3 was found to perform

well, especially for the LOG model giving similar high kappa

values for both species. This result is despite reports stating that

regression models work best under random selection methods

[7,10]. We attribute the good results from the LOG model on

SM3 pseudo-absences to the use of a robust model (OCSVM) for

environmental profiling of background data.

SM4 provided excellent kappa values for all models for the D. v.

virgifera data set and 5 models of A. albopictus dataset. A single low

kappa value was reported for the LOG model performance. There

was no significant difference between AUC, sensitivity and

specificity values between SM3 and SM4 methods despite that

the background data for the pseudo-absence points of SM4 were

geographically restricted. While there was no statistical difference,

SM4 method achieves high model performance while avoiding

extreme spatial and environmental locations that could lead to

inconsistency in prediction for new areas.

Model Consensus and Habitat Suitability
The highest percentage of predicted presences was obtained

from the 3-step pseudo-absence selection method. This result is

very important especially for invasive species studies where

identifying potential areas suitable for the establishment for the

target species is critical. The lowest predicted presence percentage

was from the random selection method (SM1) both at a global and

New Zealand scale. Comparisons of predicted presence maps were

done to check consensus among models that used the same

pseudo-absence method. We recognize that model consensus

alone does not ensure high prediction accuracy because models

can wrongly agree on the occurrence of a species. A good example

is the high consensus among models using SM2 pseudo-absence

points for prediction of D. v. virgifera distribution in New Zealand

(Figure 6b), even when the Kappa model performance scores for

these models were very low (Figure 4). However, high model

consensus combined with high model performance scores is

preferable to multiple models with high performance scores and

low agreement. Furthermore, inconsistency between predictions

makes SDM result interpretations difficult for decision makers. In

this study, the three step method (SM4) provided the needed

combination of high model performance in terms of Kappa values

(Figure 4) and consistency in model predictions in terms of high

model consensus (Figure 6a, b).

Habitat suitability predictions based on the 4 pseudo-absence

types (Figure 2) gave different results in terms of the size and

location of suitable areas for A. albopictus and D. v. virgifera

(Figures 7, 8, 9, 10). Pseudo-absence points from SM1 and SM2

methods are not distinctly separated from presences in the

environmental feature space (Figure 2a, b). This lack of

discrimination is reflected in their respective habitat suitability

predictions. Both SM1 and SM2 maps showed underestimation of

the potential suitable area for A. albopictus and D. v. virgifera when

overlaid with occurrence points. Pseudo-absences from both SM3

and SM4 methods were distinctly clustered away from presence

points in the feature space allowing environmental discrimination

(Figure 2c, d). Accordingly, most of the occurrence areas are

identified by the SM3 and SM4 models as highly suitable for both

species. While such high model sensitivity is beneficial to more

accurately estimate the potential distribution of a species, it is

possible to overestimate the potential distribution if highly

discriminated presence/pseudo-absence training data are used

[4]. Therefore, even if both SM3 and SM4 gave comparable

suitability predictions, it is advisable to determine optimum

background extent for pseudo-absence selection if the study area

is at a global or regional scale.

Implications for Future A. albopictus and D. v. virgifera
Management in New Zealand

Aedes albopictus. The global distribution estimated for A.

albopictus from SM1 and SM2 appropriately covered the native

Southeast Asian and the introduced South American range, but

did not cover the North American distribution accurately. The

European and African population were also not accurately

represented on the maps (Figure 7a, b). SM3 and SM4 global

distribution maps for A. albopictus reflect the current complete

range of A. albopictus. However, the extent of predicted suitable

areas for A. albopictus in New Zealand varies between projections

using SM3 and SM4 pseudo-absence methods. The SM3

projection (Figure 9c) only shows 2,000 km2 of moderately
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suitable area within New Zealand, whereas the SM4 projection

identified over 8,000 km2 of highly suitable areas (Figure 9d).

Given that other species from the Aedes genus have established in

New Zealand and that A. albopictus is repeatedly intercepted at the

New Zealand border [73], we suggest that the suitable areas

identified by SM4 be considered in future mosquito related

biosecurity assessments. The suitability projection difference

between the SM3 and SM4 shows that incorporating a spatial

dimension while environmental profiling has a significant effect on

model predictions. A. albopictus is a particularly difficult species to

model as it is currently undergoing a rapid range expansion.

Previous studies showed that there is a niche shift throughout the

dispersal history of A. albopictus [74]. It is important to select

accurate presence and pseudo-absences data while projecting

suitable areas for such species whose distribution spans a wide

environmental range.

Diabrotica v. virgifera. Similar to A. albopictus, the SM1 and

SM2 global species distribution model for D. v. virgifera did not fully

reflect the current known distribution of the species (Figure 8a, b).

The SM3 and SM4 predictions (Figure 8c, d) reflected the current

known distribution, although the former was more conservative

and the latter failed to characterize Central America, the native

habitat of the species as highly suitable. An interesting variation in

prediction of SM4 is the highly suitable areas identified close to

East Africa, an area into which D. v. virgifera is expected to spread

unless appropriate prevention measures are taken [75]. The SM4

suitability projection for D. v. virgifera in New Zealand showed

northern and central areas of the North Island and areas east of

the Southern Alps as highly suitable (Figure 10d). Although maize

(Zea mays) production is not a major economic crop in New

Zealand, it still accounts for 30% of the arable industry [76].

Biosecurity measures at the border are essential to prevent the

entry of D. v. virgifera, a major maize pest, to New Zealand.

Does Model Type Matter?
Several studies show that model type is a major source of

uncertainty in SDM results [77,78] among other factors like

variable selection, data collinearity and pseudo-absence selection.

Uncertainty in SDMs can also arise both from data inaccuracy

and internal model error [79]. While little can be done by users to

fix errors inherent in model algorithms, model error from data

inaccuracy can be reduced by boosting input data quality. Models

perform differently given different datasets (environmental data,

presence data and pseudo-absence data). While the effect of the

accuracy of environmental and presence data have been

investigated in depth, the effect of accuracy of pseudo-absence

points on model performance has been less investigated. In this

study, we established that a robust pseudo-absence selection

method can create an input dataset that improves the performance

of the SDMs investigated here. That is shown by the low standard

deviation in model results that used the 3-step (SM4) pseudo-

absence points and the very high Kappa values. Well-structured

training data with appropriate variables increases the performance

of all models. However, it is still very important to choose models

carefully while keeping presence data quality, environmental data

and model expertise in mind.

Advantages of the 3-step Pseudo-absence Selection
Method
The advantages of the three-step pseudo-absence selection

method proposed in this study are threefold. First, the variable

importance analysis and background data limiting step (step 1)

provide a balance between spatial and environmental information

currently missing in pseudo-absence selection methods. Second,

the use of the OCSVM for environmental profiling, instead of the

current approaches that are unable to handle large variable

datasets and complex non-linear relationships, provides an

improved method to identify pseudo-absences in a complex

environment. The proposed ensemble OCSVM framework is also

important to avoid model over-fitting caused by highly discrim-

inated training data. Third, the proposed use of k-means clustering

to choose pseudo-absences instead of random selection from

environmentally profiled data ensures not only environmentally

dissimilar points are chosen but also provides a systematic way of

obtaining a representative sample of the unsuitable environment.

The other important advantage of the k-means clustering,

compared with random sampling of environmentally profiled

background data, is that results are more repeatable. This is

essential, especially when performing ensemble modelling and

climate change studies where standardised methods are required

for appropriate replication.

The results show that spatial and environmental background

data profiling before selecting pseudo-absence points is essential to

increase prediction accuracy. Profiling is important because geo-

environmentally profiled pseudo-absences have a clearer data

structure and consistency than random, environmentally or

spatially profiled pseudo-absence points. Clear data structure

within pseudo-absence points means more information and less

uncertainty during model training. More important, such detailed

profiling of input data that simultaneously investigates geograph-

ical settings as well as environmental requirements should lead to

greater understanding and the generation of interesting hypotheses

about the relationship between species and their habitat that can

be tested in future research.

Caveats
The first step of the 3-step pseudo-absence selection system that

identifies the appropriate distance within which background data

is to be extracted can be quite time consuming and tedious. This

can be overcome by developing an automated framework to test

variable importance at a set of pre-set intervals.

Another concern is that a large number of presence points are

available, coinciding with a small background extent in step 1. A

small background extent that encompasses a large number of

presence points may reduce the area available for environmental

profiling at step 2. That could lead to a poorly discriminated

environmental classification. That is not expected to be a common

problem as accurate presence points are not usually available in

abundance at a global or regional level. This, however, could be

remedied by introducing a threshold that relates density of

presence points to a minimum distance at which spatial extent of

the background data is drawn.

Conclusion
When the complete range of a species is unknown, visualizing

the distribution of the known presence locations both in

geographic and environmental space and assessing the species

ROA, is valuable. If presence data is highly clustered both in

geographical and environmental space, using presence-only

models often leads to extrapolation. In such cases, it is advisable

to use presence-absence models with a pseudo-absence selection

method that considers both the spatial and environmental space

[2,4]. When performing species distribution modelling for species

undergoing rapid range expansion with dynamic presence data

records, new distances should be re-calculated to specify

background data geographic extent with the addition of new

presence points according to variable importance analysis over

various distances from the new presence dataset.
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The three-step pseudo-absence selection method (SM4) was

shown to result in high model performance while spatially

constraining background data to filter out extreme geographically

dissimilar locations. Any loss of information from bounding

background data geographically before environmental profiling

is compensated by the added precision resulting from reduced

over-fitting of an SDM model. While this result holds for the

models tested in this study, further investigation over more species

and models is recommended.

Supporting Information

Figure S1 Boundaries of background datasets extracted
from circular buffers drawn at various radii from D. v.
virgifera presence points. The bold red boundary shows the

optimum background extent identified by the variable importance

analysis.

(TIF)

Acknowledgments

The authors wish to thank Mark Q. Benedict and his team for the extensive

presence data on Asian tiger mosquito, and PRATIQUE (European

Commission’s 7th Framework Programme) for the Western corn rootworm

data. We also would like to thank Gwenaël G.R. Leday for his invaluable
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