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Abstract

Background: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in
tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod
dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known
about their tooth replacement rates.

Methodology/Principal Findings: We present tooth replacement rate, formation time, crown volume, total dentition
volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs
Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in
dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive
replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus
tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs.
185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every
35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth
replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to
estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin
section.

Conclusions/Significance: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding
strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem.
Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived
titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.
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Introduction

Large or complex dentitions generally experience attrition

through abrasion against food, substrates, or other teeth. In

mammals, food intake and tooth use tend to increase with body

size, so larger animals tend to exhibit increased tooth wear [1].

During their nearly 300-million-year evolutionary history [2],

vertebrate herbivores evolved numerous mechanisms to cope with

increased tooth wear, including changes in the mechanical

properties of tooth tissues [3,4], increases in the number of teeth

that are functional at one time [5,6], continuous tooth growth and

eruption throughout the life of the animal [7], increases in the

number of tooth-bearing bones, changes in crown volume and/or

shape [8–11], and increased tooth replacement rate [12,13].

Sauropod dinosaurs achieved the largest adult body sizes of any

terrestrial herbivore, and so would have required a large food

supply and high levels of tooth use and tooth wear regardless of

their inferred physiology [14–16]. Evolutionary responses to high

tooth wear in sauropods – including changes in tooth volume and

tooth replacement rate – are first recorded shortly after their

divergence from sauropodomorph ancestors. Early Jurassic

sauropods increased tooth size, but decreases in tooth size

characterized some later-appearing lineages [10]. The volume of

the tooth crown has a demonstrated relationship to its formation

time and expected use-life [12,13] and is inversely related to the

number of teeth that can be held at each tooth position [10]. High

tooth replacement rates were calculated in one sauropod with up

to ten small teeth packed at each tooth position [6], but neither the

relationship between tooth volume and replacement rate nor the

relationship between these parameters and the overall rate of

replacement of the total functional dentition have been studied for

other sauropods.
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Here, we measure tooth formation time, replacement rate,

crown volume, and enamel thickness in sectioned teeth of

Camarasaurus and Diplodocus, two neosauropod dinosaurs from the

Late Jurassic Morrison Formation of North America. The largest

exemplars of these two genera are similar in body mass (e.g., femur

length ca. 1.8 m, sum of femoral and humeral circumference ca.

1.3 m; MDD unpublished data), but they belong to distantly

related neosauropod clades that differ substantially in skull

morphology, body proportions, and inferred feeding ecology

[17–20]. The rarity of sauropod craniodental materials that can be

sacrificed for histological sampling limits the taxonomic scope

across which we can measure these features. We explore the

distribution of these features more broadly within Sauropodomor-

pha by developing a method to estimate tooth replacement rates

for several taxa that have craniodental material but cannot be

sampled histologically.

Materials and Methods

Permission was received to access the relevant specimens from

museum collections managers. Specimens were loaned from the

Yale Peabody Museum, Utah Museum of Natural History,

Staatliches Museum für Naturkunde, and Iziko South African

Museum. Computed tomography (CT) images were acquired at

the Canton Health Center, University of Michigan, using a

General Electric Lightspeed Pro 8 CT scanner, GE Medical

systems, Milwaukee, Wisconsin. CT slices were taken using

140 Kv and 325 mA, with 1.250 mm thick slices and 0.625 mm

overlap. Incremental lines were counted in thin section. Each

tooth was mechanically removed from the jaws. Specimens were

embedded in epoxy resin, cut longitudinally on a Buehler Isomet

saw with a diamond wafering blade, mounted on a glass slide, cut

to a thick section, and hand-sanded and polished until incremental

lines were visible. Thin sections were photographed using a Spot

CCD camera (Spot Insight 11.2 Color Mosaic, Diagnostic

Instruments) mounted on a Nikon SMZ 1500 microscope.

Increments were counted in ImageJ [21,22] using the IncMeas

v1.11 plug-in [23].

Tooth formation time and replacement rate in Diplodocus and

Camarasaurus were measured by counting incremental lines of von

Ebner (Fig. 1), which have been shown to represent daily fronts of

dentin deposition in several groups of extant amniotes [12,13,24–

26]. We define tooth replacement rate to be the time required to

replace one tooth in a given alveolus. This rate is sometimes

expressed in days, with the unit numerator implicit. Replacement

rate was calculated by subtracting tooth formation times for

successive teeth within one family, following Erickson [12,13].

Recently, Scheyer and Moser [27] questioned the identification of

incremental lines of von Ebner in sauropods, suggesting that they

could represent longer-period increments (e.g., Andresen lines).

We examined our thin sections and did not find smaller

increments between the lines spaced ca. 15 microns apart in areas

where preservation seems excellent, so we interpret these lines as

daily fronts of deposition. The ca. 15-micron spacing of

incremental lines of von Ebner observed in Diplodocus and

Camarasaurus is close to the mean value observed in labelling

studies of adult Alligator [13].

Enamel thickness was measured in ImageJ on photographs of

thin sections. Thickness was measured perpendicular to the

enamel-dentin junction at seven locations around the tooth crown

(three labial, three lingual, and one apical). Fewer measurements

were made on teeth for which enamel was chipped or missing in

certain locations. Labial and lingual measurements were taken at

roughly evenly spaced locations along the apicobasal axis (one

near the tooth tip or apex, one near the mid-length of the crown,

and one near the crown-root junction). Enamel thickness varies

around the tooth crown, so comparison of labial and lingual

thicknesses for each tooth was based on the average of three labial

measurements and the average of three lingual measurements. An

overall average of all measurements taken on a single tooth was

also calculated. Raw enamel measurements are presented in

Supporting Information (Raw Data S1).

Volumes of both the entire tooth and the crown (i.e., the part of

the tooth covered in enamel, including the pulp cavity) were

measured by water displacement via suspension three times and

averaged (see Raw Data S1) [28]. Total erupted tooth volume (the

sum of the volumes of all ‘fresh’ [functional but unworn] teeth in

the jaw) and crown volume (the sum of the crown volumes of all

fresh teeth in the jaw) were estimated for Camarasaurus and

Diplodocus. Tooth crowns are similar in volume for adjacent teeth

throughout and among jaw elements for all tooth positions except

for the last few in these species. For each species, the

antepenultimate and penultimate tooth crown volumes were

estimated as 75% of the average measured tooth crown volume,

and the last tooth position was estimated as 50% of the average

measured tooth crown volume. In contrast to total crown volumes,

total functional tooth volumes were more complicated to estimate

because the alternating pattern of tooth replacement in these

species yields tooth roots of substantially different size in adjacent

teeth. The average of total functional tooth volumes for two large

teeth was used as the functional individual tooth volume. As with

crowns, total functional tooth volumes for the antepenultimate,

penultimate, and ultimate tooth positions were estimated as 75%,

75%, and 50% of the volume of the largest teeth, respectively.

Finally, in Diplodocus, dentary teeth are about 10% smaller in

volume than premaxillary or maxillary teeth [29], so estimates of

the volumes of dentary teeth and crowns were adjusted

accordingly.

In many cases, destructive sampling of a specimen was not

possible. For these taxa, we developed a non-invasive approach for

estimating replacement rate, based on use of Camarasaurus as a

model for taxa with broad-crowned teeth (Patagosaurus, Mamench-

isaurus) and Diplodocus as a model for taxa with narrow-crowned

teeth (Nigersaurus, Rı́o Negro titanosaur). Both models were used

for estimation of replacement rate in Massospondylus, which has an

intermediate crown breadth. Tooth length was measured for teeth

of Camarasaurus and Diplodocus for which ages were already known

via counts of incremental lines of von Ebner. For each genus,

regression of tooth formation time on tooth length generated an

equation that was used to estimate tooth formation time in teeth

that were not sampled histologically.

We estimated volumetric tooth replacement rate (the time

required to replace the total dentition-in-use) by dividing total

erupted tooth volume by average tooth replacement rate. We

made a similar estimate using only tooth crown volumes

(volumetric crown replacement rate). We make the assumption

that tooth replacement rate was constant throughout and among

jaw elements due to similarities in the shape, number of

replacement teeth, and depth of alveoli in all but the distal-most

few teeth in each jaw element. Our simplification would tend to

inflate the volumetric replacement rates, but would affect each

species similarly, thus keeping results for each comparable to one

another.

Results

Histology-based tooth replacement rates and estimated replace-

ment rates are summarized in Tables 1–2. The dentary of the

Sauropod Dinosaur Tooth Replacement
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basal sauropodomorph Plateosaurus did not show any replacement

teeth in CT images, so no further analysis was undertaken. CT

scans of a maxilla and dentary of the basal sauropodomorph

Massospondylus revealed only a single replacement tooth (in one

alveolus of the dentary). Although we did thin section teeth of

Massospondylus, tooth replacement rate for that genus was estimated

because incremental lines were poorly preserved.

CT scans reveal that each premaxillary tooth family of

Camarasaurus (Fig. 2a, Movies S1 and S2) includes one functional

and up to three replacement teeth, whereas each premaxillary

tooth family of Diplodocus (Fig. 2d, Movie S3) includes up to one

functional and five replacement teeth. Incremental lines of von

Ebner visible in thin section (Figs. 1–2; Table 1) indicate that each

premaxillary tooth of Camarasaurus took over ten months to form

(ca. 1 tooth/315 days), whereas each Diplodocus tooth took only six

months to form (ca. 1 tooth/185 days). Average tooth replacement

rate in Camarasaurus was one tooth per two months (ca. 1 tooth/62

days), whereas it was about one tooth per month in Diplodocus (ca. 1

tooth/35 days).

Functional premaxillary teeth of the Camarasaurus and Diplodocus

individuals are 26.5 cm3 and 1.7 cm3 in volume, respectively.

Tooth crowns of the Camarasaurus and Diplodocus individuals are

15.7 cm3 and 1.5 cm3 in volume, respectively. We estimate total

functional (i.e., erupted) tooth volume across the dentition to be

1,272 cm3 in Camarasaurus and 69 cm3 in Diplodocus. When

measuring only tooth crowns, these values are 754 cm3 and

63 cm3, respectively. The volumetric tooth replacement rate was

about 10 times greater in Camarasaurus (1272 cm3/62

days = 20.5 cm3/day) than in Diplodocus (69 cm3/35

days = 2.0 cm3/day). The volumetric crown replacement rate

was about seven times greater in Camarasaurus (754 cm3/62

days = 12.2 cm3/day) than in Diplodocus (63 cm3/35

days = 1.8 cm3/day).

Premaxillary tooth crowns of Camarasaurus individuals have ca.

1.0 mm-thick enamel on both the labial and lingual surfaces of the

teeth; in contrast, the enamel of Diplodocus is thinner overall (ca.

0.5 mm) and is slightly asymmetrical, with the enamel on the

labial face of the tooth about 125–150% the enamel thickness on

the lingual face (Figs. 1–2, Table 3).

Our non-invasive approach to estimating tooth replacement

rate allowed us to evaluate a broader spectrum of sauropodo-

morphs. Tooth length and age are strongly related in both

Camarasaurus and Diplodocus (R2.0.95), but the equations describ-

ing these relationships differed between the taxa (see Raw Data

S1). We evaluated the performance of our estimation method by

estimating tooth replacement rate in Camarasaurus and Diplodocus,

taxa for which replacement rate is known. For a given tooth and its

successor, our method of estimating both formation time and

replacement rate was generally accurate to within one week. When

successive replacement estimates are averaged for several teeth in

Figure 1. Dental histology of the sauropod dinosaurs Camarasaurus and Diplodocus. Thin sections of Camarasaurus (A, C) and Diplodocus
(B, D) premaxillary teeth showing incremental lines of von Ebner (white arrowheads) in dentin. Teeth are oriented with their long axis horizontal and
the occlusal surface directed to the right. A shows the tip of tooth 3iii of Camarasaurus, and B shows the tip of tooth 4iv of Diplodocus. C and D are
enlarged images of one ‘limb’ of tooth 3ii and 4iii, respectively. Abbreviations: edj, enamel-dentin junction; en, enamel; pc, pulp cavity. [planned for
page width].
doi:10.1371/journal.pone.0069235.g001

Sauropod Dinosaur Tooth Replacement
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a single jaw element, the estimates are off by one day at most.

Because we were only able to measure the length of one tooth and

its successor for each of the non-histologically sampled taxa (aside

from the case of Nigersaurus), we expect that our estimates are

accurate for those taxa to within one week.

The initial increase in tooth size and crown breadth that

occurred near the base of Sauropoda was accompanied by a

reduction in tooth replacement rate (as estimated by replacement

tooth length). The much smaller teeth of basal sauropodomorphs

like Massospondylus and Patagosaurus formed and replaced faster

than did the larger teeth of basal sauropods like Mamenchisaurus

(Fig. 3; Table 2). Derived broad-crowned taxa (e.g., Camarasaurus)

exhibited a higher replacement rate than non-neosauropods like

Mamenchisaurus and matched the rate in the much smaller-toothed

Patagosaurus, but did not achieve rates as high as those observed in

the smaller-toothed Massospondylus. Non-neosauropods exhibit a

maximum of two replacement teeth per alveolus, whereas

neosauropods exhibit three to nine ([6,30], Fig. 3). Within

Neosauropoda, diplodocoids and titanosaurs independently

achieved higher tooth replacement rates than basal neosauropods

(Fig. 3). The highly specialized diplodocoid Nigersaurus is estimated

to have replaced each tooth as often as once every 14 days, twice

as fast as previous estimates [30 days, [6]] and by far the highest

rate for any dinosaur. The discrepancy between our estimate and a

previous one for Nigersaurus is potentially explainable by the fact

that the histology-based replacement rate previously reported for

Nigersaurus [6] was based on transverse thin sections of teeth.

Transverse sections likely yield inaccurate replacement rates due

to the limited number of incremental lines of von Ebner exposed

in any given transverse plane.

Discussion

In both Camarasaurus and Diplodocus, a volume equivalent to

approximately one tooth is replaced across the dentition every 1–2

days (20.5 cm3/day and 2.0 cm3/day, respectively). These taxa are

characterized by different styles of forming and replacing dentition:

Camarasaurus has larger teeth that are replaced less frequently,

whereas Diplodocus has smaller teeth that are replaced more

frequently. Even with Camarasaurus’ lower tooth replacement rates,

both sauropods exhibit tooth replacement rates on par with or higher

than those of non-sauropod dinosaurian herbivores (i.e., hadrosaur-

oid and ceratopsian ornithischians at 50–83 days; Table 4).

The enamel of Camarasaurus is roughly symmetrical labiolin-

gually, in contrast to the slightly asymmetrical enamel of Diplodocus.

The enamel of the diplodocoid Nigersaurus is highly asymmetrical,

with enamel on the labial side up to ten times thicker than on the

lingual side [5,6,31]. Labiolingually asymmetrical enamel appears

to characterize several diplodocoids, and extremely asymmetric

enamel characterizes Nigersaurus or a slightly more inclusive clade

[6]. Labiolingually asymmetrical enamel, reduced crown volume,

increased replacement rate, and the development of tooth batteries

evolved independently in two other dinosaur clades: iguanodon-

tian ornithopods [32] and ceratopsian marginocephalians [33].

The repeated evolution of these features together may represent

an adaptation to herbivory at large body size and within the

context of polyphyodonty, though several important differences in

the evolution of these features exist as well [5].

Sauropods were obligate herbivores, but their antecedents were

omnivorous [34–37]. The origin and early evolution of sauropods

involved increases in tooth volume [10] and body size [38].

Although herbivory and extremely large body size persisted among

the vast majority of sauropods, multiple lineages drastically

reduced the volume of functional crowns [10]. The repeated

independent evolution of narrow crowns suggests that they

conferred an adaptive advantage over broad crowns during the

second half of sauropod evolution. By the Late Cretaceous, only

narrow-crowned sauropod taxa remained [10,39]. Additionally,

following the disappearance of diplodocoids from the fossil record

in the early Late Cretaceous, tooth crowns in titanosauriforms

decreased in volume and breadth until they were similar in size

and shape to those of diplodocoids [10]. Sauropods with broad-

crowned teeth (e.g., Camarasaurus) evolved tooth replacement rates

on par with those of ornithischian herbivores that persisted into

the latest Cretaceous, and each Camarasaurus tooth was more

Table 1. Tooth formation time (days) and replacement rate (1
tooth/X days) in Diplodocus (YPM 4677) and Camarasaurus
(UMNH 5527).

Diplodocus tooth family

1 2 3 4

tooth position i – 187 – 183

ii 176 – 178 145

iii 141 – 144 113

iv – – 110 –

v – – 67 –

average replacement rate 35 – 37 35

Camarasaurus tooth family

1 2 3 4

tooth position i – – – 315

ii – – 208 253

iii – – – 190

iv – – – 130

average replacement rate – – – 62

Abbreviations: UMNH, Utah Museum of Natural History, Salt Lake City, USA;
YPM, Yale Peabody Museum, New Haven, USA.
doi:10.1371/journal.pone.0069235.t001

Table 2. Estimated tooth formation times (ages) and
replacement rates in several sauropodomorphs.

taxon estimated replacement rate (days)

Massospondylus (SAM-PK-K39) 17–30

Patagosaurus (MPEV-PV 1670) 58

Mamenchisaurus (ZDM0083) 98

Diplodocus (YPM 4677) 34

Nigersaurus (MNN GAD-512) 14

Camarasaurus (UMNH 5527) 62

Rı́o Negro specimen (MPCA-79) 20

There is a range for Massospondylus tooth replacement rate because estimates
were made both using the narrow-crowned and broad-crowned equations.
Note the similarity of estimated replacement rates for Camarasaurus and
Diplodocus with histologically obtained rates of 62 and 35 days for these taxa,
respectively.
Abbreviations: MNN, Musée National du Niger, Niamey, Niger; MPCA, Museo
Provincial Carlos Ameghino, Cipolletti, Argentina; SAM, South African Museum,
Ikizo Museums, Cape Town, South Africa; UMNH, Utah Museum of Natural
History, Salt Lake City, USA; YPM, Yale Peabody Museum, New Haven, USA;
ZDM, Zigong Dinosaur Museum, Zigong, China.
doi:10.1371/journal.pone.0069235.t002
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PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e69235



resistant to wear than smaller teeth by virtue of their larger volume

and thicker enamel. Why then did several neosauropod lineages

develop narrow-crowned teeth?

One explanation is that fresh teeth are more effective than worn

teeth. Replacing a tooth every month reduces the number of

excessively worn crowns in the functional dentition, which

prolongs contact with opposing teeth and with food. Additionally,

although individual teeth were being replaced more frequently, the

smaller crown volume results in a lower rate of mineralized tissue

production and loss – narrow-crowned taxa had to recoup around

10% of the crown volume of dental tissue that was required in

their larger-crowned relatives per tooth replaced. Furthermore,

the narrow crowns of Diplodocus are made up of a larger proportion

of enamel to dentin than the broad crowns of Camarasaurus. The

advent of narrow-crowned dentition therefore enabled the animal

to have many more fresh teeth at any given time, while losing far

less mineralized tissue. Furthermore, smaller, more slender teeth

would have allowed for smaller tooth roots (Fig. 2) and smaller and

lighter cranial bones, resulting in a lighter skull overall. A small

head-to-body volume ratio sets sauropods apart from other

dinosaurian herbivores [10].

In a finite element analysis of the skull of Diplodocus, Young et al.

[40] identified high stresses at the bases of teeth that would have

been incurred during branch stripping or other feeding strategies.

In the context of those results, they interpreted high tooth

replacement rates in Diplodocus as an adaptation that would have

accommodated increased levels of tooth breakage. Aside from

concerns that tooth breakage is maladaptive, producing ineffective

and infection-prone teeth, we briefly discuss one testable

consequence of the Young et al. hypothesis. If Diplodocus and

other narrow-crowned sauropods experienced tooth breakage as a

result of branch stripping or static biting, then the fossil record

should bear evidence of such failure. Although the record of

cranial remains is sparse for sauropods, it is relatively good for

Diplodocus and other narrow-crowned sauropods, and we know of

no evidence of jaws preserving teeth broken in life.

Rather than being related to high levels of tooth breakage, we

propose that increased replacement rates are related to increased

wear rates that may have been a consequence of a shift in diet

[10,20]. Some narrow-crowned taxa (e.g., Diplodocus) were likely

low-browsers [6,18,20,41,42], a behavior that leads to increased

ingestion of abrasive exogenous grit [43]. The sauropod most

highly specialized for low browsing, Nigersaurus, also has the highest

known replacement rate of any dinosaur. In contrast, sauropods

with broader tooth crowns and slower replacement rates, such as

Mamenchisaurus and Camarasaurus, are thought to have been mid- to

upper-canopy browsers [18,20,39,41,42,44,45], where exogenous

grit levels are expected to be lowest.

Conclusions
Tooth replacement rate, size, and shape data indicate that

despite their somewhat stereotyped body plan and large body size,

sauropod dinosaurs exhibited varied approaches to feeding. The

coexisting but morphologically disparate and distantly related Late

Figure 2. Tooth replacement in the sauropod dinosaurs Camarasaurus and Diplodocus. Reconstructed skulls (A, D) and premaxillary teeth
(B, C) of Camarasaurus (A, B) and Diplodocus (C, D). B and C include CT-generated sagittal and transverse sections of premaxillary alveoli and
photographs of thin sections of Camarasaurus (UMNH 5527) and Diplodocus (YMP 4677). Premaxillae show replacement teeth in each of the four
alveoli adjacent to the symphysis labelled by their position along the tooth row (1–4) and their position in the replacement sequence at each tooth
position (i–v). Sagittal sections in B and C were taken at premaxillary tooth position 4 in Camarasaurus and premaxillary tooth position 1 in
Diplodocus. The symphysis faces the bottom of the page in transverse sections. Photographs of thin sections of Diplodocus and Camarasaurus teeth
show enamel (en), the pulp cavity (pc), daily-deposited incremental lines of von Ebner (arrowheads mark every other line) in the dentin (den), and
the crown-root junction (crj). The 20 mm scale bar is for the premaxilla and tooth images in (B); 10 mm scale bar is for premaxilla and tooth images
in (C). Skull reconstructions are from [19,46][planned for page width].
doi:10.1371/journal.pone.0069235.g002

Table 3. Summary of enamel thickness (mm) in Diplodocus
(YPM 4677) and Camarasaurus (UMNH 5527) at different tooth
developmental stages (i–v).

Diplodocus i ii iii iv v

average thickness 0.45 0.45 0.31 0.23 0.08

labial/lingual 1.25 1.41 1.53 1.19 1.12

Camarasaurus i ii iii iv

average thickness 0.97 0.62 0.38 0.12

labial/lingual 0.99 0.93 0.86 1.23

Each value shown is an average of teeth from more than one alveolus at similar
stages of development (e.g., ‘ii’ is an average of values for tooth position 2ii, 3ii,
4ii, etc.). See Raw Data S1.
doi:10.1371/journal.pone.0069235.t003

Sauropod Dinosaur Tooth Replacement
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Jurassic sauropods Camarasaurus and Diplodocus differed greatly in

their anatomy related to food acquisition: Camarasaurus had a large

volume of broad-crowned teeth that were replaced relatively

slowly, whereas Diplodocus had a small volume of narrow-crowned

teeth that were replaced very quickly. This variety represents a

potential factor that allowed multiple gigantic species such as

Camarasaurus and Diplodocus to partition the same ecosystem. The

repeated evolution of narrow-crowned teeth in sauropods appears

to have been accompanied by an increase in tooth replacement

rate, which would have equipped these forms with less worn teeth

over their lifetimes and allowed their skulls to be lighter.

Supporting Information

Raw Data S1 Microsoft Excel spreadsheet containing tooth

volumes, crown volumes, enamel thicknesses, tooth lengths, and

estimation method for tooth replacement rate for various

sauropodomorphs investigated in this study.

(XLSX)

Movie S1 CT-generated movie of the premaxilla of Camarasaurus

(UMNH 5527) in mesiodistal view (see separate.mov file)

(MOV)

Movie S2 CT-generated movie of the premaxilla of Camarasaurus

(UMNH 5527) in apicobasal view (see separate.mov file).

(MOV)

Movie S3 CT-generated movie of the premaxilla of Diplodocus

(YPM 4677), with bone rendered transparent and teeth opaque

(see separate.avi file).

(WMV)

Figure 3. Cladogram of sauropodomorphs showing the optimization of key features related to elevated tooth replacement rates.
The light gray field indicates taxa that have at least three replacement teeth at each tooth position; dark gray field encapsulates taxa that have
narrow tooth crowns. Silhouettes along the top of the cladogram show the number and size of replacement teeth in one tooth position. These
include (from left to right): Patagosaurus (MPEF-PV 1670), Mamenchisaurus [47], Diplodocus (this study), Nigersaurus [Sereno, Wilson, Witmer, Whitlock,
Maga, Ide and Rowe, unpublished data], Camarasaurus (this study), and the Rı́o Negro titanosaur (MPCA-79) [48]. Number of replacement teeth is
unknown in Brachiosauridae, but the taxon is optimized to have had at least three. Cladogram based on [30] with the addition of Tazoudasaurus [49]
and Bonitasaura [50]. [planned for column width].
doi:10.1371/journal.pone.0069235.g003

Table 4. Tooth replacement rates (days) for archosaurs.

taxon
tooth replacement
rate (days)

Archosauria

crocodiliform 105

Dinosauria

Ornithischia

Triceratops 83

Hadrosauridae

Maiasaura 58

Edmontosaurus 50

Prosaurolophus 81

Saurischia

Sauropoda

Camarasaurus 62

Diplodocus 35

Nigersaurus 14–30

Theropoda

Tyrannosaurus 777

‘albertosaur’ 454

Deinonychus 290

Data for sauropods are from this study; other data are from [6,12].
doi:10.1371/journal.pone.0069235.t004
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