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Abstract

Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost
diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification
algorithms.

Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for
tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition,
we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna,
Austria, by supervised computational statistics.

Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of
206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical
information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative
model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%).

Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by
inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic
algorithms in different settings and patient populations.
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Introduction

Tuberculosis is causing an estimated 1.7 million deaths per year

and the highest burden of disease is found in regions of high HIV

prevalence. [1] One of the main obstacles to effective treatment

and control of tuberculosis is a lack of accurate, rapid, point-of-

care and low-cost diagnostic tools. [2] Radiology and microscopy

of sputum samples remain the most important diagnostic tools in

low-income regions and culture, PCR, histology, and radiology are

additional valuable diagnostic tools in high-income countries.

Recently, the development of automated molecular tests for the

diagnosis of pulmonary tuberculosis showed promising results,

however this diagnostic approach is less useful for extra-pulmonary

infections. [3] To date no diagnostic method is therefore able to

provide high diagnostic accuracy in a timely manner for

pulmonary and extra-pulmonary tuberculosis. Other diagnostic

tools including the Mendel Mantoux skin test or interferon gamma

release assays cannot reliably discriminate between latent infection

and active disease. [4,5] PCR based diagnostic tools are rapid and

show promising diagnostic accuracy in sputum positive tubercu-

losis, however cost and extrapulmonary infections are limiting its

usefulness.[6–8] Recently developed FACS based diagnostic

methods for extra-pulmonary tuberculosis show promising di-

agnostic results but necessitate advanced technical equipment and

skills, and wait for prospective evaluation in different patient

populations. [9] Similarly, current efforts to identify novel

biomarkers or screening rules for tuberculosis have not yet

resulted in a reliable candidate molecule for further clinical

assessment.[10–14].

Based on proteomic fingerprinting of serum Agranoff and

colleagues proposed a rapid screening test for active tuberculosis

based on the measurement of inflammation parameters including

C-reactive protein, transthyretin, serum amyloid A, and neopterin.

[15] The proposed classification-model was established by
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machine learning methods to obtain the best diagnostic algorithm.

[16,17] In that publication a diagnostic accuracy of up to 84% was

reported in a prospectively obtained data set for the detection of

active cases of primarily pulmonary tuberculosis. Although this test

performance is far from perfect, a reliable algorithm might

considerably help in classifying patients in high or low probability

for tuberculosis. This might help to focus more time consuming

and resource intensive investigations only on persons with high

pre-test probability. To better appreciate the diagnostic potential

of the previously published algorithm external validity needs to be

assessed in different patient populations.[18–20].

The aim of this study was to assess the external validity of the

initially reported diagnostic algorithm for the diagnosis of active

pulmonary and extra-pulmonary tuberculosis in a Central Euro-

pean cohort. In addition we aimed to establish improved screening

algorithms by machine learning methodology. For this purpose we

aimed to construct two models – one including all useful

laboratory and clinical parameters, and another model relying

entirely on clinical information. The development of a diagnostic

algorithm based on clinical information only was judged to being

particularly useful for low-income regions.

Materials and Methods

Study Design and Outcome Parameters
This study was designed as a cross-sectional study. The study

population consisted of 439 patients with clinical suspicion for

active tuberculosis. All patients attending as out- or in-patients the

Department of Infectious Disease at the Vienna General Hospital,

Medical University of Vienna, between October 2001 and June

2008 were considered eligible, if the treating physician had

requested laboratory testing of any biologic samples for mycobac-

terial culture.

Cases were classified as suffering from active tuberculosis by

either a positive culture result for M. tuberculosis or a diagnosis

based on either histology or radiology results suggestive for active

tuberculosis and clinical cure following administration of specific

anti-tuberculosis treatment. Non-tuberculosis patients were de-

fined as subjects for whom biological samples had been sent for

mycobacterial culture, but for whom an alternative diagnosis was

established. Patients with HIV infection and paediatric patients

were excluded from further analysis.

Patients being evaluated for tuberculosis routinely underwent

assessment of serum inflammation markers at our institution.

Those individuals for whom no results for acute phase parameters

were available were excluded from further analysis. The in-

flammation parameters C-reactive protein, serum amyloid A,

fibronectin, haptoglobin, and interleukin 6 were assessed routinely

by nephelometry (Siemens DADE BN II). Similarly haematology,

clinical biochemistry and blood sedimentation rates were per-

formed routinely. Neopterin and transthyretin were analysed for

the purpose of this study by ELISA (neopterin, Enzyme Linked

Immunoassay, IBL Hamburg, Germany) and nephelometry

(transthyretin, Siemens DADE Behring BN II) using frozen serum

samples. Clinical information, microbiologic culture results, and

results of histopathology and radiology were obtained from

electronic patient records.

Ethics Statement and Statistical Analysis
All participants provided written consent for the use and

analysis of data and archived specimens. The study protocol was

approved by the Ethics Committee of the Medical University of

Vienna (EK: 724/2007). All data were pseudonymized and were

entered into an electronic database and statistical analysis was

performed using a commercially available software package (SPSS

Statistics 16.0, SPSS Inc.). For comparison between groups

Pearson’s x2-test or a Mann-Whitney-U-test was applied as

appropriate. Statistical significance was defined at a level of

a= 0.05 and the Bonferroni-Holm approach was used for

correction for multiple testing. For the purpose of validating

a previously published diagnostic algorithm, outcome information

was masked and data were sent for outcome prediction to the trial

statistician of the previous study. [15] Classification of patients was

performed by the blinded statistician and the outcomes were

returned for the evaluation of the diagnostic accuracy for this data

set. Further analysis was performed using various supervised

machine learning techniques. We applied different such methods

for classifying the feature based data into classes (TB, not TB), as

desired.

Briefly describing the used methods, (I) a support vector

machine (SVM) generates a discriminant function from training

samples, based on so-called support vectors, maximizing the

margin between classes. [21] Furthermore, (II) the ADTree +
AdaBoost algorithm iteratively improves ‘‘weak’’ decision trees to

a ‘‘strong’’ model, i.e., focusing on those instances that were

misclassified in the previous iteration. [22] Furthermore, different

prediction models were established using the (III) naı̈veBayes

algorithm, calculating prior-, conditional- and posterior-probabil-

ities, (IV) the logistic regression classifier, characterized by

membership function for each class, and (V) the multi-layer

perceptron (an artificial neural network), combining various linear

models for non-linear classification.[21,23–25] In this context

attribute evaluators serve the purpose to skip irrelevant parameters

of the data set prior to classification. Further optimization was

performed by the discretization filter that converts continuous to

nominal values and the principal components analysis (PCA),

which transforms conceivably correlated parameters to an un-

correlated set of variables (i.e., transforms the variables to

a different space, using the principal components as ba-

sis).[23,26–28].

The Java based software suite WEKA (Waikato Environment

for Knowledge Analysis, version 3.6.2, URL: http://www.cs.

waikato.ac.nz/ml/weka/,licensed under GNU General Public

License) was applied for the construction of improved diagnostic

algorithms. [29] Missing values were not imputed in our data set.

Optimization results of the models were assessed in internal

validation. All training sets were trained with all major supervised

classifying algorithms, maximizing the accuracy. When equal

accuracy was rated, better Receiver Operating Characteristic

(ROC) curve was used as selection criteria. [30] The outcome of

the machine learning process was evaluated in a stratified 10-fold

cross validation. [31,32].

Results

Following inclusion and exclusion criteria on all subjects being

consecutively screened for tuberculosis a study population of 206

patients was constituted. 233 patients were excluded from further

analysis, due to the unavailability of stored blood specimens (172

patients), missing data or loss of follow up (35 patients), diagnostic

uncertainty or patients already receiving tuberculostatic therapy at

the time of first physician’s contact (18 patients), infection with

Mycobacteria other than tuberculosis (MOTT, 3 patients), HIV

infection (4 patients) and age (1 patient).

Among those individuals 36 had a definitive diagnosis of active

tuberculosis and 170 patients were suffering from other conditions

(see: table 1). Distribution of diagnostic test for establishing

diagnosis of active tuberculosis is presented in table 2. Clinical and

Diagnostic Algorithm for Tuberculosis
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laboratory characteristics of the study population are depicted in

table 3. Median age, body mass index, C-reactive protein, serum

amyloid A and were all significantly lower in tuberculosis than in

non-tuberculosis patients in univariate analysis after adjustment

for multiple testing using the Bonferroni-Holm procedure.

Evaluation of Diagnostic Algorithm
The data set was masked for outcomes and sent to the authors

of the previously published study for analysis. Predicted outcomes

were used for computation of diagnostic accuracy of the diagnostic

algorithm in our patient population. One patient had to be

excluded in this evaluation due to missing transthyretin values.

Predicted outcomes are depicted in table 4.

In summary, the Gaussian kernel based support vector machine

model (SVM 1) yielded a moderate diagnostic accuracy of 54%

(47%–61%) when applied to our patient population showing

sensitivity and specificity of 19% (8%–36%) and 62% (52%–71%),

respectively. The second evaluated model, the meta-classifier

model (AD 2) reached a diagnostic test accuracy of 42% (35%–

49%) sensitivity: 58% (40%–75%), specificity: 38% (31%–46%).

Development of Extended Diagnostic Algorithms
We aimed to develop two new diagnostic models by a machine

learning approach – one making use of all available parameters

(‘‘Optimal Performance Algorithm’’) and an alternative restricted

to the use of clinical parameters (‘‘Clinical Data Algorithm’’).

Firstly, most potent feature sets were identified to maximize the

performance of the classification model. The feature selection

process was started with single attribute evaluators, combined with

a ranker search. All standard single attribute evaluators led to

similar results, identifying the following six parameters: age, body

mass index, C-reactive protein, serum amyloid A, weight loss, and

night sweat. In an additional step, attribute subset evaluators were

used on the original feature set and age, body mass index, C-

reactive protein, and serum amyloid A were identified as

evaluators. These results were consistent with the univariate

analysis of variables. Two training sets were created with the aim

to obtain two distinct diagnostic algorithms. Firstly we aimed to

maximize test performance by including all useful parameters.

Secondly we intended to construct a model that entirely relies on

clinical information and may therefore prove particularly useful in

low-income regions lacking the infrastructure to perform labora-

tory analysis of inflammation markers.

We tested the parameter sets with principal component analysis,

the entropy based discretization method of Fayyad and Irani and

a combination of both methods. [27,28] The approach resulting in

the best outcome in a stratified 10-fold cross validation was chosen.

These included the following attributes for the ‘‘optimal perfor-

mance set’’: age, body mass index, C-reactive protein, night sweat.

The discretization method of Fayyad and Irani, which yielded into

improved models in this training set, was not able to establish

discrete counterparts of serum amyloid A. For the clinical data

model the parameters age, body mass index, and night sweats were

identified.

All major supervised machine learning techniques were applied

and evaluated by an internal 10-fold cross validation. According to

these results, a logistic regression based classifier, the Naı̈ve Bayes

algorithm and a multilayer preceptor were identified as superior in

our data set. Logistic regression based classification was performed

with the ridge estimator of leChessie and van Houwelingen to

establish an improved diagnostic model. [33] Naı̈ve Bayes was

used in standard settings. The multilayer preceptor was performed

in standard settings using 4 hidden layers. [29].

The ‘‘Optimal Performance Algorithm’’ evaluated those

parameters with best data pre-processing performance. The

logistic regression based classifier was enhanced by the use of

the discretization filter, and the Naı̈ve Bayes was improved by the

application of principal component analysis and the discretization

filter.

Employing these settings a diagnostic accuracy of 86% (80%–

90%) was achieved for our patient population with an area under

the curve (AUC) of the receiver operating characteristic (ROC) of

0.78. In this analysis the sensitivity was 42% (26%–59%) and the

specificity was 95% (91%–98%). The true positive rate for

tuberculosis cases in our study population was between 42% and

61% (see: table 4).

For the evaluation of the ‘‘Clinical Data Algorithm’’ the

multilayer preceptor employing in standard settings showed the

best accuracy. A diagnostic accuracy of 85% (79%–89%) could be

achieved. Sensitivity [31% (16%–48%), specificity: 96%, (92%–

98%)] and the AUC of the ROC curve (0.7) was lower than the

Table 1. Baseline characteristics of study population.

Type of disease N Group-Percentage

Auto-immune disease 11 6%

FUO 28 17%

Airway infection 64 38%

Abdominal infection 7 4%

Abscess 5 3%

Bone and joint-infection 3 2%

Soft tissue or foreign body-
infection

4 2%

Endocarditis, pericarditis 9 5%

Neoplasm 35 21%

Other 4 2%

Total 170 100%

Type of tuberculosis

Pulmonary TB 18 50%

Extra-pulmonary TB 15 42%

Miliary TB 3 8%

Total 36 100%

FUO= fever of unknown origin, TB = tuberculosis.
doi:10.1371/journal.pone.0049658.t001

Table 2. Type of confirmation of active tuberculosis.

Detection method1 N Group-Percentage

Clinically proven2 5 14%

Microscopy 2 6%

Histology 9 25%

PCR proven 5 14%

Culture proven 15 42%

Total 36 100%

1classification into one category based on hierarchical evidence: culture, PCR,
histology, microscopy, clinical prove;
2with adequate response to therapy, PCR= Polymerase Chain Reaction, IGRA=
Interferon Gamma Release Assay.
doi:10.1371/journal.pone.0049658.t002

Diagnostic Algorithm for Tuberculosis
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previously established model. The logistic model combined with

discretization and principal components analysis led to a similar

result but to a lower ROC curve (see: table 4).

Discussion

Rapid and reliable diagnostic tests for tuberculosis are urgently

needed and the previously published diagnostic algorithms showed

highly encouraging accuracy. Provided that this good diagnostic

precision is reproducible for diverse patient populations and

settings, such a rapid assessment tool, which could be part of

a point-of-care test for active tuberculosis, would constitute a major

improvement in the diagnosis, management, and control of

tuberculosis. [34].

In this study the previously published diagnostic classification

model was evaluated in a Central European patient population.

The diagnostic accuracy was disappointingly low at 54% and

42%. This poor diagnostic performance may be explained by

various factors. Whereas the analysis of data was identical in both

studies – and classification of cases was performed by the same

person as in the initial study – the patient population under

investigation differed considerably between the two studies.

Whereas Agranoff and colleagues worked with a study popu-

lation predominantly suffering from pulmonary tuberculosis, our

study population included a significant proportion of patients with

extra-pulmonary tuberculosis. However, in our data set the

diagnostic accuracy of the Agranoff model was not significantly

improved when restricting the analysis to only those individuals

suffering from pulmonary tuberculosis [n = 19; accuracy: 58%

(SVM) and 41% (AdaBoost) see: table 4].

Contrary to the previous study, no HIV seropositive patients

were included in our study. Other potential differences may

include variations in treatment seeking behaviour, diagnostic

approaches of caring physicians, differences in ethnicity of

patients, and a discrepancy in pre-test probability based on an

unequal numeric distribution of cases and controls.

Whereas an equal number of cases and controls was selected in

Agranoffs study following a case-control study design, we used

a cross-sectional study design applying predefined inclusion and

exclusion criteria in order to avoid an artificially high proportion

of tuberculosis patients in our data set. Therefore all consecutive

patient with clinical suspicion for tuberculosis were included

leading to a 1:4 distribution of tuberculosis and non-tuberculosis

patients, respectively. Differences in the pre-test probability

invariably affect the performance of diagnostic models and may

be an explanation of impaired generalizability of both the

previously published and the newly established model.

In addition, the ethnic origin of patients was unevenly

distributed in Agranoff’s training set. Whereas 79% of tuberculosis

patients originated from sub-Saharan Africa in the training set, the

proportion Africans was only 34% in the control group.

Furthermore the control group in that study was heterogeneous

consisting of both patients suffering from inflammatory conditions

Table 3. Clinical and laboratory characteristics of tuberculosis and non-tuberculosis patients.

Non-tuberculosis group
(N=170)

Tuberculosis
group (N=36)

N % N % p-value1

Male 103 61% 16 44% 0.075

Weight loss 69 41% 12 32% 0.596

Night sweat 64 39% 11 30% 0.671

parameter cut off** median IQR median IQR p-value2

Age 54 27 36 26 0.000*

C-reactive protein mg/l ,0.02 6 12 1 4 0.000*

Serum amyloid A mg/dl ,3.9 164 372 38.5 139 0.001*

Body mass index kg/m2 n.l. 23.2 5.9 19.1 5.2 0.005*

Mean corpuscular volume fl n.l. 86.8 8 83.4 8 0.017

White blood count G/l n.l. 7.9 5.4 6.1 2.8 0.017

Interleukin-6 pg/dl ,7 7 24 4 7 0.027

Haptoglobin mg/dl ,12 242 161 173 211 0.044

Temperature uC n.l. 38 1.7 37.4 2 0.150

BSR3 2 h mm n.l. 80 40 72 38 0.151

Neopterin nmol/l ,1.35 11.7 19.6 8.8 13.7 0.183

BSR3 1 h mm n.l. 68 44 60 39 0.186

Transthyretin mg/dl ,5 16.1 12 17.3 13 0.243

Fibronectin mg/dl ,15 32 15 29 13 0.285

Hemoglobin g/dl n.l. 12.2 3.2 12.3 2.7 0.556

1Pearsons x2-test, nominal scale: yes or no.
2U-test, continuous scale.
3BSR: blood sedimentation rate.
*Statistically significant after adjusting for multiple testing by Bonferroni-Holm correction.
**typical analytical sensitivity-lower boundary (test kit lot depending), n.l. = no limit.
doi:10.1371/journal.pone.0049658.t003
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and healthy volunteers. Whereas limitations of our study are the

retrospective identification of this patient cohort, a limited sample

size, and exclusion of potential participants due to missing data for

a proportion of identified subjects, a great emphasis was laid on

the constitution of a homogenous comparator that was entirely

chosen based on the exposure (suspicion for tuberculosis) and not

for the outcome under investigation (diagnosis of tuberculosis). All

these factors may explain the lower than expected diagnostic

accuracy of the initially published model and stress the need for

further improvement and prospective evaluation of this diagnostic

algorithm in various clinical settings.

Following our goal to develop an improved diagnostic

algorithm, we used machine learning methodology to obtain an

improved diagnostic algorithm. The ‘‘Optimal Performance

Algorithm’’, including age, body mass index, night sweat, C-

reactive protein led to a diagnostic accuracy of 86% (80%–90%)

with an AUC of the ROC-curve of 0.78 in an internal 10-fold

cross validation. Similarly the ‘‘Clinical Data Algorithm’’,

consisting of age, body mass index and night sweat, had

a diagnostic accuracy of 85% (79%–89%) and an AUC-ROC of

0.70. Considering the ease of obtaining the respective clinical

parameters and the variability in the model estimation the Clinical

Data Algorithm seems particularly useful. This finding may also be

interpreted in that way that the inclusion of inflammation

parameters does not significantly improve diagnostic models in

tuberculosis. However further prospective evaluation in these

diverse clinical settings and comparative evaluation to the

diagnostic accuracy by a skilled physician is warranted in future

prospective studies.

Considering the presented results, no final judgment may

therefore be given whether machine learning based diagnostic

algorithms are an appropriate screening method for tuberculosis

or not. Arguably clinical parameters of patients suffering from

tuberculosis may vary considerably and other parameters than

inflammation parameters may prove more suitable as markers for

the screening of patients. These markers may include serum

concentrations of calcium [35–37], iron [38], vitamin D [39–41]

or orosomucoid [42,43] and it may prove rewarding to evaluate

those alone or in combination in future diagnostic algorithms.

Table 4. Diagnostic performance of tested diagnostic algorithms.

Model Prediction Accuracy Sensitivity Specificity AUC-ROC*

Pos Neg

Support vector machine (Agranoff model, SVM 1)1

True TB 7 29 54.2% (47.1%–61.1%) 19.4% (8.2%–36.0%) 61.5% (51.5%–71.0%) –

True NonTB 65 104

ADTree + AdaBoost (Agranoff model, AD 2)2

True TB 21 15 42.0% (35.1%–49.0%) 58.3% (40.1%–74.5%) 38.5% (31.1%–46.2%) –

True NonTB 104 65

Support vector machine (Agranoff model, SVM 1, without extrapulmonary TB)3

True TB 4 14 57.8% (50.3%–65.0%) 22.2% (6.4%–47.6%) 61.5% (53.8%–68.9%) –

True NonTB 65 104

ADTree + AdaBoost (Agranoff model, AD 2, without extrapulmonary TB)4

True TB 11 7 40.6% (33.5%–48.1%) 61.1% (35.8%–82.7%) 38.5% (31.1%–46.2%) –

True NonTB 104 65

Logistic regression 1 (Optimal Performance Algorithm)5

True TB 15 21 85.9% (80.4%–90.3%) 41.7% (25.5%–59.2%) 95.3% (90.9%–98.0%) 0.78

True NonTB 8 162

Naive Bayes 1 (Optimal Performance Algorithm)6

True TB 22 14 81.1% (75.0%–86.2%) 61.1% (43.5%–76.9%) 85.3% (79.1%–90.3%) 0.79

True NonTB 25 145

Logistic regression (Clinical Data Algorithm)7

True TB 13 23 84.5% (78.8%–89.1%) 36.1% (20.1%–53.8%) 94.7% (90.2%–97.6%) 0.66

True NonTB 9 161

Multilayer Perceptor 2 (Clinical Data Algorithm)8

True TB 11 25 84.5%(78.8%–89.1%) 30.6% (16.4%–48.1%) 95.9% (91.7%–98.3%) 0.7

True NonTB 7 163

AUC-ROC=Area under the Receiver Operation Characteristic curve; pos = positive, neg= negative.
95% confidence intervals are computed according binominal formula of Clopper and Pearson [44].
1,2N = 205;
3,4N = 187, 18 patients excluded due to extrapulmonary TB;
5N= 205, with discretization, including: age, body mass index, C-reactive protein, night sweat;
6N = 205,with discretization, principal components analysis; including: age, body mass index, C-reactive protein, night sweat;
7N = 205, with discretization, principal components analysis; including: age, body mass index, night sweat;
8N = 205, with normalization, 4 hidden layer; including: age, body mass index, night sweat;
doi:10.1371/journal.pone.0049658.t004
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In summary this study demonstrates low external validity of the

previously published machine learning based diagnostic algorithm

when evaluated for our patient population. Although diagnostic

algorithms with improved diagnostic precision were established

based on data of a Central European patient population, further

independent prospective evaluation of these models is needed to

better appreciate the potential of machine learning based di-

agnostic algorithms for the rapid screening of patients for active

tuberculosis.
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