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Abstract

Quantitative imaging methods to analyze cell migration assays are not standardized. Here we present a suite of two-
dimensional barrier assays describing the collective spreading of an initially-confined population of 3T3 fibroblast cells. To
quantify the motility rate we apply two different automatic image detection methods to locate the position of the leading
edge of the spreading population after 24, 48 and 72 hours. These results are compared with a manual edge detection
method where we systematically vary the detection threshold. Our results indicate that the observed spreading rates are
very sensitive to the choice of image analysis tools and we show that a standard measure of cell migration can vary by as
much as 25% for the same experimental images depending on the details of the image analysis tools. Our results imply that
it is very difficult, if not impossible, to meaningfully compare previously published measures of cell migration since previous
results have been obtained using different image analysis techniques and the details of these techniques are not always
reported. Using a mathematical model, we provide a physical interpretation of our edge detection results. The physical
interpretation is important since edge detection algorithms alone do not specify any physical measure, or physical
definition, of the leading edge of the spreading population. Our modeling indicates that variations in the image threshold
parameter correspond to a consistent variation in the local cell density. This means that varying the threshold parameter is
equivalent to varying the location of the leading edge in the range of approximately 1–5% of the maximum cell density.
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Introduction

Cell migration plays a key role in development [1,2], repair [3–

5] and disease [6,7]. Abnormalities in cell migration are associated

with malignant spreading [7–9] and slowed wound repair [10].

Potential therapies aimed at treating these abnormalities may seek

to manipulate the rate of migration by applying pharmaceutical

drugs or topical treatments [8,10,11]. Development and validation

of such therapies can be assessed by comparing assays performed

under control conditions with an equivalent assay where the

treatment has been applied [12]. In vitro migration assays can also

be used to quantify the role of experimental variations such as the

influence of different substrates [3,4]. Regardless of the purpose

for performing an in vitro cell migration assay, image detection

methods that can be used to quantify the rate of cell migration are

an essential element of interpreting and quantifying such assays.

Various types of assays have been used to study cell migration

including two-dimensional scratch assays [3,4] and three-dimen-

sional Transwell assays [13,14]. More recently, two-dimensional

circular barrier assays have become a popular alternative to

scratch assays [15] since they do not damage the cell monolayer,

or the substrate, and are therefore thought to be more

reproducible than scratch assays [8,16]. Barrier assays are

performed by placing a population of cells inside a circular

barrier. The barrier is lifted and the subsequent spreading of the

population is measured [17]. An essential element of interpreting

and quantifying a barrier assay is to locate the position of the

leading edge of the spreading population so that the rate at which

the cell population spreads across the substrate can be calculated.

A common approach to quantify the cell migration rate in a

barrier assay is to report the percentage change in area [15,16,18–

20]. This can be expressed as

M(t)~
A(t){A(0)

A(0)
|100, ð1Þ

where A(0) is the initial area enclosed by the population of cells,

A(t) is the area enclosed by the population of cells at time t, and
M(t) is the percentage change in area at time t.

Estimates of cell migration rates using equation (1) are often

obtained by hand tracing the area enclosing the spreading cell

population on an image of the assay [21,22]. Unfortunately, hand

tracing the area enclosed by the leading edge of a spreading cell

population is subjective [23]. To overcome this limitation,

automated image analysis software, including ImageJ [24] and

MATLAB’s Image Processing Toolbox [25], have become

important alternatives to hand tracing [8,26]. These software

tools use edge detection and segmentation algorithms to determine

the location of the leading edge of the spreading cell population.

This data can then be used to quantify the cell migration rate in
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terms of equation (1). In addition to using automatic edge

detection algorithms, it is also possible to implement user-defined

edge detection options in MATLAB’s Image Processing Toolbox

[25] so that the user has complete control over the choice of image

detection thresholds.

Since there is no standardized method for quantifying the

location of the leading edge in a barrier assay, it is often difficult, if

not impossible, to meaningfully compare published measures of

cell migration in terms of equation (1). This difficulty is

exacerbated by the fact that previously published results have

been obtained using different image analysis techniques and the

details are not always reported [27–31]. To address this limitation,

here we apply three different edge detection techniques to a set of

images from a two-dimensional barrier assay describing the

collective spreading of a population of 3T3 fibroblast cells. We

apply three different edge detection techniques to the same

experimental data set and compare results from two commonly

used automatic edge detection techniques and one manual edge

detection technique. Our results indicate that the location of the

leading edge is sensitive to the details of the edge detection

procedure and this can lead to significantly different quantitative

estimates of cell migration. Using a reasonable range of threshold

values we show that estimates of cell migration, given by equation

(1), can vary by as much as 25% for the same data set.

To provide further insight into the edge detection techniques,

we also interpret our results using a mathematical model to

quantitatively describe the temporal cell spreading process

associated with the barrier assay. Using previously-determined

estimates of the cell diffusivity [17], we show that the location of

the leading edge, as defined by the image detection methods,

corresponds to contours of cell density in the range of approxi-

mately 1–5% of the maximum cell packing density. Comparing

the location of the leading edge determined by the image detection

methods and the mathematical model of the cell spreading

provides us with a simple, but meaningful, physical interpretation

of the threshold parameters used in the image detection methods.

Materials and Methods

0.1 Experimental Methods
Murine fibroblast 3T3 cells (ATCC, CCL-92, Manassas, VA,

USA) were grown in T175 cm2 tissue culture flasks (Nunc,

Thermo Scientific, Denmark) using Dulbecco’s modified Eagle

medium (Invitrogen, Australia) supplemented with 5% fetal calf

serum (FCS) (Hyclone, New Zealand), 2mM L-glutamine (Invitro-

gen) and 1% v/v Penicillin/Streptomycin (Invitrogen) in 5% CO2

at 37uC. Prior to confluence, cells were lifted using 0:05 % trypsin

(Invitrogen, Australia) and viable cells were counted using a

Trypan blue exclusion test and a haemocytometer.

Cell migration experiments were performed using a circular

barrier assay. Metal-silicone barriers, 6 mm in diameter (Aix

Scientifics, Germany), were cleaned, sterilized, dried and placed in

the center of the wells in a 24-well tissue culture plate with 500 mL
of culture medium. The wells in tissue culture plate have a

diameter of 15.6 mm.

Two different densities of cell suspensions were used: 10,000

and 30,000 cells/mL. Ten mg=mL Mitomycin-C (Sigma Aldrich,

Australia) was added to the cell solutions for one hour to inhibit

cell proliferation [32]. One mL of cell suspension was carefully

inserted in the barrier to ensure that the cells were approximately

evenly distributed. Once seeded, the tissue culture plate was left for

one hour in a humidified incubator at 37uC and 5% CO2 to allow

the cells to attach to the surface. After the cells attached to the

surface, the barriers were removed and the cell layer was washed

with serum free medium (SFM; culture medium without FCS) and

replaced with 0.5 mL of culture medium. Plates were incubated at

37
0
C in 5% CO2 for four different times, t~0, 24, 48 and 72

hours. Each barrier assay, for each time point, was repeated three

times.

Images of the spreading cell population were obtained by fixing

cells with 10% formalin, followed by 0:01% crystal violet (Sigma-

Aldrich, Australia). The stain was rinsed with phosphate-buffered

saline (Invitrogen, Australia) and the plates were air-dried. Images

were acquired using a stereo microscope with a Nixon digital

camera (DXM1200C).

0.2 Edge Detection Methods
Three methods were used to detect the location of the leading

edge: (i) a manual detection method written using MATLAB’s

Image Processing Toolbox (version 7.12) [25], (ii) an automated

method using MATLAB’s Image Processing Toolbox (version

7.12) [25] and (iii) an automated method using ImageJ (version

1.46r) [24]. All three methods are based on a Sobel edge detection

algorithm [33] but differ in the way that the thresholds are chosen.

Although different edge detection methods are available, such as

the active contour method [34] and the Canny method [35,36],

we choose to focus on MATLAB and ImageJ implementations of

the Sobel method since these software tools are widely available.

0.2.1 Manual edge detection using the MATLAB image

processing toolbox. Customized image processing software

was written using the MATLAB Image Processing Toolbox [25].

The following procedure was used to detect the location of the

leading edge of the spreading population. The image was imported

(imread) and converted from color to grayscale (rgbtogray). The Sobel

method was applied to the grayscale image by specifying a

sensitivity threshold value S, in which all edges weaker than S are

excluded (edge[grayscale image, ‘Sobel’, S]). The lines in the resulting

image were dilated to show the outlines of detected edges (strel(7),

imdilate). Remaining empty spaces in the images were filled and all

objects disconnected from the leading edge were removed (imfill,

imclearborder). The image was smoothed and filtered to remove any

noise (imerode, medfilt2) and the area enclosed by the detected

leading edge was estimated (regionprops).

Before we analyzed the experimental images, we undertook a

preliminary step where we applied a wide range of threshold

values to our experimental images, S[½0:001,0:5�. We found that

thresholds in the range S[½0:01,0:08� produced visually reasonable

results.

0.2.2 Automatic edge detection using the MATLAB Image

Processing Toolbox. The manual edge detection method

described in section 0.2.1 can be implemented in an automated

mode by allowing the MATLAB Image Processing toolbox to

automatically determine the threshold, S, for each individual

image [25]. The following procedure was used to detect the

location of the leading edge. The image was imported (imread) and

converted from color to grayscale (rgbtogray). The Sobel method

was applied in the automatic mode (edge[grayscale image, ‘Sobel’]).

The lines in the resulting image were dilated (strel(7), imdilate).

Remaining empty spaces were filled and all objects disconnected

from the leading edge were removed (imfill, imclearborder). The

image was smoothed and filtered (imerode, medfilt2) and the area

enclosed by the detected leading edge was estimated (regionprops).

0.2.3 Automatic edge detection using ImageJ. ImageJ

software [24] was used to automatically detect the position of the

leading edge. For all images, the image scale was set (Analyze-Set

scale) and color images were converted to grayscale (Image-Type-

32bit). The Sobel method was used to enhance edges (Process-Find

Edges). The image was sharpened (Process-Find Edges) and an
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automatically determined threshold was applied (Image-Adjust-

Threshold-B&W-Apply). After applying the Sobel method again

(Process-Find Edges), the wand tracing tool, located in the main icons

box, was used to select the detected leading edge. The area

enclosed by the detected leading edge was calculated (Analyze-Set

Measurements-area, Analyze-Measure).

0.3 Mathematical Modeling Tools
To provide a physical interpretation of our image analysis

results, we use a mathematical model to relate the edge detection

results to the spatial distribution of the cell density. We model the

spreading population of cells using a linear diffusion equation [3–

5], with previously determined values of the cell diffusivity [17].

The effects of cell proliferation are neglected in our mathematical

model, and this is consistent with our experimental protocol where

cells were pretreated with Mitomycin-C to suppress cell prolifer-

ation [32].

To relate our edge detection results to the cell density, we

consider the solution of the two-dimensional axisymmetric

diffusion equation.

Lc
Lt

~D
L2c
Lr2

z
1

r

Lc
Lr

 !
, ð2Þ

where r is radial position, t is time, c(r,t) is the non-dimensional

cell density and D is the cell diffusivity, which is a measure of

random, undirected, cell motility [17,37]. The non-dimensional

cell density is obtained by scaling the dimensional cell density,

�cc(r,t), by the carrying capacity density K . This gives

c(r,t)~�cc(r,t)=K , with c(r,t)[½0,1�. The carrying capacity density

is estimated by assuming that the maximum packing density of

cells corresponds to a square packing density. The average cell

diameter is 25 mm, giving K&1:6|10{3 cells per mm2 [17].

We solve equation (2) on the domain 0ƒrƒ7:8 mm. The

boundary at r~0 mm corresponds to the center of the well and we

apply a symmetry condition, Lc=Lr~0, here [38]. The boundary

at r~7:8 mm corresponds to the outer edge of the well which is a

physical boundary and so we apply a zero flux boundary condition

here. The boundary condition at r~7:8 mm is irrelevant for our

barrier assay results since the leading edge of the spreading cell

front did not reach this boundary on the time scale of the

experiments [17]. The initial condition is given by,

c(r,0)~

c0, 0 ƒ r v 3:0 mm,

0, 3:0ƒ r ƒ 7:8 mm,

8><
>: ð3Þ

where c0 is the density of cells initially inside the barrier. Assuming

that the cells have an average diameter of 25 mm [17], we can pack

3000/25 cells across the radius of the barrier. Hence, we estimate

that the maximum number of cells that can be packed in a

monolayer in the barrier is pr2~p(3000=25)2~45,239. To

specify the initial condition using for equation (3), we assume that

either 10,000 or 30,000 cells are uniformly distributed within the

barrier giving c0~10,000=45,239&0:22 and

c0~30,000=45,239&0:66, respectively.
Numerical solutions of equation (2) are obtained using a finite-

difference approximation on a grid with a uniform grid spacing of

width dr, and implicit Euler stepping with uniform time steps of

duration dt [39,40].

Results

0.4 Locating the Leading Edge
To demonstrate the sensitivity of different image processing

tools, we apply the manual edge detection method, with different

threshold values, to images showing the entire spreading

populations in several different barrier assays. Images in Fig. 1A

and Fig. 1G show the spreading population in a barrier assay with

30,000 cells at t~0 and t~72 hours, respectively. Visually, the

leading edge of the cell population at t~0 (Fig. 1A) appears to be

relatively sharp and well-defined. In contrast, the leading edge of

the cell population at t~72 hours (Fig. 1G) is diffuse and less well-

defined. This indicates that is it difficult to visually identify the

location of the leading edge after the barrier has been lifted and

the cell population spreads outwards, away from the initially-

confined location.

Our visual interpretation of the images indicate that the precise

location of the leading edge is not always straightforward to define.

To explore this subjectivity, we use the manual edge detection

method (section 0.2.1) by specifying different values of the Sobel

threshold, S. Results in Fig. 1B and Fig. 1C show the detected

leading edges at t~0 hours using a high threshold (S~0:0800)
and a low threshold (S~0:0135), respectively. For both thresholds,

the detected leading edges appear to be appropriate representa-

tions of the leading edge of the spreading population, and are very

similar to each other. Results in Fig. 1H and Fig. 1I show the

detected leading edges at t~72 hours for a high threshold

(S~0:0565) and a low threshold (S~0:0135), respectively. Both
detected edges at t~72 hours appear to be reasonable approx-

imations to the location of the leading edge of the spreading

population, however they are very different to each other which

indicates that the results are sensitive to S.

To qualitatively compare the two leading edges detected at t~0
hours (Fig. 1B and Fig. 1C) we superimpose the two detected

leading edges in Fig. 1D and show a magnified portion of these

edges in Fig. 1E. The superimposed edges confirm that the choice

of S has relatively little influence at t~0 hours. We now compare

equivalent results at t~72 hours from Fig. 1H and Fig. 1I.

Superimposing the two leading edges for high and low S
thresholds in Fig. 1J indicates that there is a distinct difference

between them. A magnified portion of the detected leading edges

is shown in Fig. 1K which also supports our initial observation that

it is difficult to visually delineate the leading edge of the spreading

population when the leading edge is diffuse.

Our edge detection results at t~0 hours and t~72 hours, in

Fig. 1A–E and Fig. 1G–K, qualitatively indicate that the threshold

value is important in detecting the edge at a later time. To

quantitatively compare our edge detection results, we calculate the

area enclosed by the detected leading edge and convert this area

into an equivalent circle with radius
ffiffiffiffiffiffiffiffiffi
A=p

p
. Results in Fig. 1F

show the equivalent circular areas for low and high thresholds at

t~0 hours. The area of the low and high thresholds are 32:2 mm2

and 31:1 mm2, respectively, giving a relatively small difference of

1:1 mm2. These two circles are almost visually indistinguishable at

the scale shown in Fig. 1F, confirming there is very relatively little

difference regardless of the threshold. Equivalent circular areas in

Fig. 1L show the low and high threshold areas at t~72 hours

superimposed on the initial area. The area of the two outer circles

in Fig. 1L is 52:9 mm2 and 60:8 mm2, giving a relatively large

difference of 7:9 mm2. If we take the initial area to be A(0)~31:1

mm2 then equation (1) gives us M(72)~70:1% for the high

threshold leading edge in Fig. 1H and M(72)~95:5% for the low

threshold leading edge in Fig. 1I. These results indicate that the

Sensitivity of Edge Detection Methods
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Figure 1. Locating the leading edge in a barrier assay. Images of barrier assays containing 30,000 cells at t~0 hours (A–F) and t~72 hours (G–
L). (A,G): Images from the barrier assay. (B,H): Leading edge for a high threshold S in red, superimposed on an image of the spreading population.
(C,I): Leading edge for a low threshold S in blue, superimposed on the an image of the spreading population. (D,J): Comparing high and low S
detected edges at t~0 hours. (E,K): Detailed comparison of the detected edges in the boxed area in D and J. (F,L): Comparing equivalent circular
areas. The black line in (L) shows the initial circular area. Scales are given in each subfigure.
doi:10.1371/journal.pone.0067389.g001
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increase in area enclosed within the leading edge of the spreading

cell population is very sensitive to the choice of threshold and the

results can vary by as much as 25%.

0.5 Comparing Edge Detection Techniques
To explore and quantify the sensitivity in detecting the leading

edge for our barrier assays, we now extend our initial investigation

and detect the location of the leading edge across all experimental

images acquired at different time points. We applied the manual

edge detection technique to all images using thresholds within the

range S[½0:015,0:8�. For each threshold value, we calculated the

area enclosed by the detected leading edge and we analyzed the

images from each experimental replicate separately so that we

could calculate the mean area enclosed by the leading edge,

SA(t)T. We estimated the variability amongst the experimental

replicates by calculating the standard deviation about the mean, s.
Our results are summarised in Table 1, where we see that the

variability amongst the experimental replicates is small with typical

values of s=SA(t)Tv5%. From this point onward we will report

all our experimental results in terms of the mean area, SA(t)T, and
for convenience we will drop the angle bracket notation.

We now compare the sensitivity of our manual edge detection

results by analyzing the images at using a range of threshold values

for several different time points for barrier assays with two

different initial cell densities. Results in Fig. 2A and Fig. 2B show

the relationship between the average area enclosed by the detected

leading edge and the threshold value S for a barrier assay with

10,000 and 30,000 cells, respectively. Initially, for the barrier assay

with 10,000 cells, the minimum average area enclosed by the

detected leading edge is 27:4 mm2 and the maximum area is 30:1

mm2. For the barrier assay with 30,000 cells, the minimum and

maximum initial average area enclosed by the detected leading

edge is 31:1 mm2 and 33:5 mm2, respectively. For both initial cell

densities, the difference between the maximum and minimum

detected initial area is relatively small compared to the differences

we observe at later times, as we will now demonstrate.

Results in Fig. 2A and Fig. 2B show that the average area

enclosed by the detected leading edges increases with time as the

cell population spreads outwards from the barrier. We expect that

the sensitivity in detecting the location of the leading edge will

increase with time as the population spreads and the leading edge

becomes increasingly diffuse. For the barrier assays initialized with

10,000 cells, results in Fig. 2A show that the minimum area

detected at t~24 hours is 31:9 mm2 and the maximum area

detected is 36:0 mm2, giving a difference of mm2. At t~48 hours

the minimum area is 36:2 mm2 and the maximum area is 43:4

mm2, giving a difference of 7:2 mm2. At t~72 hours, the

minimum area is 39:7 mm2 and the maximum area is 47:1 mm2,

giving a relatively large difference of 7:4 mm2. These results

indicate that the sensitivity in detecting the leading edge is

relatively large and that the results depend on the choice of the

threshold, and this sensitivity increases with time as the leading

edge of the spreading population becomes increasingly diffuse.

Equivalent manual edge detection results for barrier assays

containing 30,000 cells in Fig. 2B show similar trends to the results

previously reported for the barrier assays with 10,000 cells. The

minimum detected average areas at 24, 48 and 72 hours are 44:8

mm2, 50:0 mm2 and 52:9 mm2, while the maximum detected

average areas are 50:3 mm2, 55:5 mm2 and 60:8 mm2,

respectively. Comparing the minimum and maximum average

areas for the barrier assay with 30,000 cells gives differences of 5:5

mm2, 5:5 mm2 and 7:9 mm2 at t~24, 48 and 72 hours,

respectively.
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Our results using the manual edge detection method illustrate

that there are many plausible approximations of the leading edge

of the spreading populations for a range of threshold values. We

now compare the manual edge detection algorithm with two

automatic edge detection methods. We applied the automatic

MATLAB and ImageJ techniques (section 0.2.3 and section 0.2.2),

to the same images we previously analysed using the manual edge

detection method. For both automatic techniques, the average

area enclosed by the detected edge was calculated and compared

to the average areas obtained using the manual edge detection

method. Results in Fig. 2A and Fig. 2B show the automatic edge

detection results relative to the manual results, and estimates of the

mean and standard deviation of the area obtained using the

automatic techniques are given in Table 1. The MATLAB and

ImageJ results confirm that both automatic techniques give

estimates that are consistent with those obtained using the manual

edge detection method. However, the automatic techniques are

restricted in the sense that they can only detect one particular

location whereas the manual edge detection method can produce

Figure 2. Comparing edge detection techniques. Comparing three edge detection techniques for barrier assays with two different cell
densities: 10,000 cells (A,C) and 30,000 (B,D) cells. (A–B): Comparison of the three edge detection techniques showing the mean area enclosed by the
leading detected edge at t~0, 24, 48 and 72 hours with time points indicated. Red lines correspond to the the manual edge technique using
MATLAB’s Image Processing Toolbox for a range of the threshold parameter S[½0:015,0:08�. Black dots correspond to the automatic MATLAB results
and the green asterisks correspond to the automatic ImageJ results. (C–D): The migration rate of cells in the barrier assays expressed as M(t)% using
equation (1). Results correspond to the minimum (red) and maximum (blue) average areas detected using the manual MATLAB technique. Error bars
correspond to one standard deviation about the mean.
doi:10.1371/journal.pone.0067389.g002
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many different results, all of which are reasonable estimates of the

position of the leading edge of the spreading cell population.

We now use equation (1) to quantify the observed cell migration

in our barrier assays. This approach requires that we use an

estimate of A(0), the initial average area. Our previous results

indicate that the initial average area of the spreading population

ranged from 27:4 to 30:1 mm2 for the barrier assay with 10,000

cells while the initial average area of the spreading population

ranged from 31:1 to 33:5 mm2. To estimate A(0) we will take the
average of these maximum and minimum estimates so that we

have A(0)~28:8 and A(0)~32:3 mm2 for the barrier assays with

10,000 and 30,000 cells, respectively. To estimate the sensitivity of

our results as a function of the threshold value in the manual edge

detection technique, we apply equation (1) using the minimum and

maximum detected average areas from our manual edge detection

method. The details of the results for all three edge detection

techniques are given in Table 2. Although we observe that the two

automatic methods produce similar results for certain assays at

certain times, the differences between the results for the two

automatic edge detection methods can be very large with

M(72)~68:9 % for the barrier assay with 30,000 cells according

to the ImageJ results whereas M(72)~82:0 % for the same assay

according to the automatic MATLAB method. Profiles in Fig. 2C

and Fig. 2D show how M(t) varies with time according to the

results obtained from the manual edge detection method applied

to the images from the barrier assays initialized with 10,000 and

30,000 cells, respectively. Figure 2C and Fig. 2D each contain two

sets of results corresponding to the average estimate of M(t)
calculated using the low S threshold, and the average estimate of

M(t) calculated using the high S threshold. The differences

between the low and high threshold results in Fig. 2C is 14:2 %,

25:0 % and 25:7 % for t~24, 48 and 72 hours, respectively. The

difference between the low and high threshold results in Fig. 2D

(30,000 cells) is 17:0 %, 17:0 % and 24:5 % for t~24, 48 and 72
hours, respectively. These results indicate that estimates of cell

migration using equation (1) are very sensitive to the details of the

edge detection technique and that this sensitivity increases with

time.

0.6 A Physical Interpretation of the Leading Edge
Previously, we used three different edge detection techniques to

determine the location of the leading edge of spreading cell

populations in several barrier assays. Although these techniques

produce visually reasonable approximations to the position of the

leading edges, the techniques do not give us any physical measure,

or definition, of the leading edge. To address this, we now

interpret our edge detection results using a mathematical model of

the cell spreading process. For each barrier assay experiment, we

solve equation (2) using the appropriate boundary and initial

conditions (section 0.3) and previous estimates of the cell diffusivity

[17]. The solution profiles in Fig. 3A and Fig. 3D, show the

predicted cell density near the leading edge of the spreading cell

populations in the barrier assay at t~24, 48 and 72 hours. The

difference between the two initial cell densities in the barrier assays

is shown in these profiles since we have c0~0:22 in the center of

the barriers for the assays initialized with 10,000 cells (Fig. 3A)

whereas we have c0~0:66 in the center of the barriers for the

assays initialized with 30,000 cells (Fig. 3D).

To determine a physical relationship between the threshold

value S and the cell density at the corresponding detected edge, we

compare our manual edge detection results to solutions of

equation (2). For each set of averaged edge detection results, we

scale the threshold values to match the corresponding solution of

equation (2). The scaling is given by.

Sscaled~cminz cmax{cminð Þ S{Smin

Smax{Smin

, ð4Þ

where cmin and cmax are the minimum and maximum contours of

the solution of equation (2), c(r,t), which enclose the same average

area detected by the manual edge detection method applied with

the minimum and maximum thresholds, Smin and Smax, respec-

tively.

Profiles in Fig. 3B and Fig. 3E compare the scaled edge

detection results to corresponding solutions of equation (2) at

t~24, 48 and 72 hours for barrier assays with 10,000 and 30,000

cells, respectively. For both initial density experiments at all time

points, the shape of the c(r,t) density profiles matches the shape of

the edge detection results. This match indicates that varying the

threshold value S corresponds to a consistent variation in the

spatial distribution of cell density in the spreading cell population.

Comparing the edge detection results to the corresponding

contours of the cell density, we observe that the manual edge

detection technique identifies a range of leading edges corre-

sponding to cell densities of 2–5:5 % at t~24 hours, 0:9–3:2 % at

t~48 hours and 0:8–2:5 % at t~72 hours for the barrier assays

with 10,000 cells. Equivalent results in Fig. 3E indicates that the

manual edge detection technique identifies a range of leading

edges corresponding to cell densities of 0:2–0:8 %, 0:5–1:5 % and

0:8–1:8 %, for t~24, 48, 72 hours for the barrier assay with

30,000 cells. In summary, the manual edge detection technique

identifies a range of leading edges corresponding to cell densities of

approximately 1–5 % of the maximum packing density.

Table 2. Quantifying the cell migration rate using equation (1).

Number of Cells Time (hours) M(t) Manual S High M(t) Manual S Low M(t) Auto ImageJ M(t) Auto Matlab

10, 000 24 10.8 25.0 14.4 17.9

48 25.7 50.7 35.0 34.8

72 37.8 63.5 49.7 53.8

30,000 24 49.6 66.6 50.8 50.0

48 65.6 82.7 66.8 71.3

72 74.6 99.1 68.9 82.0

The cell migration rate in terms of M(t) using equation (1) and the average area results from Table 1. Results are reported for the manual edge detection technique with
a high threshold (Manual S high), the manual edge detection technique with a low threshold (Manual S Low), the MATLAB Image Processing Toolbox automatic
technique (Auto MATLAB) and the ImageJ automatic technique (Auto ImageJ).
doi:10.1371/journal.pone.0067389.t002
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The images in Fig. 3C and Fig. 3F show snapshots from two

barrier assays at t~72 hours with 10,000 and 30,000 cells,

respectively. To illustrate the location of the leading edge, defined

by contoured solutions of equation (2), we superimpose the cmin

and cmax contour of the appropriate solution of equation (2). In

both cases we observe that the cmin and cmax contours are

reasonable approximations to the location of the position of the

leading edge of the spreading populations. In each experiment, the

difference between the cmin and cmax contours are relatively large

and this recapitulates the sensitivity observed previously in Fig. 1H

and Fig. 1I.

Discussion and Conclusions

Cell migration is an essential aspect of development [1,2], repair

[3–5] and disease [6,7]. In vitro cell migration assays are routinely

used to assess the migration potential of different cell types [8,9] as

well as assessing the potential for different types of treatment

strategies aimed at regulating cell migration [10–12,16]. Current-

ly, many studies report results from cell migration assays without

specifying the details of how the assays are measured or

interpreted [27–31]. In an attempt to address this limitation we

compare three different image processing techniques to quantify

the migration rate of cells in a two-dimensional barrier assay [17].

Our visual interpretation of the images from the barrier assays

indicate that the position of the leading edge of the spreading

population is relatively sharp and well-defined at the beginning of

the assay. However, we observe that the leading edge of the

spreading cell population becomes increasingly diffuse and less

well-defined at later times as the cell population spreads across the

substrate. We quantify the rate of cell migration using a standard

measure, given by equation (1), describing how the area enclosed

by the leading edge of the spreading population increases with

time. To explore how such a standard measure of cell migration

depends on the edge detection methods we calculate the location

of the leading edge of the spreading population using three

different image processing tools. In summary, our results indicate

that estimates of the cell migration rate are very sensitive to the

details of the image processing tools and we show that our

estimates of the cell migration rate can vary by as much as 25% for

the same data set. These differences depend on the choice of

threshold used in the edge detection technique. Our measure-

ments indicate that the concept of the area enclosed by the leading

edge is poorly defined and we suggest that one way to overcome

these difficulties is to use a direct measurement of cell density. For

example, a nuclear stain could be used to reveal the locations of

individual cells within the spreading population [17].

In addition to comparing estimates of cell migration using

different image processing techniques, we also provide a physical

interpretation of the results from the manual edge detection

Figure 3. Physical interpretation of the edge detection results. (A, D): Solutions of equation (2) showing the density profiles near the leading
edge at t~0 (dotted black), t~24 (blue), t~48 (red) and t~72 hours (green). Arrows indicate the direction of increasing time. The initial conditions is
given by equation (3) with c0~0:22 and c0~0:66 for barrier assays with 10,000 and 30,000 cells, respectively. Numerical solutions of equation (2) are
obtained with dr~1:0 mm and dt~0:005 hours, with D~1700 mm2=hour and D~2900 mm2=hour for barrier assays with 10,000 and 30,000 cells,
respectively. (B,E) The detail of the solutions of equation (2) from the boxed area in (A,D) compared with the scaled manual edge detection results
(black) from Figure 2 (A,C). (C,F) Images of a barrier assay with 10,000 and 30,000 cells at t~72 hours, respectively. The contours of the solution of
equation (2) are superimposed. The values of the contours are cmin~0:007 and cmax~0:026 for the barrier assay with 10,000 cells, and cmin~0:008
and cmax~0:020 for the barrier assay with 30,000 cells.
doi:10.1371/journal.pone.0067389.g003
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technique by using a mathematical model of the cell spreading

process. We use a previously-parameterised [17] mathematical

model to describe the spatial and temporal variation in cell density

associated with the barrier assays and we compare our modelling

results with the edge detection results. For all images processed by

the manual edge detection technique, we identified a range of

Sobel threshold values, from Smin to Smax, that could be used to

produce a reasonable estimate of the location of the leading edge

of the spreading populations. We scaled these values so that they

corresponded with a range of cell density contours, from cmin to

cmax, corresponding to the minimum and maximum contours of

the relevant solution of equation (2). Our results indicate that

varying the threshold S corresponds to a consistent variation in the

spatial distribution of cell density in the spreading cell population.

In particular, the manual edge detection technique identifies the

leading edge of the population within a range of the cell density of

approximately 1-5% of the maximum packing density. The close

match between the position of the leading edge as a function of the

Sobel threshold and the solution of the partial differential equation

describing the spreading process suggests that this type of

information could be used to estimate the diffusivity of the cells,

D. This could be a useful method for estimating the cell diffusivity

since it is well known that estimates of cell diffusivity can vary by as

much as an order of magnitude and these variations depend on the

kind of cell and the substrate being considered [41].

As a result of this study, we recommend that the location of the

leading edge of a spreading cell population in a cell migration

assay should not be determined using any kind of hand tracing

technique. Instead, a computational image processing technique

should be used to reduce the impact of the subjectivity of the

analyst. Our results demonstrate that the computational edge

detection techniques can be very sensitive to the choice of

threshold applied to the image. Therefore, we recommend that

images of cell migration assays should be analysed using a manual

edge detection technique and that the details of the image

thresholds should be reported.

We anticipate that our results for the two-dimensional barrier

assay will also be relevant to other types of cell migration assays

such as scratch assays [3,4], or different types of circular barrier

assays that include the outward migration of cells away from an

initially-confined circular population [17] as well as barrier assays

describing the inward migration of cell populations into an

initially-vacant circular region [8,9,16]. We also expect that our

results for the two-dimensional barrier assay could be extended by

considering other types of experimental conditions. For example,

here we chose to present results for cells that were pretreated to

prevent cell proliferation [32] so that we could study cell spreading

processes driven by cell migration alone in the absence of cell

proliferation. Given that the shape of the leading edge of the

spreading cell population depends on the relative contribution of

cell migration and cell proliferation [6,17], we expect that

comparing different edge detection results for different cell

populations with different relative rates of cell proliferation and

cell migration will also be of interest [37,42]. Finally, although we

have presented our image analysis techniques in the context of

analyzing an in vitro cell migration assay, these concepts will also be

relevant when considering in vivo cell spreading, such as in the

detection of the leading edge of spreading melanomas [34,43].
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