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Abstract

Targeted therapies have been used to combat many tumor types; however, few have effectively improved the overall
survival in women with epithelial ovarian cancer, begging for a better understanding of this deadly disease and
identification of essential drivers of tumorigenesis that can be targeted effectively. Therefore, we used a loss-of-function
screening approach to help identify molecular vulnerabilities that may represent key points of therapeutic intervention. We
employed an unbiased high-throughput lethality screen using a 24,088 siRNA library targeting over 6,000 druggable genes
and studied their effects on growth and/or survival of epithelial ovarian cancer (EOC) cell lines. The top 300 ‘‘hits’’ affecting
the viability of A1847 cells were rescreened across additional EOC cell lines and non-tumorigenic, human immortalized
ovarian epithelial cell lines. Fifty-three gene candidates were found to exhibit effects in all tumorigenic cell lines tested.
Extensive validation of these hits refined the list to four high quality candidates (HSPA5, NDC80, NUF2, and PTN). Mechanistic
studies show that silencing of three genes leads to increased apoptosis, while HSPA5 silencing appears to alter cell growth
through G1 cell cycle arrest. Furthermore, two independent gene expression studies show that NDC80, NUF2 and PTN were
significantly aberrantly overexpressed in serous adenocarcinomas. Overall, our functional genomics results integrated with
the genomics data provide an important unbiased avenue towards the identification of prospective therapeutic targets for
drug discovery, which is an urgent and unmet clinical need for ovarian cancer.
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Introduction

Epithelial ovarian cancer is the second most common gyneco-

logical cancer, and one of the deadliest, among women, with an

estimated 22,280 new cases and 15,500 deaths for 2012. [1]

Among the different types of epithelial ovarian cancer, which

includes serous, mucinous, clear cell and endometrial [2,3], the

majority of deaths from ovarian cancer occur in patients with

advanced-stage, high-grade serous ovarian cancer. [4] As such,

there is an urgent need for new therapeutic approaches to combat

this deadly disease.

Development of new therapies, especially in the era of targeted

treatments and personalized medicine, is typically driven by

understanding the underlying biology, molecular biology and

biochemistry of tumor cells and their surrounding microenviron-

ments targeting genetic alterations. [5] This is a common theme in

drug discovery and can provide specificity, but cannot generally

provide comprehensiveness in targeting. Cancer cells can evolve

that lack the targeted genetic alterations or that are resistant and

could cause progressive disease. [5] Therefore, it is essential to

expand our armament of therapies, but more importantly our

concept of important drug targets. The evolutionary nature of

cancer implies, contrary to conventional wisdom, that the essential

features of any therapy for the consistent cure or control of cancer

must be independent of the particular pathways of tumor cell

evolution, and independent of any particular genetic or epigenetic

alterations. Although the genetic and epigenetic complexity of

cancer is nearly unlimited, tumor cell evolution is constrained.

[6,7] A malignant cell will result, if and only if, the alterations

cause normal cellular machinery to carry out the processes of

proliferation and invasiveness.

Current drug discovery efforts tend to focus on commonly

mutated signal transduction pathways, e.g., a series of growth
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factor receptors and downstream modulators (phosphatases and

kinases) that are working in concert to promote growth but are not

the central machinery. Therefore, we performed non-biased high-

throughput lethality screens (HTS) of small interfering RNAs

(siRNAs) to identify genes that are essential for ovarian tumor cell

growth and survival. The top hits were extensively validated and

their clinical value assessed. Overall, we found NDC80, NUF2 and

PTN as important molecular vulnerabilities, which represent

potentially important therapeutic targets in ovarian cancer.

Results

HTS of the Druggable Genome
The primary high-throughput RNAi screen was performed (as

depicted in Figure S1A) using the Human Druggable Genome

Library (Dharmacon) (Table S1) consisting of 24,088 siRNAs

targeting 6,022 genes using A1847 cells, an epithelial ovarian

carcinoma (EOC) cell line, which consistently yielded reproducible

transfection data under HTS conditions. Positive and negative

control internal reference wells were included on every plate to

allow for calculation of the transfection efficiency (see Supple-
mentary Information S1 for additional details). A1847 cells

were transfected using HTS conditions as described in the

Material and Methods section. The normalized viability scores

(defined as the (fluorescence intensitysample)/(median fluorescence

intensityreference)) obtained through the HTS displayed a Gaussian

distribution (Figure S1B). Following statistical data analysis (see

Supplementary Information S1), a total of 300 genes

representing ,5% of the genes targeted by this library were

selected for inclusion in the next round of screening.

HTS of a Panel of EOC Cell Lines Using a Subset of the
Druggable Genome
Next, we determined which of the 300 genes identified as hits

from the primary screen mutually affected the cell growth and

survival across multiple EOC cell lines using an independent

siRNA library (Table S2). This new focused library was designed

using an entirely new pool of four siRNA sequences targeting each

gene in order to minimize potential false-positives from the

primary screen due to off-target effects. This strategy of using

a different set of siRNA pools for the secondary screens has been

adopted as a revalidation step in itself. [8] Transfection conditions

for seven additional ovarian tumorigenic cell lines (A2780, CP70,

C30, OVCAR5, OVCAR8, SKOV3 and UPN275) were then

optimized for HTS (Table S3). These seven new EOC cell lines

and the A1847 cell line were then subjected to HTS using the

subset library targeting the 300 genes. A viability score was derived

for all 300 siRNA pools in each cell line (shown graphically in

Figure 1A) which ranged from 0.09–1.20 across the cell lines.

‘‘Hits’’ for each of the eight cell lines were selected based on both

statistical significance (false discovery rate (FDR) ,0.05) and

biological significance (viability score ,0.85) (see Supplemen-
tary Information S1 for additional details). A heat map of the

hits across each EOC cell line generated using MultiExperiment

Viewer [9,10] and the intersection of the hits among the cell lines

are shown schematically in Figure 2A. A total of 53 hits were

considered significant across all eight EOC cell lines (Figure 2A
and Table S4). The average coefficient of correlation (r) for the

technical replicates across all of the cell lines was 0.9160.03

(Figure S2A).

The PANTHER biological classification system [11] showed

that ‘‘metabolic processes’’ was the largest category (,43%) to

which these 53 genes belonged (Figure S3A). Specifically, when
functional characterization of these genes was performed using

Ingenuity Pathway Analysis (IPA) software, it was shown that the

53 hits were enriched for genes related to protein synthesis

involving ribosomal proteins and elongation factors (Figure S3B).
Recent reports have provided evidence that in addition to

involvement in protein synthesis, ribosomal proteins and elonga-

tion factors have a role in cell cycle regulation and survival.

[12,13,14,15] Drugs targeting different molecular components

involved in protein synthesis machinery are already in clinical

trials for various tumor types including breast, colon, and

colorectal cancers [16,17,18], supporting the translational poten-

tial of our hits. Network characterization using IPA software

showed that the genes in the network with the highest score

exhibited their downstream effects through, ERK1/2 and AKT,

key survival genes which have been implicated as mediators of

major oncogenic pathways in ovarian cancer (Figure S3C)
[19,20,21,22].

HTS of Non-tumorigenic HIO Lines
Next, we determined which of the hits had the greatest effect on

the EOC cell lines and little or no effect on the non-tumorigenic

human immortalized ovarian surface epithelial (HIO) cell lines.

We, therefore, screened the 53 hits for effects on the viability of

three HIO cell lines (HIO80, HIO120 and HIO117). Although we

were interested in screening only the 53 hits, in order to maintain

the same screening format and minimize any technical differences

in how the siRNA screens were performed for the HIO cell lines,

we again used the custom siRNA library targeting all 300 genes. A

viability score was derived following silencing of each gene

(Figure 1B). The average coefficient of correlation between

technical replicates for the three HIO cell lines (Figure S2B,
average r = 0.9060.03) was similar to that of the EOC cell lines.

Hits for the HIO cell lines were selected as described above

(normalized viability score ,0.85 and FDR ,5%). A total of 74

hits were identified common to all three HIO cell lines

(Figure 2A). A Venn diagram shows the intersection of the hits

between the EOC and the HIO cell lines in Figure 2B. Forty-
seven hits were in common between the two groups. However,

there were six hits unique to the EOC cell lines (genes which

affected the viability of all eight of the EOC cell lines but not all

three of the HIO cell lines) which we selected for further

validation. We also selected one additional gene, NUF2, for further

validation studies. NUF2, although not a unique hit to the EOC

cell lines, displayed the lowest Viability Index score, defined as the

ratio of the average normalized viability of the EOC cell lines to

the average normalized viability of the HIO cell lines (Table S4).
These seven genes (BCAR3, HSPA5, NAMPT, NDC80, NUF2, PTN,

and, RPS19) were further analyzed for potential off-target effects.

Deconvolution of siRNA Pools
To rule out off-target effects, we individually evaluated the four

siRNAs from the siRNA pools used in the secondary screens

targeting the seven genes. The 28 individual siRNAs in the

deconvolution screen (Table S5) were evaluated in the panel of

EOC cell lines. In order to accept any of the seven genes as

having, valid on-target effects on the viability of EOC cell lines, we

required that at least two out of the four individual siRNAs

targeting each gene resulted in a viability score of 0.85 or less with

a FDR of less than 5% across all eight of the EOC cell lines.

[23,24] Based on these stringent criteria, four genes, HSPA5,

NDC80, NUF2, and PTN, were considered to be on-target,

validated hits (Figure 3A and Table 1). Next, we pooled the two

most effective siRNA species (highlighted in green, Table S5)
targeting each of the four genes and quantified the level of

reduction in cell viability for each cell line. These optimal siRNA
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pools resulted in greater than 30% reduction in cell viability across

a majority of the EOC cell lines (Figure 3B).

As an additional check on the ability of siRNAs to correctly

target their mRNAs, we used the optimal pool of the two most

effective siRNAs (Figure 3B) and performed quantitative RT-

PCR to determine the level of mRNA knockdown following

transfection of the pooled siRNAs for each cell line (Figure 3C).
Messenger RNA levels of HSPA5, NDC80, NUF2, and PTN

Figure 1. Secondary screens on a panel of EOC and HIO cell lines. A. Eight EOC cell lines were reverse transfected with siRNAs targeting 300
genes identified from the primary screening of the A1847 cell line using transfection parameters optimized for each cell line (see Table S3). Each
circle represents an averaged viability score from technical replicates following silencing of a particular gene. The grey dotted line represents the cut
off value for the viability score (0.85) to select hits. B. Three HIO cell lines were transfected using parameters optimized for each (see Table S3).
doi:10.1371/journal.pone.0047086.g001
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across all the eight EOC cell lines were shown to be reduced by

an average of 67%, 87%, 77%, and 96%, respectively. Western

blot analysis following transfection of one EOC cell line, A1847,

was completed as an additional means to demonstrate specificity

of the siRNA pools by evaluating the cellular levels of the

respective proteins for the mRNAs being targeted. All four

siRNA pools down-regulated the protein levels of their

respective mRNA targets by ,50% or more in this cell line

(Figure 3D).

Effects on Apoptosis and Cell Cycle Progression
Our end-point parameter of cell viability that we used to

identify the hits in the HTS studies provides limited information

on the mechanism of decreased cell viability/growth induced by

Figure 2. Hits unique to the EOC cell lines. A. A heat map representation of the viability scores for eight EOC and three HIO cell lines achieved
from secondary screens of the siRNA library targeting 300 genes. All viability score values range between 0.12 and 1.53. Shades of green represent
reduced viability (,0.80), shades of red represents increased viability (.0.80), and black represents a viability score of 0.80. The heat map was
generated using MultiExperiment Viewer. Floral diagrams in yellow and blue show the number of hits across either the eight EOC or three HIO cell
lines, respectively, and the intersection of the hits within each group. B. A Venn diagram shows the number of hits in common between the HIOs and
EOCs and the number hits unique to each group.
doi:10.1371/journal.pone.0047086.g002

Table 1. List of hits validated following deconvolution of siRNA pools.

Gene Alternate Names & Description

HSPA5 Heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa), GRP78

NDC80 Kinetochore protein HEC1, KNTC2

NUF2 NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae)

PTN Pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1)

doi:10.1371/journal.pone.0047086.t001
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Figure 3. Validation of hits via siRNA deconvolution screening, qRT-PCR and Western blotting. A. The seven hits selected for further
studies were validated by performing deconvolution screens where individual siRNAs which were initially a part of a pool of four siRNAs in the
secondary screens were evaluated for their effects on cell viability. For each hit being validated, the average normalized viability scores (6SD)
following gene silencing using each of the four species of siRNAs evaluated in the eight EOC cell lines are shown. Hits were considered on-target if
viability scores of less than 0.85 were observed for all eight EOC cell lines for at least two independent siRNA species targeting a gene. The bar graphs
represent the eight EOC cell lines in the following order: A1847, A2780, C30, CP70, OVCAR5, OVCAR8, SKOV3, and UPN275. B. The two most effective
siRNAs targeting each gene were pooled (12.5 nM each siRNA species) and the effect on cell viability was quantified. The bars represent the eight
EOC cells lines as described in Panel A. C. qRT-PCR was performed on all of the eight EOC cell lines following gene silencing for 72 h using a pool of
the two most effective siRNAs identified from the deconvolution studies from panel A for the four hits that were determined to be on target. The
asterisk represents PTN mRNA levels which are below the level of detection following siRNA treatment (i.e. complete knockdown of mRNA). D.
Western blot analysis was performed following gene silencing for either 72 h (HSPA5, NDC80, and PTN) or 120 h (NUF2) to determine the level of
knockdown at the protein level in A1847 cells. Immuno blots were quantified using AlphaView software, version 3.3 (Cell Biosciences).
doi:10.1371/journal.pone.0047086.g003
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gene silencing. We, therefore, investigated the functional effects of

targeting each of the four validated hits on apoptosis and cell cycle

progression using two EOC cell lines, A1847 and A2780. We

transfected these cell lines with a pool of the two most effective

siRNA sequences (12.5 nM each siRNA, the same siRNA pool

used for the quantitative RT-PCR (qRT-PCR) and Western blots

analysis) for each of the four validated hits (HSPA5, NDC80, NUF2

and PTN) and measured the effects on apoptosis and cell cycle

progression 72 h following transfection in 96-well plates. In A2780

cells, knockdown of all four genes resulted in an increase in

apoptotic cells as measured by positive annexin V staining using

a Guava flow cytometer relative to cells transfected with GL2-

targeting control siRNA (Figure 4A). On average, there was a 2.5-

fold increase in apoptotic cells. However, in these cells, there was

no significant effect on the cell cycle following knockdown of these

four hits (Figure 4B).

In A1847 cells, knockdown of three genes (NDC80, NUF2 and

PTN) resulted in a 1.7-fold increase in apoptotic cells relative to

cells transfected with GL2-targeting control siRNA (Figure 4C).
Knockdown of HSPA5 did not result in any significant increase in

apoptosis (Figure 4C). However, we did observe that its

knockdown did result in a 2-fold increase in the population of

cells in the G1 phase of the cell cycle and a corresponding 2-fold

decrease in the G2/M phase (Figure 4D). Knockdown of NDC80,

NUF2, and PTN in A1847 cells resulted in a slight increase in the

number of cells in the S phase (Figure 4D). However, this

increase was, on average, less than 1.5-fold and did not appear to

be highly statistically significant. Knockdown of these four genes

did not have a measurable effect on survival of the non-

tumorigenic HIO80 cells (Figure S4).

Assessment of Validated Hits in Clinical Samples
Serous adenocarcinoma is the major subtype of epithelial

ovarian cancer. In order to gauge the potential clinical significance

of the four validated hits, we surveyed The Cancer Genome Atlas

(TCGA) ovarian serous adenocarcinoma database. [25] Gene

expression data on the four validated hits from 494 serous

adenocarcinomas were obtained from the TCGA portal (http://

tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). Expression of

NDC80, NUF2, and PTN is up-regulated by $1.5-fold in 98%,

99%, and 37% of the tumor samples, respectively (Figure 5);
however, only 1% of the samples showed$1.5-fold overexpression

for HSPA5 with approximately 87% of the samples showing

reduced expression relative to normal (Figure 5). None of these

genes are mutated in more than 1% of the samples (data not

shown). We next analyzed copy number variation (CNV) and

DNA methylation for NDC80, NUF2 and PTN using the TCGA

database. CNV analysis demonstrated low level copy number

gains (.1.2-fold) in 12%, 39% and 36% of the samples for NDC80,

NUF2 and PTN, respectively, and a copy number loss in 41% of the

samples for the HSPA5 gene. There was a weak but statistically

significant correlation between gene expression and copy number

for the three genes across 494 samples (Figure S5A). Moreover,

for these three genes we found that, on average, the samples with

copy number gain exhibited a 1.6-fold increase in gene expression

as compared to samples with no copy number gain (p value

,0.0001, ,0.0001, and ,0.05 for NDC80, NUF2 and PTN,

respectively (Figure S5B). We analyzed whether changes in DNA

methylation were also associated with aberrant expression. The

promoter regions of HSPA5, NDC80, NUF2 and PTN are

hypomethylated (b,0.25) in $94% of the tumor samples.

However, we did not find any statistically significant correlation

between expression and promoter methylation for any of these

genes in TCGA data set (data not shown).

Validation of Clinical Significance in an Independent
Cohort
To further establish the potential association with pathogenesis

of this disease, we examined the expression of the top four

validated hits in an independent gene profiling data set of primary

ovarian tumor samples. [26] Gene expression profiles of micro-

dissected, late stage, high grade ovarian serous carcinomas (n = 53)

and microdissected human ovarian surface epithelial (HOSE)

samples (n = 10) were evaluated. Normalized expression levels for

all the tumor samples are shown in Figure 6A. We found that 48/

53 (90%) of the tumor samples were overexpressing NDC80 by 1.5-

fold or greater. Likewise, 53/53 samples (100%) for NUF2 and 24/

53 samples (42%) for PTN were found to be overexpressed by

$1.5-fold. These data correlate well with TCGA data on

expression in ovarian tumor samples. HSPA5 was overexpressed

in 8/53 (15%) of the samples. The increase in the average mRNA

levels across the tumor samples relative to the normal HOSE

samples was statistically significant for all four genes (p,0.005)

(Figure 6B). We also assessed the prognostic value of these genes

by performing Kaplan-Meier survival analysis of the intensity

measurements from the microarray data of the four genes with the

corresponding clinical data from each patient. Kaplan-Meier

survival analysis for NUF2 suggested that a high level of mRNA

expression was related to poor prognosis in these patients (Figure
S6A). Analysis for the other three genes was not statistically

significant. (data not shown). A similar prognostic value of NUF2

mRNA levels was found from survival analysis of TCGA data

(Figure S6B).

Discussion

The high attrition rates of drug development projects for

targeted therapies [27], necessitates identification and validation

of new druggable molecular targets, with their role in ovarian

cancer clearly defined to minimize failure of the drug during

the development pipeline. Using an integrated RNAi screening

approach to target over 6,000 druggable genes we identified 53

that were required for growth and survival across a panel of

EOC cell lines; seven of these were predominantly active in

tumorigenic cells and were considered for additional deconvolu-

tion and validation studies. Four candidates out of the seven

(HSPA5, NDC80, NUF2, and PTN) ultimately proved to be valid

hits for EOC cells with minimal effects on the non-tumorigenic

HIO cells.

The loss-of-function screening studies reported in this paper

have provided us with a functional genomic snapshot of novel

molecular vulnerabilities in epithelial ovarian cancer outside the

realm of commonly targeted molecular signaling pathways. We

have studied the four validated targets (HSPA5, NDC80, NUF2

and PTN), all with a role in growth or survival of EOC cells,

using in vitro cell-based assays. The results show that ovarian

tumorigenic cells, on average, are comparatively more vulner-

able to the candidate targets compared with non-tumorigenic

cells suggesting a possible therapeutic window of sensitization.

All four genes have been previously reported as hits in RNA

interference screens. [28,29,30] All four targets code for proteins

amenable to therapeutic intervention and have been previously

reported to participate in cell cycle pathways or survival

pathways in other tumor types. [31,32,33] Genomics data from

the TCGA and the Birrer lab further support the notion that

for at least three of the targets (NDC80, NUF2, PTN) there

should be selective vulnerability to therapeutics in tumor cells

relative to normal cells given the significant up-regulation in

serous adenocarcinomas. [34] Currently, the most promising
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inhibitors targeting these candidates include INH11 [35] which

targets the NDC80/NUF2 pathway, the neutralizing anti-PTN

antibodies [36] which functionally inhibit the tumor growth

promoting activities of PTN, and epigallocatechin gallate which

inhibits HSPA5. [37] Additionally, siRNA-based drugs have also

proven to be feasible options for in vivo therapy [38,39,40]

providing us with avenues to proceed with preclinical studies to

measure the effectiveness of targeting our four hits using

orthotopic, xenograft mouse models of ovarian cancer.

HSPA5 (Table 1) is a gene whose product is a central regulator

for endoplasmic reticulum homeostasis which is critical for the

survival of eukaryotic cells. [41] HSPA5 is a stress-inducible ER

chaperone that is highly induced in a wide range of tumors

through factors like hypoxia and acidosis in the microenvironment

of poorly perfused tumors. [41] In a previous study, antibodies

targeting cell surface HSPA5 induced apoptosis in SKOV3 cells.

[42] In the current study, silencing of HSPA5 induced significant

apoptosis in A2780 cells and showed a significant cell cycle arrest

Figure 4. Effect of gene silencing on cell survival and cell cycle progression. A1847 and A2780 cells were transfected with HSPA5, NDC80,
NUF2, PTN or GL2 siRNAs. Seventy-two hours post-transfection, cells were harvested and processed for analysis of apoptosis or cell cycle progression.
A. & C. The fraction of apoptotic cells was measured by annexin V staining followed by enumeration by using a Guava flow cytometer (Millipore). The
fold-change in apoptotic cells is shown (mean 6 SD, n = 3). B & D. The fraction of cells in each phase of the cell cycle was measured by propidium
iodide staining followed by enumeration using the Guava instrument. The fold-change for each cell cycle phase is shown (mean 6 SD, n= 3).
doi:10.1371/journal.pone.0047086.g004
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of A1847 cells in the G1 phase. Gene expression data from TCGA

suggest that reduced expression is more common for this gene,

which is counter to our screening results. CNV analysis shows that

HSPA5 is lost in 41% of the samples and mutational analysis of

TCGA data shows that HSPA5 is mutated in less than 1% of

samples. Given the reduced expression, gene deletion, and lack of

mutations in the tumor samples from ovarian cancer patients,

additional studies are required in order to gain a better un-

derstanding of the mechanism of action and the clinical

significance of this hit for ovarian cancer.

Consistent with our screening data, NDC80 and NUF2 are

overexpressed in nearly 100% of the samples and PTN is

overexpressed in ,40% of the samples for two independent

cohorts of patient samples. The protein products of NDC80

(HEC1, KNTC2) and NUF2 (CDCA1) are part of a mitotic

complex involved in kinetochore interactions and the spindle

assembly checkpoint in mitosis. [43] Mitosis dysregulation is

a common cause in carcinogenesis. [44] In a previous study,

siRNA mediated knockdown against NDC80 and NUF2 has

been shown to cause abnormal mitotic exit and induce

apoptosis in colorectal cancer and gastric cancer cell lines.

[32] In another study silencing of NDC80 in an EOC cell line,

SKOV3.ip1, suggested that an increase in apoptosis-related cell

death. [45] Both NDC80 and NUF2 have been shown to be up

regulated in brain, liver, and breast cancer. [46] Over-

expression of NDC80 and NUF2 has been related to poor

clinical prognosis in patients with breast cancers and non-small

cell lung cancers [43,47]. Disruption of NDC80 and NUF2

complex formation using a small molecule inhibitor, INH1, has

been shown to reduce proliferation in breast cancer cells and

reduce tumor growth in a xenograft mouse model. [35]

Kinetochore components, particularly NDC80 and NUF2, have

been proposed as potential targets for cancer therapeutics. [48]

Our study represents the first report on NDC80 and NUF2 as

potential drug targets for treatment of ovarian cancer.

PTN (pleiotrophin, HARP) is another interesting gene identified

whose product is a growth factor known to elicit downstream

survival signaling pathways through multiple receptors namely

ALK, SDC3, SDC1 and PTPRb/z. [49] It has been shown to play

a pivotal role in tumorigenesis in pancreatic, brain and breast

tumor models. [50] It is involved in cell transformation, growth,

survival, migration and angiogenesis. The PTN gene is highly

expressed during embryogenesis but shows very limited expression

in adult tissues, where it is restricted to the brain. [51,52,53,54]

We have shown using ELISA assays that PTN levels are

significantly elevated in conditioned media of the ovarian cancer

cell lines examined (G. Sethi and A.K. Godwin, unpublished data).

This makes it an attractive therapeutic target for ovarian cancer as

anti-PTN therapeutics are expected to show high efficacy with

minimal side effects on non-tumorigenic cells. Our study is the first

to show that PTN is required for growth and survival of ovarian

tumor cells.

Figure 5. Assessment of gene expression using TCGA ovarian cancer data set. TCGA data set on 494 ovarian serous adenocarcinomas was
queried to determine the mRNA expression levels (log2(tumor/normal ratio)) of NDC80, NUF2, PTN, and HSPA5. These data are shown as bar graphs
with the grey dashed lines indicating the percentage of samples with 1.5-fold, 3-fold, 5-fold and 10-fold overexpression as compared to unmatched
normal samples in the TCGA data set.
doi:10.1371/journal.pone.0047086.g005
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It is now well established that both oncogenic and non-

oncogenic addictions contribute to the extensively rewired path-

ways that underlie the malignant phenotype in cancer cells. [55]

We have concentrated on genes which have activities across

multiple ovarian cancer cell lines representing primarily the serous

subtype. Future studies which expand our screening panel to

include additional cell lines which represent other EOC subtypes

(clear cell, endometrioid, and mucinous) should provide us with

subtype related/specific sensitization patterns that can further be

explored. In addition, we will need to establish if any or all of the

validated targets have oncogenic properties, the efficacy of

targeting these candidates in vivo, and whether targeting these

candidates exhibits ‘‘genotype dependent lethality’’ [55] that

exploits the enhanced sensitivity of cancer cells to DNA damage.

As we continue to move towards better treatments for ovarian

cancer patients, it will be essential to clearly define critical and

functional nodes whose perturbation will lead to cancer cell

lethality.

Materials and Methods

Cell Culture
All cell lines used in this study were obtained or derived while at

the Fox Chase Cancer Center (FCCC) (Philadelphia, PA). Details

of the origin of the EOC cell lines (A1847, A2780, C30, CP70,

OVCAR5, OVCAR8, and SKOV3) have been previously

reported [56,57,58]; HIO80, HIO117, and HIO120 representing

non-tumorigenic human ovarian epithelial cell lines were derived

by the Godwin lab and described previously [59,60,61,62]. De-

identified human ovarian tissue not required for diagnosis was

obtained from the Biosample Repository Core Facility following

approval by the Fox Chase Cancer Center (FCCC) Institutional

Review Board and written informed consent. The UPN275 EOC

cell line was derived and its use was approved under a protocol

approved by the FCCC Institutional Review Board. All EOC and

HIO cell lines were grown in RPMI 1640 (Invitrogen),

supplemented with 10% FBS (Hyclone), 2 mM L-glutamine

(Invitrogen), 100 IU/ml penicillin G (Invitrogen), and 100 mg/

Figure 6. Assessment of clinical significance using an independent cohort. A. Shown are the gene expression levels for 53 serous
adenocarcinomas normalized to the mean gene expression levels measured in normal ovarian tissue (n = 10). B. Shown are the mean gene
expression levels across the serous adenocarcinomas for NDC80, NUF2, PTN and HSPA5. A two-tailed t-test indicates that the increase in gene
expression in the tumor samples is statistically significant relative to the normal tissue. *** = p,0.0005; ** = p,0.005; * = p,0.05.
doi:10.1371/journal.pone.0047086.g006
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ml streptomycin (Invitrogen) and insulin 15 IU/ml (Invitrogen).

The cell lines were maintained at 37uC in a humidified

atmosphere with 5% CO2.

High-throughput Screening
The siRNA library targeting the human druggable genome

consisting of 24,088 siRNAs against 6,022 genes (siGENOME: 4

siRNAs/well/gene) was purchased from Dharmacon as a set of

pre-validated siRNAs arrayed into seventy-six 96-well plates

(Table S1). A custom library targeting 300 genes identified from

the primary screen on the A1847 cell line was used for the

secondary screens across the panel of tumorigenic and non-

tumorigenic cell lines. This library was purchased from Qiagen as

a set of 1,200 siRNAs (4 siRNAs/well/gene) arrayed into five 96-

well plates (Table S2). siRNAs for the deconvolution screens and

validation experiments were purchased from Qiagen. Positive and

negative control siRNAs, PLK1 and GL2, respectively, and cationic

lipid transfection reagent, DharmaFECT-1, were purchased from

Dharmacon. All siRNA transfections were done using the reverse

transfection method. [63] Briefly, DharmaFECT-1 was diluted in

reduced-serum media (OptiMEM, Invitrogen) and added to the

siRNAs arrayed in v-bottom 96-well dilution plates using a bulk

reagent microplate dispenser. The concentration of siRNA pools

was 50 nM (12.5 nM of each individual siRNA species). The

siRNA-lipid complexes were allowed to form for 30 min at room

temperature. Each siRNA-lipid complex was then aliquoted

equally into two 96-well flat-bottom test plates as technical

replicates using a CyBio Vario liquid handler followed by addition

of cells in an antibiotic-free medium using a bulk reagent

microplate dispenser (,100 mL final volume per well). Following

72 h of incubation at 37uC, cell viability was determined by using

CellTiter-Blue (CTB, Promega). The CTB reagent was diluted 3-

fold in phosphate-buffered saline (PBS) prior to its addition to the

assay plates (20 mL per well added using a bulk reagent microplate

dispenser). Fluorescence intensity was measured by using the

Envision (Perkin Elmer) multi-label plate reader 3 h following

addition of the CTB reagent. Data were analyzed as described

below. Parameters which affect efficiency of transfection such as

the dilution factor of the DharmaFECT-1 lipid reagent, the

concentration of the siRNA, and the cell seeding density were

optimized for each of the eleven cell lines (eight tumorigenic and

three non-tumorigenic) used in the studies and are reported in

Table S3.

Statistical Analysis for siRNA HTS
A complete description of the statistical analysis performed on

the HTS data is provided in the Supplementary Information
S1 section.

qRT-PCR
Each of the eight cell lines was transfected (in 96-well plates)

with the pool of the two most effective siRNAs (25 nM pooled

concentration of the two most effective) targeting the genes of

interest and the GL2 negative control siRNA. After 72 h, total

RNA was isolated using TRIzol reagent, reverse transcription was

performed followed by quantitative PCR as described previously.

[64] Quantification of the RT-PCR data is described in the

Supplementary Information S1 section.

Western Blotting
Cells were transfected with siRNAs (25 nM pooled concentra-

tion of the two most effective) in 10 cm plates. Following

transfection (72–96 h), cells were harvested and lysates prepared

as described previously. [65] Primary antibodies specific for

HSPA5 (Abcam, 1:200), NDC80 (Abcam, 1:1,000), NUF2

(Abcam, 1:1,000), PTN (Abcam, 1:250) and b-actin (Sigma,

1:1,000) were used for immunoblotting. The blots were quantified

by densitometry using the AlphaView software, version 3.3 (Cell

Biosciences).

Apoptosis and Cell Cycle Analysis
Two EOC cell lines (A1847 and A2780) were transfected with

HSPA5, NDC80, NUF2, PTN and GL2 siRNA in 96-well plates.

After 72 h, cells were trypsinized and processed for apoptosis and

cell cycle analysis using the Guava Nexin and Guava Cell Cycle

assays, respectively, following the manufacturer’s instructions

(Guava Technologies, Millipore).

Analysis of Genomic Data Sets
The log2 ratios for gene expression and for copy number for

each of the four genes HSPA5, NDC80, NUF2 and PTN were

downloaded from TCGA portal (http://tcga-data.nci.nih.gov/

tcga/tcgaHome2.jsp). Samples showing expression levels of log2
tumor/normal ratio $0.584 for a particular gene were considered

up-regulated. Samples showing a log2 tumor/normal ratio .0.3

[66] for CNV were considered to exhibit copy number gain. Beta

values from the Illumina Infinium Human27-methylation assay for

DNA methylation at CpG islands were also downloaded from the

same TCGA portal. A mean beta value was calculated when

results from two or more probes were provided for a particular

gene per sample. [67] The beta values of ,0.25 were considered

to be hypomethylated. [68] Gene expression, copy number, and

DNA methylation data were downloaded for 494 cases. The NCI

dataset for gene expression in 53 ovarian serous adenocarcinoma

(advanced stage, high grade) tumor samples and 10 normal human

ovarian surface epithelial samples was provided by Dr. Michael

Birrer. Gene expression and survival data were used for analysis as

described previously [26].

Bioinformatics and Enrichment Analysis
The PANTHER (Protein ANalysis THrough Evolutionary Relation-

ships) classification system [11] was used to classify genes by their

biological processes. Genes of interest were uploaded into this

web-based application for analysis. Functional analysis and

network generation was done using Ingenuity Pathway Analysis

(IPA) software (Ingenuity Systems, www.ingenuity.com).

Statistical Analysis
Descriptive statistics including mean and standard deviation,

student’s two-tailed t-tests, and Kaplan-Meier survival analysis

were computed using GraphPad Prism 5.0 software. P values

,0.05 were considered significant.

Supporting Information

Figure S1 High-throughput siRNA screening of the
human druggable genome. A. Schematic showing the high-

throughput screening procedure used for the primary and

subsequent screens. B. The viability scores from the primary

HTS of the siRNA library targeting 6,022 genes of the human

druggable genome using the EOC cell line, A1847, display

a Gaussian distribution.

(EPS)

Figure S2 Correlation of technical replicates. A. Eight

EOC cell lines were reverse transfected with siRNAs targeting 300

genes identified from the primary screening of the A1847 cell line
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using transfection parameters optimized for each cell line (see

Table S3). The measured viability from each technical replicate

following silencing of a particular gene is graphed for each cell

line. Spearman’s coefficient of correlation was calculated for each

set of replicates. B. Three HIO cell lines were transfected using

parameters optimized for each (see Table S3). See panel A for

description of graphs.

(EPS)

Figure S3 Bioinformatics analysis. A. The 53 genes

identified as hits across all EOC cell lines were grouped by

biological process using PANTHER biological classification

system. These 53 genes fell into 13 biological processes. B. The
top 20 functions for the 53 hits as determined by the Ingenuity

Pathway Analysis (IPA) software are shown. The 53 hits are

enriched for genes related to protein synthesis involving ribosomal

proteins and elongation factors. C. Analysis of hits using IPA

software to perform network characterization resulted in three

networks. Shown is the network with the highest score defined as

the negative exponent of the p-value calculation. The red nodes

represent the hits being queried and the edges connecting the

nodes represent the biological relationships that are supported by

the IPA knowledge base. In the network shown, genes related to

protein synthesis, cell signaling and cell death are centered on well-

known survival genes ERK1/2 and PI3 kinase complex. The red

nodes represent the 53 genes, and the edges connecting the nodes

represent the biological relationships that are supported by the

IPA knowledge base.

(EPS)

Figure S4 Effect of gene silencing on survival of non-
tumorigenic HIO80 cells. HIO80 cells were transfected with

HSPA5, NDC80, NUF2, PTN or GL2 siRNAs. Seventy-two hours

post-transfection, cells were harvested and processed for analysis of

apoptosis. The fraction of apoptotic cells was measured by annexin

V staining followed by enumeration by using a Guava flow

cytometer (Millipore). The fold-change in apoptotic cells is shown

(mean 6 SD, n= 2).

(EPS)

Figure S5 Correlation of gene expression to CNV. A.
Spearman correlation analysis was performed to correlate copy

number variation to gene expression for NDC80, NUF2, and PTN

across 494 samples. The correlation coefficient is shown for each

analysis along with a probability value to measure statistical

significance. B. Box plots showing differences in gene expression

for NDC80, NUF2 and PTN in samples with or without copy

number gain. The threshold for copy number gain was set at

a ratio .1.2 (log2 tumor/normal ratio .0.3. A two-tailed t-test

indicates that the increase in gene expression with copy number

gain is statistically significant relative to no copy number gain.

*** = p,0.0005; ** = p,0.005.

(EPS)

Figure S6 Survival analysis. Kaplan-Meier survival analysis

was performed for patients with below-median (blue line) or

above-median (red line) NUF2 mRNA expression using (A) the

data set from the NCI provided by Dr. Michael Birrer and (B)
TCGA data set.

(EPS)

Table S1 List of 6,022 genes targeted by this siRNA library

(Human Druggable Set G-004600, Dharmacon). Each well

contains a pool of 4 siRNA duplexes targeting the indicated gene.

The siRNA pools are arrayed into seventy-six 96-well plates.

(PDF)

Table S2 List of 300 genes targeted by this custom siRNA

library purchased from Qiagen. Each well contains a pool of 4

siRNA duplexes targeting the indicated gene. The siRNA pools

are arrayed into five 96-well plates.

(PDF)

Table S3 List of the eight epithelial ovarian cancer (EOC)

tumorigenic and the three human immortalized ovarian surface

epithelial (HIO) non-tumorigenic cell lines used in this study. The

EOC cell lines have been selected to represent epithelial serous

histotype, which is the major subtype of ovarian cancer. The

transfection conditions were optimized for cell seeding density per

well, dilution of the lipid-based transfection reagent, and the final

siRNA concentration for each of the cell lines used in the study.

The following ranges for each parameter were evaluated during

optimization: cell densities (6.56103–16104 per well); lipid di-

lution (1:250–1:1000); siRNA concentration (50 nM–100 nM).

(DOC)

Table S4 Average viability scores and viability indices across the

eight tumorigenic and three non-tumorigenic cell lines following

HTS of the 300 gene custom library. Genes highlighted in yellow

were hits unique to the EOC cell lines and selected for further

validation. NUF2 (highlighted in green) had the lowest Viability

Index score and was also selected for further validation.

(XLS)

Table S5 List of 28 siRNAs used in the deconvolution screen

purchased from Qiagen. Each well contains a single siRNA duplex

targeting the indicated gene. The siRNAs are arrayed into a single

96-well plate. The two most effective siRNAs are highlighted in

green.

(XLS)

Supplementary Information S1

(DOC)
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