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Abstract

The complexity of the human microbiome makes it difficult to reveal organizational principles of the community and even
more challenging to generate testable hypotheses. It has been suggested that in the gut microbiome species such as
Bacteroides thetaiotaomicron are keystone in maintaining the stability and functional adaptability of the microbial
community. In this study, we investigate the interspecies associations in a complex microbial biofilm applying systems
biology principles. Using correlation network analysis we identified bacterial modules that represent important microbial
associations within the oral community. We used dental plaque as a model community because of its high diversity and the
well known species-species interactions that are common in the oral biofilm. We analyzed samples from healthy individuals
as well as from patients with periodontitis, a polymicrobial disease. Using results obtained by checkerboard hybridization on
cultivable bacteria we identified modules that correlated well with microbial complexes previously described. Furthermore,
we extended our analysis using the Human Oral Microbe Identification Microarray (HOMIM), which includes a large number
of bacterial species, among them uncultivated organisms present in the mouth. Two distinct microbial communities
appeared in healthy individuals while there was one major type in disease. Bacterial modules in all communities did not
overlap, indicating that bacteria were able to effectively re-associate with new partners depending on the environmental
conditions. We then identified hubs that could act as keystone species in the bacterial modules. Based on those results we
then cultured a not-yet-cultivated microorganism, Tannerella sp. OT286 (clone BU063). After two rounds of enrichment by a
selected helper (Prevotella oris OT311) we obtained colonies of Tannerella sp. OT286 growing on blood agar plates. This
system-level approach would open the possibility of manipulating microbial communities in a targeted fashion as well as
associating certain bacterial modules to clinical traits (e.g.: obesity, Crohn’s disease, periodontal disease, etc).
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Introduction

Knowledge of qualitative and quantitative data of complex

microbial communities is necessary to initially characterize system

processes in the environment. These processes are determined by

many functionally diverse, differently active sets of the microbial

species that form the community. In turn, the microbial

community responds to changes by modifying its composition or

adapting their gene expression profiles to the new environment.

Accumulation of array and metagenomic data has shed light on

the composition of microbial communities from different environ-

ments [1–5]. However, little it is known about their organization

and the principles that govern the associations of the different

species.

Systems biology techniques have been applied to explain the

functional organization of a variety of biological systems, bridging

the gap from individual elements to systems biology by exploring

the observed relationships between the individual elements of the

system. Among these techniques, network analysis models have

been widely used. A classical application has been the study of

cellular systems interactions among and between cellular elements

(e.g. proteins) of a biological system [6–8]. Different tools for

network analysis have been developed depending on the topic of

interest. Furthermore, using network analysis it is possible to

identify influential individuals within a group. For instance, a

regulatory network centrality analysis will single out which element

or elements regulate many others in the system and could be

considered global regulators of the system.

One set of tools available is correlation network analysis, which

are unique in the sense that they are not the result of direct

experimental data but determined by collecting large amounts of

data and calculating the correlation between all elements [6,7].

These methods have been successfully applied to the study of

various biological contexts including cancer [9], evolutionary

relationships [10] and yeast genetics [11]. Recently Steele et al.

have studied linkages within a microbial plankton community

using co-occurrence patterns determined by either automated

ribosomal intergenic spacer analysis (ARISA) or terminal restric-

tion length polymorphism (TRFLP) [12].

In order to gain an understanding of the organization of a

complex microbial community, we used correlation network

analysis to study the organization and bacterial interactions in

the oral plaque, in health and disease. Recently, Zhou et al. using

Pearson’s correlation matrix reconstructed a molecular ecological

network in soil microbial communities [13] and Gilbert et al. used

correlation network analysis to study microbial community

dynamics in the marine environment [14]. To our knowledge

weighted correlation network analysis has not been previously
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used to the study of bacterial associations in microbial commu-

nities. Beyond its basic research interest, we show that the use of

network analysis on microbial communities has practical applica-

tions. Studying the centralities of the network we may identify

potential target organisms (keystone species) whose disappearance

might lead to the disturbance of a mature biofilm. Moreover, we

showed that network analysis facilitated the cultivation of a

previously uncultivated organism by analyzing key relationships

among uncultivated organisms.

Results

In order to characterize the microbial communities we used

results from two different methodologies: one was the checker-

board DNA-DNA hybridization technique [15] that identifies only

important cultivable oral bacteria and the other the Human Oral

Microbe Identification Microarray (HOMIM) [3]. Checkerboard

hybridization detected 40 cultivable periodontal species while

HOMIM detected a total of 274 species or clusters of species of

oral bacteria including not-yet-cultivated species. Checkerboard

data was obtained from 2,565 individual subgingival plaque

samples from patients with periodontitis while for the HOMIM

analysis results came from 90 sites from healthy individuals and

514 sites from individuals with periodontitis. The raw and

normalized intensities were made publicly available by submission

to GEO [16] and can be accessed via accession number

GSE32159.

The first step of the analysis was estimating the missing values in

our data set. Most microarray based technologies suffer from

frequent missing values due to various experimental reasons. Since

the missing data points can hinder downstream analyses a wide

variety of techniques have been developed to deal with missing

values in large-scale data sets. It is not reasonable to simply discard

such observations or remove the corresponding cases, since this

will lose valuable information and can lead to selection bias;

instead, the missing values need to be replaced or predicted as

accurately as possible before the actual data analysis. We estimated

the missing values using a bayesian principal component analysis

(BPCA) method that has been shown to perform better than other

methods estimating missing values in microarrays [17]. The

estimated results were used for the next series of analysis.

Correlation network analysis of bacterial communities
using Weighted Correlation Network Analysis (WGCNA)

To first test the biological meaningfulness of the modules

obtained by WGCNA analysis we used a checkerboard DNA-

DNA hybridization database because associations among the

species contained in the array have been widely studied in the past

[15,18–20].

For checkerboard analysis the power of the pairwise Pearson

correlation was b= 9 with scale free topology R2 = 0.4 (the

maximum for these samples). The low R2 value is probably due to

the low number of species in the dataset. Hierarchical clustering

led to the removal of 9 outlier samples and a total of 2,556

checkerboard arrays samples used. Interestingly, we identified a

single cluster, which represented a unique microbial community

associated with disease (Figure S1a).

Using WGCNA we identified 4 bacterial modules that

arbitrarily were given the colors blue (12 species), brown (5

species), grey (5 species) and turquoise (13 species) (Fig. 1).

We then expanded our analysis using results from the HOMIM,

with samples from healthy and diseased individuals [3]. HOMIM

results from healthy individuals in cluster 1 (51 samples) had a

power of the pairwise Pearson correlation b= 5 with scale free

topology R2 = 0.9. HOMIM results from healthy individuals in

cluster 2 (37 samples) had b= 6 with scale free topology R2 = 0.85.

Finally, HOMIM results from diseased individuals in cluster 1 (467

samples) had b= 7 with scale free topology R2 = 0.9 and HOMIM

results from diseased individuals in cluster2 (47 samples) had b= 7

with scale free topology R2 = 0.85. We obtained high values of R2,

although when the network is small (with few species) or the many

species are highly correlated with each other scale-free fit may not

be possible to achieve.

The HOMIM microarray includes species that have not been

cultured yet and that could be important in the development of the

oral biofilm and disease progression. Hierarchical clustering led to

the removal of 2 outlier samples and the identification of two

clusters of similar size in the samples from healthy individuals,

which represented two different distinct microbial communities

associated with health (Figure S1b). In the case of the samples from

disease no outliers were detected and 2 clusters were identified.

Nonetheless, contrary to what happened in the samples from

healthy individuals, one cluster had 10 fold more samples than the

other (467 vs. 47 samples) which implies that there is a singular

bacterial community frequently associated with disease (Figure S1a

and c). This community is more complex than any of the other

community profiles obtained from the other clusters (Figure S2).

We then proceeded to identify the bacterial modules (groups of

bacterial species that appeared associated across samples). Figure 2

summarizes the results of module identification in health (Fig. 2a

and 2b) and disease (Fig. 2c and 2d). Additionally, we tried to

obtain consensus networks using the combined results of healthy

and diseased samples. However, the structure of the networks in

health and disease was so different that it was not possible to

obtain any consensus network. Even within groups (health and

disease) it was not possible to obtain consensus networks.

Network centralities and identification of hubs
Table 1 shows the overall statistics of centralities for the

identified modules. Interestingly, modules in clusters from healthy

biofilms present lower centralization and higher density than the

modules in the clusters from diseased biofilms, which may indicate

that those modules could be more resilient to changes and the

correlations among their members are high.

Next step was to identify hubs in each of the modules. The

question of which network elements are the most important

cannot be answered unambiguously. Ranking nodes (species) in

the network is accomplished by measuring different centrality

indices using different algorithms. We used three different

algorithms. First, we used degree centrality, which indicates the

number of connections to other nodes in the network and has been

used in numerous situations. For example, in the case of protein

interactions, proteins with high degree centrality are more likely to

be essential than those with low values of degree centrality [21].

Second, we utilized betweenness centrality, which indicates the

relevance of a node as capable of holding together communicating

nodes: the higher the value the higher the relevance of the node as

an organizing regulatory node. The betweenness centrality of a

node reflects the amount of control that this node exerts over the

interactions of other nodes in the network [22]. Third, we used a

double screening scheme (DSS), which combine two algorithms

(Maximum Neighborhood Component and Density of Maximum

Neighborhood Component) and has been shown to identify hubs

that are missed by other algorithms [23].

In general, highly dense modules with low network centraliza-

tion included many species, all of them with large number of

species with high degree centralization and betweenness centrality

(Table 1 and Table S1).

Community Network Analysis of Complex Biofilms
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Isolation of the uncultivated organism Tannerella sp.
OT286

The final set of experiments was designed to demonstrate that

the identified modules are biologically meaningful. We decided to

show that organisms that have not been cultured yet could be

grown based on our results from network analysis.

We focused our interest on Tannerella sp. OT286, an

uncultivated phylotype that has been frequently identified in

periodontal health [24] in contrast to its close relative Tannerella

forsythia, one of the most important periodontal pathogens. To try

to isolate this organism we singled out species that were present at

least in both clusters from healthy biofilms and if possible had a

Figure 1. WGCNA correlation network results of bacterial species in checkerboard hybridization results. The images show the
Cytoscape representation of the correlation networks for the 4 modules identified by WGCNA. Checkerboard analysis was performed for 40 species of
oral bacteria on a total of 2,565 individual tooth from patients with periodontitis. R2 used for scale free topology model fit was 0.40, the maximum
value in the analysis. The identified modules correlated well with microbial complexes previously described [20].
doi:10.1371/journal.pone.0028438.g001

Figure 2. WGCNA correlation network results of bacterial species in healthy and diseased individuals from HOMIM results.
Clustering dendrogram of species, with dissimilarity based on topological overlap, together with assigned module colors. a) Cluster 1 from healthy
individuals (51 samples), R2 used for scale free topology model fit was 0.90 and a total of 6 bacterial modules were identified. b) Cluster 2 from
healthy individuals (37 samples), R2 used for scale free topology model fit was 0.85 and a total of 10 bacterial modules were identified. c) Cluster 1
from diseased individuals (467 samples), R2 used for scale free topology model fit was 0.90 and a total of 6 bacterial modules were identified. D)
Cluster 2 from diseased individuals (49 samples), R2 used for scale free topology model fit was 0.85 and a total of 7 bacterial modules were identified.
doi:10.1371/journal.pone.0028438.g002

Community Network Analysis of Complex Biofilms

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28438



direct link to Tannerella sp. OT286 in the bacterial modules (Fig. 3,

Table 2 and Table S2). Moreover, organisms with high centrality

would be preferred to those with low centrality and of course we

focused on organisms that were culturable. We hypothesized that

we could use those organisms as helpers in growing Tannerella sp.

OT286 from an oral biofilm sample. The selection of helpers to

enrich Tannerella sp. OT286 was performed as described in the

methods section. As shown in Fig. 4a, Prevotella oris OT311 and

Prevotella sp. OT658 increased the growth of Tannerella sp. OT286

significantly. Coincidentally, Prevotella oris OT311 not only was

associated with Tannerella sp. OT286 in one of the modules from

the healthy biofilms but was also one species with high

betweenness centrality. We also observed that Prevotella oris

OT311 grew by a factor of 19.7 during the period of incubation.

Finally, Propionibacterium acnes OT530 and Lactobacillus casei OT568,

which were not present in any of the modules where Tannerella sp.

OT286 was present had the opposite effect and inhibited its

growth (Fig. 4a).

Table 1. Fundamental statistics describing the networks.

Samples Module
Clustering
coefficient

Network
centralization

Network
density

Avg. number of
neighbors

Number of
nodes

Checkerboard Blue 0.72 0.27 0.05 5.5 12

Brown 0.0 0.58 0.4 1.6 5

Grey 0.7 0.5 0.7 2.8 5

Turquoise 0.47 0.37 0.27 3.23 13

HOMIM Healthy Cluster 1

Blue 0.911 0.153 0.852 52.8 63

Brown 0.775 0.319 0.579 24.1 44

Green 0.802 0.291 0.667 22.7 35

Grey 0.751 0.182 0.346 4.2 13

Turquoise 0.689 0.454 0.469 37.6 81

Yellow 0.821 0.298 0.662 23.8 37

HOMIM Healthy Cluster 2

Black 0.806 0.269 0.659 9.7 15

Blue 0.906 0.158 0.827 37.2 46

Brown 0.873 0.202 0.746 23.1 32

Green 0.860 0.279 0.693 11.8 18

Grey 0.451 0.221 0.216 3.7 18

Magenta 0.928 0.115 0.901 11.7 14

Pink 0.913 0.192 0.835 10.9 14

Red 0.859 0.324 0.717 10.8 16

Turquoise 0.828 0.322 0.634 48.2 77

Yellow 0.960 0.062 0.944 19.9 22

HOMIM Disease Cluster 1

Blue 0.837 0.353 0.593 48.1 82

Green 0.736 0.373 0.495 12.4 26

Grey* 0.291 0.324 0.183 2.7 16

Red 0.768 0.400 0.464 8.8 21

Turquoise 0.895 0.226 0.768 67.6 89

Yellow 0.715 0.385 0.336 8.7 27

HOMIM Disease Cluster 2

Blue 0.705 0.423 0.398 15.9 41

Brown 0.841 0.279 0.708 26.2 38

Green 0.441 0.225 0.249 5.5 23

Grey 0.453 0.243 0.175 4.4 26

Red* 0.526 0.389 0.382 3.8 11

Turquoise 0.483 0.294 0.139 11.0 81

Yellow 0.787 0.374 0.538 14.0 27

These concepts describe the overall shape and centralities of the modules. The Clustering coefficient is a measure of local connections. Network centralization describes
whether the network is dominated by a few central nodes or not. Network density assess the proportion of ties in a network relative to the total number possible.
Finally, the average number of neighbors and number of nodes describe the size and interconnectedness of the module.
*Only subset of nodes connected.
doi:10.1371/journal.pone.0028438.t001
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Using Prevotella oris OT311 as a helper we first isolated some

colonies of Tannerella sp. OT286 (Fig. 4b) that were used in a

second round of enrichment where the helper and a negative

control (Lactobacillus casei) were laid on a plate that contained

Tannerella sp. OT286 from the first isolation. As expected the

region of the plate that had been in contact with the helper showed

a growth to Tannerella sp. OT286 colonies while the same region

where the negative control was placed showed no growth of

Tannerella sp. OT286 (Fig. 4c). As a final control we performed a

qPCR on the isolated colonies and found that the number of

Tannerella sp. OT286 rDNA gene copies was 109 higher in the final

suspension, which confirmed that indeed we had finally enriched

Tannerella sp. OT286. Finally, following a similar procedure

isolated colonies were identified on agar plates (Fig. 4c).

Discussion

In this work, we applied a systems biology approach to simplify

the study of complex microbial communities and identity bacterial

associations within the community. We used the oral microbial

community as a model because dental plaque is a complex biofilm

with high level of organization [25]. Around 700 predominant

bacterial taxa have been identified in oral cavity [26,27].

Approximately 35% have not been cultivated and the only

information we possess about them is derived from their 16S

rRNA phylogenetic affiliation [26,27]. Additionally we wanted to

include periodontal disease samples in our analysis because is one

of the most widely studied polymicrobial diseases [28–31] and an

important environmental perturbation on the composition of the

microbial community. Interestingly, the predominant species from

diseased sites are different from those found in healthy sites,

although the putative pathogens can often be detected in low

numbers at normal sites.

Correlation networks were generated using the Weighted Gene

Co-expression Network Analysis (WGCNA) [32]. WGCNA

analysis is a systems biology method that has been successfully

used for describing the expression correlation patterns among

genes across microarray samples generating clusters (modules) that

Figure 3. Selecting helpers to isolate the uncultivable organism Tannerella sp. OT286. Red edges in the networks show yellow nodes
connecting directly to Tannerella sp. OT286. The length of the edges is proportional to the strength of the association between species. Oral taxon
(OT) for each species/phylotype followed the designation provided in Human Oral Microbiome Database (HOMD) www.homd.org. a) Connections in
module turquoise from HOMIM results healthy cluster 1 (51 samples). b) Connections in module red from HOMIM results healthy cluster 2 (37
samples). c) Connections in module grey from HOMIM results from diseased cluster 1 (467 samples). d) Connections in module grey from HOMIM
results from diseased cluster 2 (49 samples). In red we show the strains that were tested as helpers in our experiments. Additionally, as negative
controls, we tested 2 strains not present in those networks: Propionibacterium acnes OT530 and Lactobacillus casei OT568.
doi:10.1371/journal.pone.0028438.g003
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are generally related coexpressing metabolic pathways [8,33]. We

decided to apply the same principle to the study of correlation of

the abundance of species in the oral biofilm. Species modules

could form for a variety of reasons, they may represent

physiological or physical species-species interactions or even

species that react to similar environmental circumstances.

Focusing the analysis on modules (and their intramodular hubs)

amounts to a biological data reduction scheme facilitating the

study of microbial associations and identification of keystone

species within the community. Highly correlated module species

are represented and summarized by their first principal compo-

nent (referred to as the module eigenspecies [34]). The module

eigenspecies is used to define measures of module membership

which quantify how close a species is to a given module [32].

We first analyzed results from checkerboard DNA-DNA

hybridization analysis since it has been extensively used for the

study of periodontal disease. Socransky et al. have shown that

periodontal bacteria tend to associate in well-defined complexes

[20]. These complexes represent bacterial consortia that appear to

occur together and that are associated with the biofilms of gingival

health, gingivitis and periodontitis. The bacterial modules we

obtained agreed with the complexes described by Socransky et al.

[20,35]. When compared with the oral microbial complexes

described by Socransky et al. [20] the brown module correspond-

ed to the red complex, the blue module to the yellow complex

(Streptococcus sanguis. Streptococcus oralis, Streptococcus mitis, Streptococcus

gordonii and Streptococcus intermedius) and the turquoise module

represented a mix of the green complex (Capnocytophaga species,

Campylobacter concisus, Eikenella corrodens and Aggregatibacter actinomy-

cetemcomitans serotype a.) and the orange complex (Campylobacter

gracilis, Parvimonas micra, Fusobacterium nucleatum, Fusobacterium period-

onticum, Prevotella intermedia, Prevotella nigrescens, Campylobacter showae,

Campylobacter rectus, Eubacterium nodatum and Streptococcus constellatus)

[20]. The ‘red complex’, which appears later in biofilm

development, comprises species that are considered periodontal

pathogens, namely, Porphyromonas gingivalis, Treponema denticola, and

Tannerella forsythia. Interestingly, from our results Tannerella forsythia

seems to be the key organism in this module. Accordingly, we

found a high correlation of the brown module with clinical traits

associated with periodontal disease (Figure S3). However,

checkerboard DNA-DNA hybridization is limited to the study of

cultivable bacteria and as we mentioned above a large fraction of

oral taxa has not been cultivated yet.

The use of HOMIM results improve our knowledge of the

architecture of the bacterial associations network in the commu-

nity since it not only expanded the number of species identified but

also included species not-yet-cultivated that could be important in

the stability of the community.

We have found two clear defined community structures in

health, while in disease it seems there is a singular community

highly associated with periodontitis. Interestingly, no consensus

networks were identified either between both healthy biofilm

samples clusters, which indicates that there is more than one

distinct microbial community associated with periodontal health.

The factors that determine which of these healthy communities

colonize the oral cavity are still unknown. Similarly, no consensus

network was obtained for the periodontal samples. However, as

mentioned before there is a community that was overwhelmingly

identified by both checkerboard DNA-DNA hybridization and

HOMIM analysis. Additionally, we could not find consensus

network between disease and any of the healthy communities. This

observation supports the idea that during disease not only the

species present change but also the nature of their interactions.

In general, we found that clusters from healthy samples

presented less centralized networks than the disease communities.

A very centralized network is dominated by one or a few very

central nodes. If these nodes are removed or damaged, the

network quickly fragments into unconnected sub-networks. A

highly central node can become a single point of failure. A less

centralized network has no single points of failure and is more

Table 2. Species common to the healthy and diseased clusters where Tannerella sp. OT286 was also present.

Healthy Cluster 1 Healthy Cluster 2 Diseased Cluster 1 Diseased Cluster 2

Bacteroidetes sp. OT274 Bacteroidetes sp. OT274 Bacteroidetes sp. OT274 Bacteroidetes sp. OT274

Campylobacter gracilis OT623 Campylobacter gracilis OT623

Dialister invisus OT118 Dialister invisus OT118

Parvimonas micros OT111 Parvimonas micros OT111

Prevotella sp. OT317 OT472 OT658 Prevotella sp. OT317 OT472 OT658 Prevotella sp. OT317
OT472 OT658

Prevotella sp.
OT317 OT472 OT658

Prevotella sp. OT658 693 714 782 Prevotella sp. OT658 693 714 782 Prevotella sp. OT658
693 714 782

Prevotella sp. OT658
OT693 OT714 OT782

Prevotella nigrescens OT693 Prevotella nigrescens OT693 Prevotella nigrescens OT693 Prevotella nigrescens OT693

Prevotella oris OT311 Prevotella oris OT311

Prevotella tannerae OT466 Prevotella tannerae OT466 Prevotella tannerae OT466 Prevotella tannerae OT466

Streptococcus sp. OT768 OT767 OT758
OT755 OT745 OT734 OT728 OT721 OT707

Streptococcus sp. OT768 OT767 OT758
OT755 OT745 OT734 OT728 OT721 OT707

Streptococcus intermedius and anginosus
OT543 OT644

Streptococcus intermedius and
anginosus OT543 OT644

Streptococcus intermedius and constellatus
OT576 OT644

Streptococcus intermedius and
constellatus OT576 OT644

Streptococcus mitis OT069 OT398 Streptococcus mitis OT069 OT398 Streptococcus mitis
OT069 OT398

Streptococcus mitis
OT069 OT398

In order to select potential helpers for Tannerella sp. OT286 growth we identified organisms that where detected at least in both healthy clusters, whit special emphasis
on the organisms that were directly linked to Tannerella sp. OT286. OT numbers follow the HOMD nomenclature.
doi:10.1371/journal.pone.0028438.t002
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resilient to many environmental challenges. One could hypothe-

size that modules in healthy communities tend to be more stable

than modules in disease communities. Hence, modules in disease

communities are controlled by a few number of organisms that

could be targeted to altered the community structure.

Once we identified the different networks we were poised to

single out the hubs in the community. As mentioned above,

identifying hubs is important because they could be targeted to

alter the structure of the community to ones favor, either removing

hubs associated with disease or promoting the growth of modules

linked to health. The idea that there are species in the community

that hold special importance in its stability (keystone species) has

been used extensively in food webs studies [36]. Recently, Steele et

al. have also tried to identify keystone species in microbial ocean

food webs [12]. Certain species in complex microbial communities

may play the role of keystone species by maintaining a stable and

Figure 4. Enrichment and isolation of Tannerella sp. OT286. A) qPCR results of the number of 16S rDNA copies of Tannerella sp. OT286 after a
week of incubation in the presence of different helpers. B1) Results of colony hybridization where the colonies from the initial agar plate enrichment
were spread on a plate and a filter paper (black square) was soaked with Prevotella oris OT311 and placed on top of the plate. B2) Results of the same
experiment but in this case Lactobacillus casei OT568, a negative control, was used to soak the filter paper. The black squares indicate where the
paper filters were placed soaked with the 2 different species. C1) Streaking isolation of colonies from B1 positive region on agar plates. C2) Colony
hybridization of C1 plate showing positively identified Tannerella sp. OT286 colonies.
doi:10.1371/journal.pone.0028438.g004
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functional community, as is the case of Bacteroides thetaiotaomicron

in the gut microbiota [37]. Given the low centrality of most of

the modules identified, degree centrality (indicates the number of

connections to other nodes in the network) and betweenness

centrality (indicates the relevance of a node as capable of holding

together communicating nodes) in most cases identified a large

number of species as important, though they generally agreed in

which ones were hubs. In those cases the Double Screening

Scheme (DSS) identified lower number of species as important in

holding the network together. However, DSS did not usually

agree with other centralities. The importance of the identified

hubs should be tested in the laboratory but by using this kind of

analysis we have targeted specific species as potentially

important, which greatly simplify the analysis of the microbial

community.

We have provided an empirical evidence of the accuracy of this

kind of analysis by isolating a not-yet-cultivated organism

(Tannerella sp. OT286) based on the network analysis results.

Kaeberlein et al. demonstrated that ‘‘uncultivable’’ organisms that

did not grow in artificial media alone formed colonies in the

presence of other organisms, and they proposed that this

observation may explain the uncultivability of certain species in

the laboratory [38]. Borrowing this idea we selected helper

organisms that enriched Tannerella sp. OT286 when incubating

plaque and saliva in an artificial saliva medium. This is a poor

medium that does not allow an overgrowth of fast growing

organisms. Two of the strains tested significantly enriched

Tannerella sp. OT286 (Prevotella oris OT311 and Prevotella sp.

OT658). Prevotella sp. OT658 is part of 2 of the Prevotella clusters

that were identified as associated with Tannerella sp. OT286. Both,

Prevotella oris OT311 and Prevotella sp. OT658, had high centrality

and were present at least in the modules from health where

Tannerella sp. OT286 appeared (Fig. 3). Interestingly, the 2 strains

tested as negative controls that were never identified as associated

with Tannerella sp. OT286 in the bacterial modules (Propionibacte-

rium acnes OT530 and Lactobacillus casei OT568) had an inhibitory

effect on its growth (Fig. 4a).

These results provide direct evidence that network analysis on

complex microbial communities where there is a cooperative

environment is a useful tool to derive hypotheses that can be tested

in the laboratory. We have shown how a not-yet-cultivated oral

species was cultivated based on the results obtained using systems

biology methods applied to microbial communities. We believe

that the same principle could be used to specifically target hubs in

the modules or to selectively increase growth of modules related to

health.

Methods

Samples, Checkerboard analysis and Human Oral
Microbe Identification Microarray (HOMIM)

Checkerboard results from 2,565 individual subgingival plaque

samples from patients with periodontitis were used for analysis.

Checkerboard was performed as described elsewhere [15]. Briefly,

denatured DNA from the samples was fixed in separate lanes on a

single membrane mounted in a Miniblotter 45. The membrane

was then rotated 90 degrees in the same device, which enabled

simultaneous hybridization with the different DNA probes. A

MiniSlot device allowed lysates loaded in parallel channels to be

aspirated through the membrane, depositing horizontal lanes on

the membrane surface. Hybridizations were performed in vertical

lanes with either digoxigenin-labeled whole genomic probes or

16S rRNA-based oligonucleotide probes directly conjugated to

alkaline phosphatase.

Human Oral Microbe Identification Microarray (HOMIM)

used on those experiments detected a total of 276 species of oral

bacteria. Samples and procedures for HOMIM are described

elsewhere [3]. Briefly, 16S rRNA-based, reverse-capture oligonu-

cleotide probes (typically 18 to 20 bases) were printed on aldehyde-

coated glass slides. Subject sample 16S rRNA genes were PCR

amplified from DNA extracts using 16S rRNA universal forward

and reverse primers and labeled via incorporation of Cy3-dCTP in

a second nested PCR. The labeled 16S amplicons were hybridized

overnight to probes on the slides. After washing, the microarray

slides were scanned using an Axon 4000B scanner and crude data

was extracted using GenePix Pro software. A total of 89

microarrays from healthy subgingival sites and 514 subgingival

sites from individuals with periodontitis were used for network

analysis.

Bayesian Principal Component Analysis (BPCA) Missing
Value Estimator

To estimate missed values in the arrays we used the bpca[17]

script in R. The script is a port of the Matlab version provided by

Shigeyuki Oba [17] and it is included in the pcaMethods R

package. Before BPCA analysis, all values of fluorescence were

normalized against the values of fluorescence of a 16S rRNA

universal probe in the array. For the analysis we computed the

average fluorescence of all probes for each specific bacterial

species.

Correlation Network Analysis
WGCNA [32] starts by calculating a correlation matrix

containing all pairwise Pearson correlations between all probe

sets across all subjects. We define correlation networks as

undirected, weighted species networks. The nodes of such a

network correspond to species and edges between species are

determined by the pairwise Pearson correlations between species.

The first step in the analysis is identifying outlier samples using

absolute hierarchical cluster analysis. After removing the outliers

for analysis we would construct a weighted network choosing a

thresholding power b to which co-occurrence similarity is raised to

calculate adjacency [39]. Instead of focusing on the significance of

the correlation Zhang and Horvath have proposed to choose the

soft thresholding power based on the criterion of approximate

scale-free topology [39]. By raising the absolute value of the

Pearson correlation to a power b$1 (soft thresholding), the

weighted species co-expression network construction emphasizes

large correlations at the expense of low correlations. Specifically,

aij = |cor(xi, xj)|b represents the adjacency of an (unsigned)

weighted species co-express network. We used the scale free

topology criterion to choose the soft threshold. The choice of the

power has an effect on the scale fitting index and it has to be

selected so that approximate scale free fit can be achieved [39]. To

minimize spurious associations during module identification we

transformed the adjacency into Topological Overlap Matrix and

calculate the corresponding dissimilarity. Species are organized

into modules, using this topological overlap measure as a robust

measure of interconnectedness in a hierarchical cluster analysis

[40,41]. We used average linkage hierarchical clustering to

construct the corresponding dendrogram. Module identification

amounts to the identification of individual branches with a certain

number of species. Finally, data network was exported to be

visualized using Cytoscape [42]. To relate modules to clinical traits

we also used WGCNA package [32] correlating the eigengene for

each module with the traits of interest and look for significant

associations based on their p-values.
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Global parameters describing networks
Global descriptors of the modules were obtained using

Cytoscape [42]. The neighborhood of a given node n is the set

of its neighbors. The connectivity is the size of its neighborhood.

The average number of neighbors indicates the average

connectivity of a node in the network. A normalized version of

this parameter is the network density. Density ranges between 0

and 1. It shows how densely the network is populated with edges,

A network which contains no edges and solely isolated nodes has a

density of 0. In contrast, the density of a clique is 1. Another

related parameter is the network centralization [43]. Networks

whose topologies resemble a star have a centralization close to 1,

whereas decentralized networks are characterized by having a

centralization close to 0.

In undirected networks, the clustering coefficient Cn of a node n

is defined as Cn = 2en/(kn(kn21)), where kn is the number of

neighbors of n and en is the number of connected pairs between all

neighbors of the network [44,45]. The clustering coefficient of a

node is always a number between 0 and 1. The network clustering

coefficient is the average of the clustering coefficients for all nodes

in the network. Nodes with less than two neighbors are assumed to

have a clustering coefficient of 0.

Network centralities
We then determined network centralities on the modules

obtained from network analysis. Centralities were assessed using

Cytoscape [42] and the plugin CytoHubba v1.1 [23]. We

calculated Degree centrality and Betweenness centrality using

Cytoscape and the double screening scheme (DSS) of Maximum

Neighborhood Component (MNC) and Density of Maximum

Neighborhood Component (DMNC) using CytoHubba v.1.1.

Selection of helpers to enrich Tannerella sp. OT286
Oral taxon (OT) for each species/phylotype followed the

designation provided in Human Oral Microbiome Database

(HOMD) www.homd.org. Helpers were selected following several

criteria. First, we were limited to using only cultivable species in

the modules. Second, we selected only species that were associated

with Tannerella sp. OT286 in all modules (Figure 3). Finally, we

focused our interest specially on species directly associated with

Tannerella sp. OT286 in the healthy modules, since it has been

described as present mainly in healthy individuals. Samples of

saliva and dental plaque were inoculated in 10 ml of artificial

saliva medium with high concentrations of mucin [46], pre-

reduced in an anaerobic chamber for 24 h. Helper strains grown

on Tripticase Soy Agar (BBL) supplemented with 20% sheep

blood and 5 gr/l of Yeast extract for 24 h and resuspended in

artificial saliva medium at a turbidity of MacFarlan 3 (approxi-

mately 108 CFU/ml). Finally, 1 ml of each suspension was added

to 1 ml of saliva-dental plaque in artificial saliva medium. No

bacteria were added to control set and all tubes were incubated

anaerobically for 7 days at 37uC. The concentration of Tannerella

sp. OT286 was measure by qPCR. Total chromosomal DNA was

isolated from 1 ml of each set by UltraCleanH Microbial DNA

Isolation Kit (Mo Bio Laboratories, Inc). All measurements were

performed by triplicate. 20 ng of DNA, in all cases, were subjected

to qPCR using an iCycler 584BR (Bio-Rad Laboratories) with

Taqman Prime Assays (IDT DNA technologies), and Taqman

Gene Expression Master Mix (Applied Biosystems). Primers and

probes used for measuring Tannerella sp. OT286 16S rDNA copy

numbers were: 59- Probe:/56-FAM/TGCATCCGA/ZEN/

TCGCTCGGT/3IABkFQ/-39; Primer1: 59–CGGCCCTTA-

CATCCGGGGCG-39 and Primer 2: 59- CCGATCCGAACT-

GAGACAGGG -39 designed by Züger [24]. For Prevotella oris

OT311 we used: Probe 59-/56-FAM/GAATTGCAG/ZEN/

GCGAAGGCTTCAG/3IABkFQ/-39; Primer 1: 59–AACCATG-

CAGCACCTTCACAGA -39 and Primer 2: 59- TTCGATGA-

TACGCGAGGAACCT- 39. They were designed with ARB [47].

In all cases Taqman probes were labeled at the 59 end with FAM

reporter dye and labeled at the 39end with the quencher dye Iowa

Black TM FQ. PCR conditions included denaturation at 95uC for

15 minutes, and then 40 cycles of 95uC for 30 seconds, 62uC for

1 minute, and 72uC for 30 seconds, followed by melting curve

analysis. Fluorescence data was captured during annealing

reactions, and specificity of the amplification was confirmed using

melting curve analysis. Data were collected and recorded by iCycler

iQ software (Bio-Rad Laboratories) and initially determined as a

function of threshold cycle (Ct). Ct was defined as the cycle at which

the fluorescence intensity in a given reaction tube rose above

background, which was calculated as 10 times the mean standard

deviation (SD) of fluorescence in all wells over the baseline cycles.

Levels of increased 16S rDNA copies were expressed relative to

control levels, calculated as 2D2[Ctexp2Ctcontrol) [48].

Enrichment of the uncultivated organism Tannerella sp.
OT286

Enrichment followed a two step procedure. First, saliva and

dental plaque samples were spread on Tannerella forsythia agar

(ATCC 1921-NAM agar plate) previously inoculated with 1 ml of

suspension of the ‘‘helper’’ strain Prevotella oris OT311 at

108 CFU/ml. After 7 days of anaerobic incubation at 37uC, a

dry Nylon membrane positively charged (Roche) was placed on

plate for 10 min and colony hybridization was done [49]. The

transferred membrane was 30 minutes blocked for unspecific

binding at 55uC in blocking buffer (Roche) and 40 ng/ml of DIG

labeled probe (59-TGCATCCGATCGCTCGGT/3 DIG_N/39)

[24] were hybridized on blocking buffer at 65uC for 3 h. Wash

and develop blot under same conditions as with DIG labeling Kit

(Roche). Plates were incubated for an additional 7 days after

transferring membranes. A second enrichment of primary

cultivated Tannerella sp. OT286 was done by spreading those

colonies resuspended in 500 ml of Tannerella forsythia broth

(ATCC). Sterile filters were soaked on a suspension of the

‘‘helper’’ strain Prevotella oris OT311 and control strain Lactobacillus

casei ATCC 334, both at 108 CFU/ml and placed on the middle

of the plate previously inoculated with Tannerella sp. OT286. Seven

days of anaerobic incubation were followed and colony hybrid-

ization was done as described above.

Supporting Information

Figure S1 Identification of outlier checkerboard DNA-
DNA hybridization and HOMIM samples by hierarchi-
cal Clustering based on the array profiles. a) Samples used

for checkerboard DNA-DNA hybridization analysis, all of them

were obtained with individuals with periodontal disease. b)

Samples from healthy individuals used in HOMIM analysis.

Significantly different sample clusters are grouped inside a

rectangles (Cluster 1 blue, Cluster 2 green). c) Samples from

individuals with periodontal disease used in HOMIM analysis.

Significantly different sample clusters are grouped inside a

rectangles (Cluster 1 blue, Cluster 2 green). Outliers are indicated

in red.

(PDF)

Figure S2 Heat maps showing the abundance of the
different species across samples. WGCNA analysis allows

visualize changes in abundance of species across samples. Red

represent high abundance while green represent low abundance.
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The order of species is the same in the 4 pictures. a) Heat-map of

species abundance across samples in healthy Cluster 1. b) Heat-

map of species abundance across samples in healthy Cluster 2. c)

Heat-map of species abundance across samples in disease Cluster

1. d)Heat-map of species abundance across samples in disease

Cluster 2.

(PDF)

Figure S3 Module-trait associations. WGCNA analysis

allows to assess the importance of module on a specific clinical

trait. In the present figure each row corresponds to a module

eigengene, column to a trait. Each cell contains the corresponding

correlation and p-value. The table is color-coded by correlation

according to the color legend. Plaque: plaque index indicating the

level of accumulated biofilm, Red: gingival redness, BOP: bleeding

on probing, Sup: suppuration, PD: pocket depth, AL: attachment

level, NMT: number of missing teeth, redcomplexEn.cnts: counts

of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and

Eubacterium nodatum, BPD: baseline pocket depth.

(PDF)

Table S1 Network centralities for the detected mod-
ules. Species with high centralities measured by different

algorithms. These species could be considered important ‘hubs’

in the different modules. Degree centrality indicates the number of

connections to other nodes in the network. Betweenness centrality

of a node indicates its relevance as capable of holding together

communicating nodes. DSS stands for Double Screening Scheme

and combines the use of Maximum Neighborhood Component

(MNC) and Density of Maximum Neighborhood Component

(DMNC) and has been shown to identify hubs that are missed by

other algorithms.

(DOC)

Table S2 Species nodes directly connected to Tanner-
ella sp. OT286. These are the bacterial species whose edges

were directly connected to Tannerella sp. OT286 in the 3 sample

clusters analyzed, two from healthy sites and 1 from diseased sites.

(DOC)

Acknowledgments

We thank Dr. Mary-Ellen Davey for critical discussions and reading of the

manuscript; Dr. Floyd E. Dewhirst and Jessica Blanton for supplying and

helping growing the bacterial strains used in our experiments. We also

want to think Dr. Sig Socransky for his encouragement and helpful

comments. We would also like to thank Dr. Steve Horvath (UCLA) and to

Dr. Jackie Starr (Forsyth Institute) for their kind help clarifying certain

statistical aspects of the WGCNA method.

Author Contributions

Conceived and designed the experiments: JFL. Performed the experiments:

AEDP. Analyzed the data: JFL. Contributed reagents/materials/analysis

tools: BP RT. Wrote the paper: AEDP BP RT JFL.

References

1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011)

Enterotypes of the human gut microbiome. Nature 473: 174–180.

2. Chung HC, Lee OO, Huang Y-L, Mok SY, Kolter R, et al. (2010) Bacterial

community succession and chemical profiles of subtidal biofilms in relation to

larval settlement of the polychaete Hydroides elegans. ISME J 4: 817–828.

3. Colombo APV, Boches SK, Cotton SL, Goodson JM, Kent R, et al. (2009)

Comparisons of subgingival microbial profiles of refractory periodontitis, severe

periodontitis, and periodontal health using the human oral microbe identifica-

tion microarray. The Journal of Periodontology 80: 1421–1432.

4. He Z, Xu M, Deng Y, Kang S, Kellogg L, et al. (2010) Metagenomic analysis

reveals a marked divergence in the structure of belowground microbial

communities at elevated CO2. Ecology Letters 13: 564–575.

5. Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2000) Microbial composition of

supra- and subgingival plaque in subjects with adult periodontitis. J Clin

Periodontol 27: 722–732.

6. Allen E, Moing A, Ebbels TM, Maucourt M, Tomos AD, et al. (2010)

Correlation Network Analysis reveals a sequential reorganization of metabolic

and transcriptional states during germination and gene-metabolite relationships

in developing seedlings of Arabidopsis. BMC Syst Biol 4: 62.

7. Diez D, Wheelock AM, Goto S, Haeggström JZ, Paulsson-Berne G, et al. (2010)

The use of network analyses for elucidating mechanisms in cardiovascular

disease. Molecular bioSystems 6: 289–304.

8. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, et al. (2006) Analysis of

oncogenic signaling networks in glioblastoma identifies ASPM as a molecular

target. Proceedings of the National Academy of Sciences of the United States of

America 103: 17402–17407.

9. Choi JK, Yu U, Yoo OJ, Kim S (2005) Differential coexpression analysis using

microarray data and its application to human cancer. Bioinformatics (Oxford,

England) 21: 4348–4355.

10. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for

global discovery of conserved genetic modules. Science 302: 249–255.

11. Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome

and interactome mapping data from Saccharomyces cerevisiae. Nature Genetics

29: 482–486.

12. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, et al. (2011) Marine

bacterial, archaeal and protistan association networks reveal ecological linkages.

ISME J.

13. Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic molecular ecological

network of soil microbial communities in response to elevated CO2. MBio Jul

26;2(4). pii: e00122–11.

14. Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, et al. (2011)

Defining seasonal marine microbial community dynamics. ISME J: Aug 18. doi:

10.1038/ismej.2011.107. [Epub ahead of print].

15. Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2000) Comparison of the

microbiota of supra- and subgingival plaque in health and periodontitis. J Clin

Periodontol 27: 648–657.

16. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, et al. (2009) NCBI

GEO: archive for high-throughput functional genomic data. Nucleic Acids

Research 37: D885–D890.

17. Oba S, Sato M-aki, Takemasa I, Monden M, Matsubara K-ichi, et al. (2003) A
Bayesian missing value estimation method for gene expression profile data.

Bioinformatics (Oxford, England) 19: 2088–2096.

18. Haffajee AD, Patel M, Socransky SS (2008) Microbiological changes associated

with four different periodontal therapies for the treatment of chronic
periodontitis. Oral Microbiology and Immunology 23: 148–157.

19. Sissons CH, Anderson SA, Wong L, Coleman MJ, White DC (2007) Microbiota
of plaque microcosm biofilms: effect of three times daily sucrose pulses in

different simulated oral environments. Caries Research 41: 413–422.

20. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RLJ (1998) Microbial
complexes in subgingival plaque. Journal of Clinical Periodontology 25:

134–144.

21. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.

22. Yoon J, Blumer A, Lee K (2006) An algorithm for modularity analysis of directed

and weighted biological networks based on edge-betweenness centrality.
Bioinformatics 22: 3106–3108.

23. Lin C-Y, Chin C-H, Wu H-H, Chen S-H, Ho C-W, et al. (2008) Hubba: hub

objects analyzer–a framework of interactome hubs identification for network

biology. Nucleic Acids Research 36: W438–W443.
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