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Katja Hebestreit1., Sören Gröttrup1., Daniel Emden1, Jannis Veerkamp1, Christian Ruckert1, Hans-

Ulrich Klein1, Carsten Müller-Tidow2, Martin Dugas1*

1 Institute of Medical Informatics, University of Muenster, Muenster. Germany, 2 Department of Medicine, Hematology and Oncology, University of Muenster, Muenster,

Germany

Abstract

Leukemias are exceptionally well studied at the molecular level and a wealth of high-throughput data has been published.
But further utilization of these data by researchers is severely hampered by the lack of accessible integrative tools for
viewing and analysis. We developed the Leukemia Gene Atlas (LGA) as a public platform designed to support research and
analysis of diverse genomic data published in the field of leukemia. With respect to leukemia research, the LGA is a unique
resource with comprehensive search and browse functions. It provides extensive analysis and visualization tools for various
types of molecular data. Currently, its database contains data from more than 5,800 leukemia and hematopoiesis samples
generated by microarray gene expression, DNA methylation, SNP and next generation sequencing analyses. The LGA allows
easy retrieval of large published data sets and thus helps to avoid redundant investigations. It is accessible at www.
leukemia-gene-atlas.org.
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Introduction

Recent advances in high-throughput technologies allow to

collect unprecedented amounts of genomic, trancriptomic and

epigenomic data. Even single studies can be based on genome

wide microarray expression data of more than 2 000 patients [1].

Novel sources of high-throughput data such as those based on next

generation sequencing promise to further enhance molecular

analyses of leukemias on a genome wide level [2,3]. High-

throughput data are usually submitted to a public repository where

they can be accessed and used for further analyses. These data

have the potential to substantially accelerate and enhance further

research [4,5]. For example, for newly identified inactivating

mutations or gene deletions it is of interest to identify gene

expression patterns across hematopoietic differentiation and in

different hematological malignancies. Furthermore, comparison of

a new data set with published data can confirm results and

accelerate discoveries [6]. Rapid and reliable access to published

data sets can therefore save costs and speed up research. However,

the access to published data by non-bioinformaticians is time-

consuming, error-prone and often outright not successful. Thus,

there is a need for a repository that enables researchers to retrieve

information from already published data and helps to avoid

redundant investigations [7]. The requirements for such a

repository include the following: It should contain a wide range

of molecular data types. The samples corresponding to the data

should be annotated thoroughly with regard to leukemia, both

clinically and biologically. The repository should provide search

and browse functions as well as analysis and visualization tools to

process the data. Besides, the repository should be freely

accessible.

Here, we describe the Leukemia Gene Atlas (LGA), a novel

online bioinformatics tool that provides comprehensive, easy and

fast access to published genome wide data sets in hematopoiesis

and hematological malignancies. In the following section we

describe the architecture of the LGA paying particular attention to

the database and the data stored therein. The primary purpose of

the LGA is to support translational research and biomarker

discovery in hematology.

Materials and Methods

The LGA consists of three components: database, data analysis

module and web-based user-interface, Figure 1. The database

stores the molecular data together with all available information

from publications and constitutes the centerpiece of the LGA. This

database can be accessed using search functions by a user-friendly

web front-end. This front-end also allows conducting data

analyses. In the following sections these components are described

in more detail.

The Database
The database (PostgreSQL [8]) scheme is kept flexible to

include biologically and technically highly diverse experiments,

Table 1. Currently, the database contains studies based on DNA-

methylation, gene expression, copy number/genotype, and next-
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generation sequencing data. These studies focus on different

aspects such as prediction of molecular subtypes of leukemias,

research of human hematopoiesis and the analysis of transcription

factor binding sites. The majority of these molecular data was

imported from Gene Expression Omnibus (GEO) [9] and new

data sets are continuously added. Data published in peer-reviewed

journals only is considered to be integrated. And only after passing

a quality control and, if necessary, additional preprocessing steps,

the molecular data is added semi-automatically. Data preprocess-

ing and import into the database are generally done in R/

Bioconductor [10,11]. In addition to the molecular data, basic

information about the underlying experiments is stored as well as a

link to the related publications. Clinical and biological character-

istics of the respective samples, patients and cell lines are deposited

as well. Considerable effort was made to extract as many attributes

as possible, particularly with regard to leukemias. For this purpose

the sample characteristics arising from GEO were completed by

further attributes obtained manually from the corresponding

publication. Where available, survival data was also included.

Currently, there are more than 30 clinical and biological attributes

to describe samples and patients respectively.

Figure 1. Overview of the LGA architecture. Data is imported from several online repositories and the medical literature into the LGA database.
An analysis module processes the molecular data. The application server handles data transfer between database and analysis module and can be
accessed through a web interface. It executes queries and forwards data and analysis results to the client.
doi:10.1371/journal.pone.0039148.g001

Table 1. Overview of data in the LGA.

Publication Samples Experiment type Sample size

Kohlmann et al. Leukemia 2010 AML Gene expression (microarray) 251

Haferlach et al. J Clin Oncol 2010 ALL/AML/CLL/CML/MDS/healthy Gene expression (microarray) 3248

Figueroa et al. Cancer cell 2010 AML/Healthy DNA-methylation (microarray) 352

Verhaak et al. Haematologica 2010 AML Gene expression (microarray) 461

Valk et al. N Engl J Med 2010 AML/Healthy Gene expression (microarray) 293

Bullinger et al. Leukemia 2010 AML/Diagnosis/Remission Genotype (microarray) 328

Kohlmann et al. J Clin Oncol 2010 CMML DNA sequencing 81

Gutierrez et al. Leukemia 2005 AML Gene expression (microarray) 43

Novershtern et al. Cell 2011 Human hematopoietic cells Gene expression (microarray) 211

Figueroa et al. Cancer Cell 2010 AML/Healthy Gene expression, DNA-methylation (microarray) 411

Kohlmann et al. Leukemia 2011 CMML DNA sequencing 18

Tijssen et al. Developmental cell 2011 Primary human megakaryocytes ChIP-sequencing 5

Eppert et al. Nat Med 2011 AML/Primary human cord blood Gene expression (microarray) 105

Schenk et al. Nat Med 2012 Treated cell-lines (TEX/HL60) Gene expression (microarray), ChIP-sequencing 30

Bruns et al. Leukemia 2009 Hematopoietic stem cells in CML Gene expression (microarray) 47

Diaz-Blanco et al. Leukemia 2007 Hematopoietic stem cells in CML Gene expression (microarray) 17

doi:10.1371/journal.pone.0039148.t001

Leukemia Gene Atlas
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Apart from molecular data and its annotations, the database

also includes important results arising from analyses of this

molecular data. Results might be, for example, tables of

differentially expressed genes, gene ontology terms or copy

number alterations. Regarding next-generation sequencing stud-

ies, tables of discovered mutations or binding sites are deposited.

These results are usually extracted from the articles and

supplementary tables, or are generated by ourselves according to

the data analysis description in the publication.

In addition, the result tables comprise an extract of the

COSMIC database [12]. For each hematopoietic disease and

investigated gene the number of samples which have been tested

for mutations and the number of detected mutations in this gene

are included.

The Web Site
The LGA database is freely accessible via a web site (www.

leukemia-gene-atlas.org) which supports selection and analysis of

samples with comprehensive search and analysis functions. Data,

result tables and generated graphics can be exported for further

downstream analysis.

For each experiment, basic publication and data source

information is provided as well as experimental details such as

data type (e.g. gene expression or DNA methylation), platform

used (e.g. which microarray or sequencer), and the number of

analyzed samples.

Experiments can be filtered by sample or study characteristics,

e.g. data type, leukemia subtype or karyotype. Via filters the user

may create collections of samples by their biological and clinical

characteristics. The data of defined collections can be analyzed

and downloaded.

For some analysis functions it can be useful or necessary to

specify genes of interest. User-defined lists of relevant genes or

features (e.g. Affymetrix probe sets) can be added to the predefined

ones, for instance genes associated with apoptosis or cell cycle.

Searching for genes and genome coordinates within result tables

is a key functionality of the LGA. For example, groups of samples

can be identified whose expression or methylation patterns

significantly differ for certain genes of interest. In addition, the

result search automatically scans a summary of the COSMIC

database and displays the number of patients harboring mutations

Figure 2. Populations of human hematopoietic cells. 38 hematopoietic cell populations are shown with their respective positions in
hematopoiesis. Cells called as ‘‘progenitors’’ in the analysis are marked by a red box, ‘‘non-progenitor’’ cells are marked by a gray box. Figure adapted
from Novershtern et al. [9].
doi:10.1371/journal.pone.0039148.g002

Leukemia Gene Atlas
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in the respective genes according to their hematopoietic disease. A

hyperlink forwards the user to COSMIC Biomart [13] with filters

set to the corresponding gene and disease.

Data Analysis Tools
The web site provides a wide range of analysis tools for

processing stored data.

Figure 3. Usage of the LGA web interface. (Above) Experiment view with information on the integrated study [15] (above), sample
characteristics (hidden, in the middle) and stored result tables (below). Genes with RUNX1 binding sites are copied from a table of peak annotations
and stored as a gene list. (Middle) Groups of samples from [14] are defined in the analysis tab. (Below) Selecting the stored gene list (genes with
RUNX1 binding sites) and performing principle component analysis on the selected groups of samples from [14].
doi:10.1371/journal.pone.0039148.g003

Figure 4. The role of RUNX1 and its binding sites in leukemias. (A) Screenshot of a t-test result table with the 33 most differentially expressed
genes with RUNX1 binding sites in progenitor and non-progenitor cells. (B) Distribution of RUNX1 expression for different leukemic disease states. (C)
Heat map and hierarchical clustering of patients with acute lymphoblastic leukemia and non-leukemia samples with healthy bone marrows for gene
expression of genes with RUNX1 binding sites and highest variances over all samples. The phenotype color grid at the top represents the sample
characteristics. (D) Kaplan Meier curves of event-free survival for patients with acute myeloid leukemia with low (#33% quantile), median (.33%
quantile and #66% quantile), and high RUNX1 expression (.66% quantile).
doi:10.1371/journal.pone.0039148.g004

Leukemia Gene Atlas
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To get insight into the distribution of measurement values

across samples and groups of samples, bar charts are available with

an integrated phenotype color grid as well as box plots. The

phenotype color grid is an extension for visualization tools

representing clinical and biological characteristics of the samples

and enabling identification of possible correlations between

phenotypes and molecular data.

Unsupervised analyses by means of principal component

analysis and hierarchical clustering are available for exploration

of gene expression and DNA-methylation data. Results of

hierarchical clustering are presented by dendrograms together

with a heat map where columns correspond to the samples and

rows to the features of the platform. It is extended by the

phenotype color grid to support the identification of potential

subgroups of samples by their molecular data.

Testing for differential expression or DNA-methylation in

groups of samples is possible via an ANOVA or Welch’s t-test

with adjustment for multiple testing [14].

Survival analysis is provided for data sets with available survival

annotation. Samples can be grouped either by their molecular

data (expression/DNA-methylation profile of a specific gene) or by

their clinical and biological characteristics. Survival times of these

groups of samples can be compared by Kaplan-Meier-Plots and

log-rank test.

All data analysis functions are implemented in R/Bioconductor

[10,11].

As an established visualization tool we embedded the Integra-

tive Genomics Viewer (IGV) [15]. It supports all data types of the

LGA and enables interactive exploration of large data sets from

multiple studies in parallel.

Results

In the following, we demonstrate the usability of the LGA to

generate or substantiate new hypotheses based on published

genomic data sets. The presented example integrates ChIP-seq

and gene expression data sets from four different studies. All

methods and data are provided by the LGA and results were

directly generated from the LGA web site.

RUNX1 is a regulatory gene in hematopoiesis and plays a key

role in the development of leukemias [16]. To investigate the role

of RUNX1 in hematopoiesis we classified 38 distinct populations of

human hematopoietic cells [17] into progenitors and non-

progenitors (Figure 2). Next, we selected all genes that have a

RUNX1 binding site according to the ChIP-seq data set from

Tijssen et al. [18]. Clustering based on the expression values of

these RUNX1 regulated genes separated the progenitor from the

non-progenitor cells (Figure 3). T-tests revealed that 31 of the 33

most differentially expressed genes with RUNX1 binding sites

(FDR ,0.001) were overexpressed in progenitors (Figure 4A). To

investigate the role of RUNX1 in leukemias we compared RUNX1

expression for nine different leukemias and healthy controls in

more than 2000 leukemia and control specimens derived from the

MILE study [1]. RUNX1 was notably down regulated in chronic

lymphoid leukemia samples (Figure 4B). Hierarchical clustering

based on all genes with RUNX1 binding sites showed a strong

subdivision of the samples into disease states, e.g. acute

lymphoblastic leukemia separated from controls (Figure 4C; with

the phenotype color grid).

Searching for RUNX1 in published results across all studies

revealed differential expression for groups of leukemias (Figure S1)

and that mutations in RUNX1 occur frequently. The extract of

COSMIC shows that there are 90 RUNX1 mutations in 688

patients with acute myeloid leukemia (Figure S2). In a sequencing

study [19] seven different RUNX1 mutations in chronic myelo-

monocytic leukemia samples have been detected. Six of these

seven mutations are single nucleotide changes (Figure S2). A

survival analysis of 293 patients with acute myeloid leukemia taken

from Verhaak et al. [20] revealed an association between event-

free survival and RUNX1 expression: a reduced expression of

RUNX1 was associated with better outcome (Figure 4D).

Discussion

In the literature, leukemia samples are thoroughly characterized

in terms of mutation status and cytogenetics. Most repositories and

databases lack the ability to make use of these important and

helpful data. Gene Expression Omnibus (GEO) [9] has its

limitations regarding queries and analyses. Queries for studies

are currently possible via keywords only, specific leukemia related

annotations are missing and analysis tools are not recommended

for robust systematic analyses [9,21]. Analyses provided in

ArrayExpress [22] are currently limited to gene expression data

and do not include the sample’s karyotypes or mutations as

condition query. User-defined custom analyses are currently not

possible. Oncomine [23] is a commercial cancer microarray

database storing results of differential expression analyses.

Available gene signatures are predominantly restricted to the

comparison of cancer vs. normal samples or a cancer subtype vs.

all other subtypes and the user cannot perform analyses on

alternative groups of samples. Other repositories, such as dbGAP

database of genotypes and phenotypes [24], The Cancer Genome

Atlas [25] and the Atlas of Genetics and Cytogenetics in Oncology

and Heamatology [26] are less suitable for re-analysis and

integration of published high-throughput data.

To our knowledge, the LGA is the first repository custom-

tailored to the requirements of the leukemia research community

in the field of molecular and clinical data. It provides extensive

access to published leukemia data and thus helps to interpret

newly measured data. It comprises several types of molecular data

and supports integration of data types. The corresponding samples

are annotated extensively. The user can choose between eight

different analysis and visualization tools. Further data sets and data

types, e.g. based on ChIP-chip or reduced representation bisulfite

sequencing experiments, are continuously added.

Taken together, the LGA fills an urgent need for a usable and

multifaceted repository for leukemia and hematopoiesis data sets.

Its easy accessibility can enhance further leukemia research and

biomarker development.

Supporting Information

Figure S1 Different RUNX1 expression. Screenshot of an

extract of results for RUNX1 search showing the groups of samples

where RUNX1 is differentially expressed for three experiments.

(TIF)

Figure S2 Mutations in RUNX1. Screenshot of an extract of

results for RUNX1 search showing detected mutations in patients

with chronic myelomonocytic leukemia (above) and the number of

detected mutations per disease state in COSMIC (below).

(TIF)
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