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Abstract

Background: Microbubbles (MBs) can serve as an ultrasound contrast agent, and has the potential for magnetic resonance
imaging (MRI). Due to the relatively low effect of MBs on MRI, it is necessary to develop new MBs that are more suitable for
MRI. In this study, we evaluate the properties of SonoVueH and custom-made Fe3O4-nanoparticle-embedded microbubbles
(Fe3O4-MBs) in terms of contrast agents for ultrsonography (US) and MRI.

Methodology/Principal Findings: A total of 20 HepG2 subcutaneous-tumor-bearing nude mice were randomly assigned to
2 groups (i.e., n = 10 mice each group), one for US test and the other for MRI test. Within each group, two tests were
performed for each mouse. The contrast agent for the first test is SonoVueH, and the second is Fe3O4-MBs. US was
performed using a TechnosMPX US system (Esaote, Italy) with a contrast-tuned imaging (CnTITM) mode. MRI was performed
using a 7.0T Micro-MRI (PharmaScan, Bruker Biospin GmbH, Germany) with an EPI-T2* sequence. The data of signal-to-noise
ratio (SNR) from the region-of-interest of each US and MR image was calculated by ImageJ (National Institute of Health,
USA). In group 1, enhancement of SonoVueH was significantly higher than Fe3O4-MBs on US (P,0.001). In group 2, negative
enhancement of Fe3O4-MBs was significantly higher than SonoVueH on MRI (P,0.001). The time to peak showed no
significant differences between US and MRI, both of which used the same MBs (P.0.05). The SNR analysis of the
enhancement process reveals a strong negative correlation in both cases (i.e., SonoVueH r = 20.733, Fe3O4-MBs r = 20.903,
with P,0.05).

Conclusions: It might be important to change the Fe3O4-MBs’ shell structure and/or the imagining strategy of US to
improve the imaging quality of Fe3O4-MBs on US. As an intriguing prospect that can be detected by US and MRI, MBs are
worthy of further study.
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Introduction

Angiogenesis is a determinant of tumor growth, invasion, and

metastasis [1]. To detect new tumor microvessels, modern medical

imaging modalities are widely used. As non-invasive imaging tools,

ultrasonography (US) and magnetic resonance imaging (MRI) are

becoming very popular.

With few exceptions, ultrasound contrast agents (UCAs) are

microbubbles (MBs), which are often 1–7 mm in diameter and are

used primarily as blood-pool markers [2]. Since the first

description of enhanced reflections of ultrasound in 1969 [3],

UCAs have developed rapidly and the existing MBs usually have

an inert gas core (sulfur hexafluoride or perfluorocarbon gases)

and a stable shell (denatured albumin, surfactants, or phospholip-

ids). Typical MRI contrast agents include gadolinium chelate,

manganese chelate, and iron compounds. However, in 1991,

Moseley indicated that gas-filled MBs could also be used as a

unique MR contrast agent [4]. Recent theoretical and phantom

studies had further demonstrated this [5–9]. The principle behind

their use in MRI was the gas-liquid interface or the pressure-

induced microbubble size changing, which induced large local

magnetic susceptibility differences.

The current research about MBs and MRI mainly falls into two

categories: (1) using MBs as an MR contract agent based on the

magnetic susceptibility of MBs [10–11], and (2) using MBs as a

medium in MRI based on the biological effects produced by MBs’

cavitation and sonoporation characteristics [12–14]. The first

category of research has received little attention in the literature,

mainly due to the relatively low effect of MBs on MRI. On the

other hand, some researchers found that the potential application

of MBs as a unique intravascular susceptibility contrast agent for

MRI has not been fully studied. Along this line, references [4,10]

have focused on the feasibility study in vivo of MRI with existing

MBs, and references [11,15–19] mainly focused on developing

new MBs that are more suitable for MRI.

In the present study, we are interested in determining the ability

of microbubbles as contrast agents for ultrasonography and

magnetic resonance imaging.
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Results

In vitro US experiments
The signal strength was 92.0867.45, 56.5364.86 for Sono-

VueH and Fe3O4-MBs, respectively. There was a significant

difference (P,0.001). When the imaging strategy changed from

contrast-tuned imaging (CnTITM) to the Flash mode, the

SonoVueH microbubbles broke and the enhanced signal generated

by the microbubbles changed to anecho (the signal strength was

8.6263.45, P,0.001, Fig. 1A). However, under the same imaging

strategy change, the signal of Fe3O4-MBs tube had little change as

few microbubbles broke in this case (the signal strength was

50.5466.37, P.0.05, Fig. 1B).

In vitro MRI experiments
Figure 2A includes MR images of different concentration in

SonoVueH and Fe3O4-MBs suspension phantoms. The signal

strength from Fe3O4-MBs was lower than SonoVueH. Figure 2B

shows the dependency of the SNR on different SonoVueH volume

fractions. Figure 2C shows the dependency of the SNR on

different Fe3O4 -MBs volume fractions. An approximately linear

relationship was observed independently (r = 20.982 for Sono-

VueH, r = 20.929 for Fe3O4-MBs, with P,0.05).

In vivo US imaging
Generally, about 21 days after subcutaneous injection of tumor

cells, the tumor maximum diameter was close to 0.7760.08 cm.

MB contrast enhancement was observed in all 10 mice by US and

all 10 by MRI.

Figure 3 illustrates the images typically observed by US with

SonoVueH and Fe3O4-MBs. Figure 3A shows the gray-scale image

of the tumor. Under CnTITM mode just before the MBs injection,

signals from stationary tissues were suppressed and only high

amplitude signals were visualized (Fig. 3B). After the MB

suspension injection, the signal of the tumor enhanced.

Figures 3C and 3D demonstrate the maximum contrast after

injection SonoVueH and Fe3O4-MBs, respectively.

Moreover, Figure 4 illustrates the time-course signal changes

induced by SonoVueH (Figure 4A) and Fe3O4-MBs (Figure 4B)

injection from the same region-of-interest (ROI) and the same

tumor. The average value of enhanced signal observed was

26.14610.95 and 8.5265.83 for SonoVueH and Fe3O4-MBs

during the entire imaging process, respectively, and there was a

significant difference (P,0.001).

In vivo MR imaging
Typical time courses of EPI-T2* images show the similar change

trends as US after MBs administration. Figure 5 illustrates the

mouse tumor images typically observed during SonoVueH and

Fe3O4-MBs injection. Figure 5A shows the anatomy of superficial

tumor. Figure 5B illustrates pre-injection EPI-T2* images. The

post-injection images of SonoVueH and Fe3O4-MBs correspond to

the lowest SNR point in Figures 5C and 5D.

Moreover, Figure 6 illustrates the SNR time-course signal

changes induced by SonoVueH (Figure 6A) and Fe3O4-MBs

(Figure 6B) injection from the same ROI and the same tumor. The

average signal strength was 51.5765.01 and 43.8068.38 for

SonoVueH and Fe3O4-MBs respectively, and there was a

significant difference (P,0.001).

Correlation between the US and MRI
Time-to-peak values were 33.6061.58 s and 34.2061.55 s in

SonoVueH for US and MRI, respectively, and there was no

significant difference (P = 0.402). For Fe3O4-MBs, the correspond-

ing values are 26.5061.27 s and 23.8061.69 s for US and MRI,

respectively, and there was no significant difference either

(P = 0.404).

Figure 7A denotes the negative correlation of the tumor signal

strength change between US and MRI when both using

SonoVueH. The corresponding correlation is r = 20.733 with

p,0.05. Figure 7B shows a similar negative correlation when we

use Fe3O4-MBs in US and MRI instead. The corresponding

correlation in this case is r = 20.903 with p,0.05. The above

SNR analyses revealed a strong and significant relationship

between the two modalities when using the same microbubble

contrast agent.

Discussion

Despite the enhancement in different ways, the two typical SNR

time courses showed the similar trend. The tumors were enhanced

rapidly first and washed out gradually. The time of dynamic

enhancement was only a few minutes after injection because of the

limited lifetime of MBs in vivo.

In group 1, Fe3O4-MBs had a lower effect on US than

SonoVueH. The reasons are mainly (1) the Fe3O4-MBs is a

relatively new material and has a hard shell, their acoustic

properties (e.g., acoustic impedance) are somewhat different from

phospholipid-stabilized MBs under the same acoustic energy, so

the intensity of second harmonic is relatively weak. (2) Most of the

Figure 1. In vitro US experiments. Images of SonoVueH and Fe3O4-MBs under the mode of CnTITM and Flash: (A) In the first half of the tube, in
CnTIH mode, SonoVueH showed high echo; in the second half, in Flash mode, the SonoVueH microbubbles broke and the enhanced signal generated
by the microbubbles changed to anecho (white arrow). (B) Under the same imaging strategy change, the signal of Fe3O4-MBs tube had little change
(white arrow).
doi:10.1371/journal.pone.0034644.g001
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medical equipment today has been designed and tested based on

the properties of SonoVueH. Without changing the imaging

strategies, it is difficult to achieve good imaging properties with the

new Fe3O4-shelled microbubbles. We have conducted many tests

to improve the imaging quality on the existing medical devices.

However, methods such as using higher frequencies or Doppler

based destructive imaging cannot achieve the desirable effects yet.

We are working with several Chinese equipment manufactures on

improving the imaging qualities, hopefully obtaining some positive

results soon.

In group 2, however, SonoVueH had a lower effect on MRI

than Fe3O4-MBs, and the effect of SonoVueH had reached its limit

according to the approaches described for improving microbub-

bles for MRI, which included increasing the radius and volume

fraction of MBs, using inert gas core, et al [8,10]. First, as the size

SonoVueH ranges from 0.1 mm to 1.1 mm (with a mean diameter is

2.5 micrometer according to manual), thus the diameter should

not be increased significantly or they will not pass through the

pulmonary circulation. Second, the microbubble concentration

used in our study was 0.1 mL of the ,3.5% volume fraction,

which was far more than the common maximum clinical dosage

(e.g., 0.08 mL/kg of the 0.8% volume fraction according to the

product description) [10]. Third, the gas core is already sulfur

hexafluoride. Since an inert gas has a high molecular weight and

low solubility, it can cause the largest effect on transverse

relaxation.

Comparing with SonoVueH, the most important change in the

custom-made MBs was that some Fe3O4 nanoparticles had been

embedded into a double-polymer shell. Fe3O4 are T2 agents as

MBs, and they can enhance the magnetic sensitivity for the MBs

[11,18]. As the thick shell [20], the susceptibility of US is reduced.

Changing the characteristics of the shell and/or the imagining

strategy on US may be the most important factor in improving the

effectiveness for US. After all, a combination of multiple modalities

can offer synergistic advantages over any modality alone [21].

In a closely related paper [22], the authors reported an early

contrast study of tumor perfusion using US and MRI. They used

MBs as the contrast agent for US and gadopentetate dimeglumine

as the contract agent for MRI. And found that using MBs in US

can achieve the same effect as using gadopentetate dimeglumine in

MR imaging. As an intriguing prospect that can be detected by US

and MRI, MBs are worthy of further study.

Materials and Methods

In vitro US experiments
A microbubble phantom study was performed (L.L., Q.W.,

H.B.L.) to measure SNR of SonoVueH and Fe3O4-MBs

suspension using a TechnosMPX US system (Esaote, Italy) with a

linear-array transducer (LA532E, 7.5 MHz for fundamental gray-

scale imaging and 2.5 MHz for CnTITM). Fe3O4-MBs was kindly

provided by Dr. Fang Yang [18], which had double polymer shells

with 86.47 mg/mL Fe3O4 nanoparticles in it and N2 gas core and

Figure 2. In vitro MRI experiments. The in vitro MR images of different volume fraction of SonoVueH and Fe3O4-MBs: (A). 1: sodium chloride
solution (0.9% w/v), 2–4: SonoVueH with different volume fraction (1.75%, 3.5%, 7.0%). 5–7: Fe3O4-MBs with different volume fraction (1.75%, 3.5%,
7.0%). (B) an approximately linear relationship was observed in SonoVueH (r = 20.982, P,0.05) between SNR and microbubble volume fraction. (C) an
approximately linear relationship was observed in Fe3O4-MBs (r = 20.929, P,0.05) between SNR and microbubble volume fraction.
doi:10.1371/journal.pone.0034644.g002

Figure 3. Representative US findings with SonoVueH and Fe3O4-MBs. Images from the same mouse: (A) gray-scale image of the tumor with
a size 0.79 mm60.34 mm, (B) under CnTITM mode just before microbubble injection, signals from tumor was suppressed (white arrow), (C) maximum
contrast enhancement US tumor image after SonoVueH injection (white arrow), and (D) maximum contrast enhancement US tumor image after
Fe3O4-MBs injection (white arrow).
doi:10.1371/journal.pone.0034644.g003
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the mean diameter was 3.98 mm. The samples were well mixed

and placed in silica gel tubes of 1.0 cm in diameter. They were

diluted to 3.5% volume fractions with sodium chloride solution

(0.9% w/v) and put in a de-gassed water tank. Two experiments

were conducted, one under CnTITM imaging and the other under

Flash imaging. The CnTITM parameters were as follows: the gain

was 105, the depth was 31 mm, and the mechanical index (MI)

was 0.089, while in the Flash mode the MI was 0.5.

In vitro MRI experiments
A microbubble phantom study was performed (L.L.,S.W.) to

measure SNR of Fe3O4-MBs and SonoVueH suspension using a

7.0T Micro-MRI (PhamaScan, Bruker, Germany). The samples

were mixed and placed in Eppendorf tubes of 1.0 cm in diameter.

They were diluted to 7.0%, 3.5%, and 1.75% volume fractions

with sodium chloride solution (0.9% w/v) respectively. Every

phantom was scanned three times. The imaging parameters for

T2-weighted fast spin echo were set as repetition time

(TR) = 3000 ms, echo time (TE) = 60 ms, number of excitations

(NEX) = 1.

Microbubble preparation for in vivo experiments
The first contrast agent used was SonoVueH. The second

contrast agent used was Fe3O4-MBs. For each group, the dosages

are all 0.1 mL of microbubble suspension with a volume fraction

of about 3.5%. Before each injection, re-suspension must be

performed.

Cell culture and animal model
All animal procedures were performed in accordance with the

approval and guidelines of the Institutional Animal Care and Use

Committee (IACUC) of the Medical School of Southeast

University (approval ID: SYXK-2007.2121).

Cells from the human hepatocellular liver carcinoma cell line

HepG2 (Keygen Biotech. Co., Ltd, Nanjing, China) were grown in

RPMI 1640 with 10% fetal bovine serum (FBS) in a 5% CO2

humidified atmosphere at 37uC. Tumors were established in 20

healthy BALB/c-nu mice (5–6 weeks old, 20–25 g in weight) in

random order by subcutaneous injection of a suspension of 26107

HepG2 cells in 0.2 mL of phosphate-buffered saline (PBS) in the

right leg. Tumors were allowed to grow until the greatest diameter

of the tumors was close to 0.8 cm.

Animal preparation
A total of 20 HepG2 subcutaneous-tumor-bearing nude mice

were randomly assigned to 2 groups (i.e., n = 10 mice each group),

one for the US test, and the other for the MRI test. Within each

group, two tests were performed for each mouse. The contrast

agent for the first test is SonoVueH, and the second is Fe3O4-MBs.

For US, all mice were kept anesthetized with intraperitoneal

injection of 10% chloral hydrate (3 mL/kg). For MRI, mice were

Figure 4. SNR time courses of the same mouse tumor in US by using SonoVueH and Fe3O4-MBs. Figure A shows the SNR time course in
ROI during SonoVueH injection and Figure B shows the SNR time course when using Fe3O4-MBs injection.
doi:10.1371/journal.pone.0034644.g004

Figure 5. Representative MRI findings with SonoVueH and Fe3O4-MBs. Images from the same mouse during microbubble injection: (A)
anatomical image showing the superficial tumor (white arrow), (B) pre-injection EPI-T2* MRI tumor image (white arrow), (C) maximum contrast
enhancement of the tumor after SonoVueH injection (white arrow), and (D) maximum contrast enhancement of the tumor after Fe3O4-MBs injection
(white arrow).
doi:10.1371/journal.pone.0034644.g005

Microbubbles: A Dual-Modality Contrast Agent
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anesthetized with 1.0% isoflurane via a nose core with respiratory

monitoring. A 30-G needle was inserted into a tail vein by

intravenous injection of the bubbles with a 40-cm long PE-10 tube.

The dose of MBs was 0.1 mL and 0.2 mL of saline flush was

administered immediately after MBs injected.

In vivo US experiments
Before each examination, each mouse was fixed in a left lateral

position on a warm pad to maintain the body temperature. As the

tumor was just under the skin, about a 2-mm deep US gel was

placed between the transducer surface and the skin to ensure the

tumor was imaged clearly by US.

US imaging was performed (L.L., Q.W., H.B.L.) using a

TechnosMPX US system under CnTITM mode. The CnTITM

parameters were maintained during all examinations: the gain was

105, the depth was 31 mm, the MI was 0.089 and the scan time

was 1 s. When the optical imaging plane was obtained (the tumor’s

largest transverse cross section), the transducer was maintained

with a mechanical fixer. MB suspension was injected about 5 min

after the CnTITM was triggered and images were recorded

digitally on a hard disk for 15 min for off-line analysis. The data of

SNR from the ROI of each US image was calculated by ImageJ (a

software by National Institute of Health, USA). The time-course of

the corresponding parameter SNR was measured.

For each mouse, SonoVueH check was done first. After the

sufficient clearance of the MBs, Fe3O4-MBs suspension was

injected.

Figure 6. SNR time courses of MRI from SonoVueH and Fe3O4-MBs. Figure A shows the SNR time course in ROI during SonoVueH injection
and Figure B shows the SNR time course when using Fe3O4-MBs.
doi:10.1371/journal.pone.0034644.g006

Figure 7. Correlation between the US and MRI. Figure A shows the signal strength correlation between US and MRI in 600 seconds of
enhancement when using SonoVueH (r = 20.733, P,0.05). Figure B shows the signal strength correlation between US and MRI in 600 seconds of
enhancement when using Fe3O4-MBs (r = 20.903, P,0.05).
doi:10.1371/journal.pone.0034644.g007
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In vivo MRI experiments
MRI was performed (L.L., S.W.) using a 7.0T Micro-MRI with

a 38-mm volume coil. Each mouse was placed in the prone

position and dynamic susceptibility imaging was performed using

an EPI-T2* sequence with the respiratory gating control. To

obtain better images and shorten the scan time as much as

possible, parameters were adjusted as follows: TR = 1000 ms;

TE = 30 ms; field of view (FOV) = 464 cm; FA = 90u; NEX = 1;

scan time = 1 s; slice thickness = 1 mm. Anatomical images were

acquired under another protocol using the following parameters:

TR = 2500 ms; TE = 33 ms; FOV = 464 cm; FA = 180u;
NEX = 1; scan time = 1 min20 s; slice thickness = 1 mm. MB

suspension was injected about 5 min after the start of the dynamic

imaging and the total scanning time was 15 min. All images were

recorded digitally on a hard disk for off-line analysis. ROI analyses

were conducted as described for US and the SNR time course was

also measured.

For each mouse, SonoVueH check was done first then was the

Fe3O4-MBs.

Statistical analyses
Statistical evaluation was performed using SPSS software

(ver.13.0; SPSS Inc., Chicago, IL, USA). The numerical results

were expressed as means6SD. Results were analyzed statistically

using the paired-samples t test (for comparing the average signal

strengths of using different MBs in US or MRI) and independent-

samples t test (for comparing the time-to-peak average signal

strengths of using the same MBs in US and MRI) for effectiveness

of different MBs and modalities. Pearson correlation coefficient of

SNR is for US and MRI.
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