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Abstract

Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus
(EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we
expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10%
EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice.
Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in
high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH
consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and
WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the
rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1
dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of
the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing
Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1
had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis
that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward.
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Introduction

Compulsive use of alcohol (ethanol; EtOH) is thought to arise

from EtOH-induced adaptations within several neural circuits that

together lead to a persistent dysregulation of drug-seeking [1].

Efforts to characterize the maladaptive changes underlying this

phenomenon have identified numerous brain regions and

neurotransmitter systems that work in concert to drive EtOH

reward, excessive EtOH intake, and EtOH withdrawal [2–4].

While earlier studies utilized experimenter-administered EtOH

to map brain areas thought to be important for sensitivity to the

behavioral effects of EtOH, more recent experiments have

improved the face validity of this approach (and narrowed the

list of candidate brain regions) by implementing self-administra-

tion procedures. Specifically, while neural mapping studies showed

that experimenter-administered EtOH induced expression of the

transcription factor c-Fos in several brain areas [5-8], the Edinger-

Westphal nucleus (EW) was the only brain area that, across

multiple strains and species of rodents, also showed elevated c-Fos

expression following oral self-administration of EtOH [9–17].

The EW is a compact region within the ventromedial

periaqueductal gray that extends along the midline between the

caudal division of the ventral tegmental area and the rostral

division of the dorsal raphe nucleus. While this nucleus has been

historically described as a cholinergic population of pregang-

lionic neurons controlling oculomotor functions, more detailed

examinations have revealed that the EW is comprised of two

distinct (yet partially overlapping) nuclei, designated EWpg for the

preganglionic oculomotor neurons, and EWcp for the centrally-

projecting, neuropeptide-containing neurons [18–21]. Following

the initial studies that characterized the unique sensitivity of the

EW to EtOH-drinking, we repeatedly showed that EtOH-induced

expression of c-Fos in the EW was restricted almost completely to

EWcp neurons containing the neuropeptide Urocortin-1 (Ucn1)

[13,22,23].

Ucn1 is a member of the corticotropin-releasing factor (CRF)

family of endogenous ligands (along with CRF, Ucn2, and Ucn3),

and is distinguished from its related peptides by the fact that it

binds to both CRF receptor subtypes (CRF-R1, CRF-R2) with

high affinity [24,25]. Given the prior literature implicating a role

for CRF systems in excessive EtOH intake following dependence

[26] and stress-induced relapse of EtOH-seeking [27], we

hypothesized that EWcp-Ucn1 neurons might also contribute

toward behavioral phenotypes relevant to alcoholism.

This hypothesis was later validated by data from our laboratory

demonstrating that EWcp-Ucn1 protein levels were differentially

expressed between rodent lines that had been selectively-bred for

divergent EtOH phenotypes. In general, these studies indicated

that stronger expression of EWcp-Ucn1 peptide was associated

with a genetic predisposition toward high EtOH intake [14,28,29]

and heightened sensitivity to some (reward, hypothermia, sedation),

but not all (locomotor stimulation) EtOH-related phenotypes
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[22,30–32]. Furthermore, we found that electrolytic lesions of the

EWcp in high-drinking C57BL/6J (B6) mice attenuated intake and

preference of EtOH (but not sucrose, quinine, saccharin, or saline)

in a two-bottle choice (2-BC) drinking paradigm [33,34]. Together,

these studies provided converging lines of evidence to support the

claim that EWcp-Ucn1 neurons play an important role in EtOH

sensitivity and EtOH consumption [31].

However, because several other neuropeptide systems co-exist

with Ucn1 in the EWcp [35–39], the possibility remained that

EWcp lesion altered EtOH consumption via a Ucn1-independent

mechanism (i.e., through a different neuropeptide or receptor

expressed in EWcp). Thus, in order to determine whether the

effects of EWcp lesion could be attributed specifically to Ucn1, the

present studies compared the effects of EWcp lesion on 2-BC

intake and preference between mice lacking Ucn1 and their wild-

type littermates. In addition, we set out to test whether genetic

deletion of Ucn1 would decrease EtOH drinking, EtOH-induced

reward, and EtOH-induced aversion in mice containing an intact

EWcp. Finally, we also tested whether genetic deletion of CRF-R2

would alter EtOH-induced reward. The findings presented herein

shed additional light on the contribution of the EWcp to EtOH

intake, and provide further evidence that Ucn1 is an important

neuropeptide for mediating the EWcp’s effects on EtOH

preference and reward.

Materials and Methods

Animals
All protocols were approved by the Oregon Health & Science

University animal care and use committee (protocol A828), and

were performed with strict adherence to the National Institutes of

Health Guidelines for the Care and Use of Laboratory Animals.

We used single gene mutant mice created from embryonic stem

cells that underwent targeted gene inactivation. Ucn1 knockout

(KO) mice generated on a 12961/SvJ x C57BL/6J (B6)

background contained a deletion of exon 2 of the Ucn gene [40],

and CRF-R2 KO mice generated on a 12961/SvJ x B6

background contained a deletion of exons 3–4 of the Crhr2 gene

[41]. Colonies were maintained by backcrossing onto a B6 genetic

background. The Ucn1 KO line was backcrossed onto a B6

background for 10–12 generations, and the CRF-R2 KO line was

backcrossed onto a B6 background for 14 generations. KO and

wild-type (WT) mice used for these studies were littermates,

generated by heterozygous matings. Mice were weaned at 28–32

days of age, isosexually housed, and either underwent surgery at

9–16 weeks of age (EtOH drinking procedures) or underwent

behavioral testing at 8–14 weeks of age (EtOH conditioning

procedures). Importantly, genetic deletion of either Ucn1 or CRF-

R2 does not alter the rate of EtOH elimination [42,43]. All mice

received ad libitum access to food (LabDiet 5001; LabDiet,

Richmond, IN) and water, with the exception of time spent in

the behavioral apparatus (EtOH conditioning experiments only)

and remained on a 12 h light-dark schedule (lights on at 0700 h).

Mice on a B6 genetic background are well-known for their high

levels of EtOH intake and preference, and are the ideal choice for

EtOH drinking studies, particularly 2-BC drinking studies [44].

While mice on a DBA/2J background generally exhibit more

robust levels of EtOH place conditioning than mice on a B6

background [45], we chose to use mice on a B6 genetic

background in order to produce data that would be comparable

to 2-BC drinking experiments, as well as to avoid the time-

consuming and expensive process of backcrossing our KO mice

onto a DBA/2J background.

Surgical Procedures
EWcp lesion surgery was performed similar to previous reports

[33,34] in male Ucn1 KO and WT littermate mice. Immediately

prior to surgery, mice were given a subcutaneous injection of

Rimadyl (Carprofen; 5 mg/kg). Mice were placed under isoflur-

ane anesthesia, secured in a stereotaxic apparatus, and received

either electrolytic lesion of the EWcp or sham surgery. For both

operations, a small hole was drilled through the skull on the

midline (23.4 mm, A/P; a coordinate that lies halfway along the

rostral-caudal axis of the EWcp) and a stainless steel electrode

(SNE-300, Rhodes Medical Instruments, Inc., Woodland Hills,

CA) was guided down into the EWcp nucleus (23.9 mm, D/V).

The electrode was connected to the positive terminal of a lesion-

making device (Model 3500, Ugo Basile, Comerio, Italy). To

ground the animal, the negative terminal was attached to the

mouse’s tail. For sham animals, the electrode remained inactive,

but for lesion animals, the electric current (0.4 mA) was activated

for five seconds.

Following this procedure, the electrode was removed, the skin

was sutured, and animals were single-housed in a cage containing

fresh bedding and food, and a single bottle containing tap water.

Loss of body temperature was avoided by placing the cage on a

heating pad for 30–60 min during the initial recovery period.

Following five-nine days of recovery from surgery, mice were given

access to two 25 mL glass cylinder bottles (both containing tap

water) in order to habituate the animals to drinking from two

bottles in the homecage. Importantly, we have previously shown

that lesions of EWcp do not produce changes in locomotor activity

or the rate of EtOH elimination [33], nor do they produce

changes in anxiety-like behavior [34].

Ethanol Drinking Procedures
Following four days of drinking tap water from two bottles,

individually-housed mice underwent a twelve-day EtOH-drinking

experiment during which they received 24-hour access to two

bottles: one containing tap water, and one containing varying

concentrations of EtOH dissolved in tap water. The experiment

consisted of three phases during which mice had access to either:

3% EtOH and H2O (Days 1–4), 6% EtOH and H2O (Days 5–8),

or 10% EtOH and H2O (Days 9–12). Higher concentrations of

EtOH or other palatable fluids were not tested here because

earlier studies indicated that EWcp lesion did not affect preference

(or avoidance) of several solutions [33,34]. Mice were weighed and

fluid levels from each of the two bottles were recorded on a daily

basis between 1000–1200 h. The locations of the bottles on the

cages (left vs. right) were alternated daily to avoid the potential

confound of an inherent side preference.

Histology
Immediately following the final day of access to 10% EtOH,

mice were euthanized by CO2 inhalation. Brains were rapidly

dissected, post-fixed overnight in 2% paraformaldehyde in

phosphate-buffered saline (PBS), and cryoprotected in 30%

sucrose in PBS until saturation. Coronal slices of the midbrain,

30 mm thick, were collected using a CM1850 cryostat (Leica

Microsystems) and placed into PBS containing 0.3% NaN3 for

storage. Six to eight sections spanning the rostral-caudal extent of

the EWcp were selected from each animal and underwent Thionin

staining. Sections were mounted on clear glass slides, coverslipped,

and viewed with the 56objective on a Leica DM4000 microscope

for examination of the location of the lesion (and verification of the

absence of damage in sham mice). Images were acquired with the

MicroPublisher 3.3 RTV in conjunction with Q-Capture (Q-

Imaging, Surrey, BC, Canada). Animals containing lesions that
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resulted in destruction of a large portion of the EWcp were

included in the ‘‘Lesion’’ group, and all sham animals were

included in the ‘‘Sham’’ group for statistical analysis of drinking

data. An experimenter blinded to the behavioral data was

responsible for excluding mice based on incorrect placement of

the lesion.

Statistical Analysis – Ethanol Drinking
Based on the appropriate concentration, EtOH consumption in

mL was converted to grams and divided by the animal’s body

weight to give daily intake scores expressed in grams per kilogram

(g/kg). Daily EtOH preference was calculated by dividing EtOH

consumption in mL by the total fluid consumption in mL (EtOH

consumption + H2O consumption). Total fluid consumption

scores were divided by the animal’s body weight to give values

expressed in mL/kg. Data points across each of the four days of

drinking at the 3%, 6%, and 10% concentrations of EtOH were

averaged within each animal to produce a single value for EtOH

intake (g/kg), EtOH preference, and total fluid consumption (mL/

kg) at each of the three phases of the experiment.

Each dependent variable was analyzed by a 26263 repeated

measures ANOVA design with genotype (KO, WT) and surgery

(Sham, Lesion) as the between-subjects factors, and EtOH

concentration (3%, 6%, 10%) as the repeated measure. Significant

interactions with EtOH concentration were followed by simple

main effect analyses evaluating the impact of surgery and genotype

among the three EtOH concentrations. Significant interactions

between surgery and genotype were followed by simple main effect

analyses evaluating the impact of EtOH concentration and surgery

among the two genotypes. Post-hoc comparisons between the four

individual groups at each of the three phases of the experiment

were made using Bonferroni contrasts corrected for multiple

comparisons (significance threshold at p,.0083). For all analyses

other than post-hoc comparisons, significance threshold was set at

p,.05. Data are expressed as mean + standard error of the mean

(SEM).

Conditioning Apparatus
The apparatus for EtOH conditioning consisted of four

identical boxes measuring 30615615 cm that contained six

detectors placed 2.2 cm above the floor for acquisition of spatial

location and locomotor activity data. The conditioned stimuli

consisted of two unbiased tactile cues: ‘‘grid’’ and ‘‘hole’’ floors,

which were interchangeable within the apparatus. This allowed

the experimenter to arrange the cues in either a ‘‘split’’

configuration (for Pre-Test and Test), or a ‘‘matching’’ configu-

ration (for Conditioning). The apparatus and conditioned stimuli

have been described in detail elsewhere [46].

Ethanol Conditioning Procedures
In the first set of conditioning experiments (EtOH-CPP), male

and female Ucn1 and CRF-R2 KO and WT littermate mice

(n = 7–15 per line, per sex, per genotype) were tested for the

conditioned rewarding effects of EtOH using a slight variant of a

well-established, unbiased place conditioning protocol in which

pre-session exposure to EtOH results in a significant preference for

the EtOH-paired environment [46].

On Day 1 (Pre-Test), mice were weighed and given a saline

injection (12.5 mL/kg, i.p.) before being placed into the apparatus

containing the two different tactile floor cues (‘‘split’’ configura-

tion; one floor on each side of the chamber) for 30 min. On Days

2–9, mice underwent daily 5-min conditioning trials. Mice in the

‘‘Grid+’’ subgroup were weighed and injected with EtOH (2 g/kg,

20% v/v, i.p.) immediately before being placed into the apparatus

containing the grid floor cue (‘‘matching’’ configuration; same floor

on both sides of the chamber). On alternating days, mice were

weighed and injected with saline before being placed into the

apparatus containing the hole floor cue on both sides of the

chamber. Mice in the ‘‘Grid-‘‘ (or ‘‘Hole+’’) subgroup were treated

in a manner opposite from that of Grid+ mice, such that they were

weighed and injected with EtOH prior to being placed into the

apparatus containing the hole floor cues on both sides, while on

alternating days, they were weighed and injected with saline prior

to being placed into the apparatus containing the grid floor on both

sides. On Day 10, all mice were weighed and received a saline

injection before being placed into the apparatus containing both

floor cues (one on each side) for 30 min.

In the second set of conditioning experiments (EtOH-CPA),

male and female Ucn1 KO and WT littermate mice (n = 14–23

per sex, per genotype) were tested for the conditioned aversive

effects of EtOH using a slight variant of a well-established protocol

in which post-session exposure to EtOH results in a significant

aversion of the EtOH-paired environment [46,47]. The protocol

used for EtOH-CPA was identical to that described for EtOH-

CPP, except that mice were weighed and injected with either

EtOH or saline immediately after being removed from the

apparatus on Days 1–9. A post-session injection on Day 10 was

unnecessary, because the experiment was complete by the end of

the behavioral Test session. Importantly, the dose and preparation

of EtOH were identical for CPP and CPA experiments.

In order to minimize variation in the conditioning response that

could occur based on conditioning subgroup (Grid+ vs. Grid-),

conditioning order (EtOH/saline vs. saline/EtOH), and side of the

EtOH-paired floor during Pre-Test and Test (left vs. right), all of

these variables were fully counterbalanced among all groups in all

conditioning experiments.

Statistical Analysis – Ethanol Conditioning
The percent time spent on the grid floor on Day 10 (Test)

relative to Day 1 (Pre-Test) was used as the dependent variable (D
%Time on Grid Floor). Because three-way ANOVAs of all

conditioning experiments yielded no significant main or interact-

ing effects of sex, analyses were collapsed across males and females,

and data were analyzed by two-way ANOVA with between-

subjects factors of genotype (KO, WT) and subgroup (Grid+,

Grid-). Significant interactions between genotype and subgroup

were followed by simple main effect analyses evaluating the impact

of subgroup separately across the two genotypes. For all

conditioning analyses, significance threshold was set at p,.05.

Data are expressed as mean 6 SEM.

Results

Histology
Of the 51 mice that received lesion surgery, Thionin-stained

tissue revealed successful targeting and ablation of the EWcp in 29

cases. Importantly, the percentage of successful surgeries was not

significantly different between Ucn1 KO and WT mice (16/27 vs.

13/24). Successful lesions were targeted primarily to the anterior

and medial EWcp (23.4 mm from bregma), and caused

destruction of this region with minimal damage to surrounding

areas (Figure 1A). Animals that received sham surgery showed no

evidence of damage to the EWcp or surrounding tissue (Figure 1B).

EWcp lesion decreases EtOH intake
The initial analysis of EtOH intake indicated differential effects

of surgery across the three concentrations (surgery x concentration

interaction; F2,120 = 7.14, p,.005; Figure 2A). Follow-up analyses

EWcp-Ucn1 in Ethanol Preference
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revealed that EWcp lesion significantly reduced intake at the 6%

and 10% concentrations of EtOH (simple main effects of surgery;

both F1,60.7.2, both p,.01), but not the 3% concentration of

EtOH (p = .65).

Although EWcp lesion appeared to differentially affect Ucn1

KO and WT mice at the 6% concentration of EtOH, this

interaction did not reach significance (p = .103). Nevertheless, post-

hoc comparisons at the 6% concentration revealed greater intakes

in the WT-Sham group relative to both the WT-Lesion group

(p = .002) and the KO-Sham group (p = .005). No other between-

group comparisons were significant, indicating that EWcp lesion

dampened 6% EtOH intake only in mice expressing Ucn1, and

that deletion of Ucn1 dampened 6% EtOH intake only in mice

with an intact EWcp.

However, at the 10% concentration of EtOH, the simple main

effect of surgery was far from interacting significantly with

genotype (p = .85), indicating that EWcp lesion was equally

effective at reducing intake of 10% EtOH in both Ucn1 KO

and WT mice.

Deletion of Ucn1 decreases EtOH preference only in mice
with an intact EWcp, and EWcp lesion decreases EtOH
preference only in mice expressing Ucn1

Analysis of EtOH preference indicated that there were

differential effects of surgery across the two genotypes (surgery

x genotype interaction; F1,60 = 5.55, p,.05). Follow-up analysis

revealed that while EtOH preference was significantly dampened

by destruction of the EWcp in Ucn1 WT mice (simple main effect

of surgery; F1,28 = 22.28, p = .0001), EWcp lesion had no effect on

preference in Ucn1 KO mice (p = .84). Furthermore, while

preference increased in parallel with greater concentrations of

EtOH among Ucn1 WT mice (simple main effect of concentra-

tion; F2,56 = 3.24, p,.05), Ucn1 KO mice were strikingly resistant

to effects of EtOH concentration on preference (p = .36).

The conclusion that deletion of Ucn1 dampened EtOH

preference only in Sham mice but not Lesion mice, and that

EWcp lesion dampened EtOH preference only in Ucn1 WT mice

but not Ucn1 KO mice, was supported by post-hoc comparisons at

the 6% and 10% concentrations of EtOH, in which the WT-Sham

group displayed significantly greater preference than each of the

other three groups (all p#.005). No other group comparisons

reached significance (all p..25).

Deletion of Ucn1 and/or lesion of EWcp do not alter total
fluid consumption

Total fluid consumption varied significantly across the different

concentrations of EtOH (main effect of concentration;

F2,120 = 4.50, p,.05; Figure 2C). However, no main or interacting

effects with surgery or genotype were found, and no significant

post-hoc comparisons were identified between any of the four

groups at any of the three EtOH concentrations.

Deletion of Ucn1 abolishes EtOH-induced CPP
Consistent with previous studies demonstrating the unbiased

nature of the tactile floor cues used in our EtOH conditioning

studies [48], Ucn1 KO and WT mice spent approximately 50% of

their time on the grid floor during the Pre-Test, and this did not

differ by genotype or subgroup (data not shown). Following

conditioning, preference for the EtOH-paired floor was apparent

in Ucn1 WT mice, but not Ucn1 KO mice (genotype x subgroup

interaction; F1,45 = 4.96, p,.05; Figure 3A). The conclusion that

deletion of Ucn1 abolished EtOH-induced CPP was supported by

simple main effect analyses evaluating the impact of subgroup

separately across the two genotypes. While strong conditioning

was apparent in Ucn1 WT mice (simple main effect of subgroup;

F1,26 = 14.45, p,.001), this effect was not apparent in Ucn1 KO

mice (p = .99).

Deletion of CRF-R2 abolishes EtOH-induced CPP
Similar to Ucn1 KO and WT mice, CRF-R2 KO and WT mice

spent approximately half of their time on the grid floor during the

Pre-Test, and this did not differ across genotypes or subgroups

(data not shown). Following conditioning, preference for the

EtOH-paired floor was apparent in CRF-R2 WT mice, but not

CRF-R2 KO mice (genotype x subgroup interaction; F1,31 = 6.22,

p,.05; Figure 3B). The conclusion that deletion of CRF-R2

abolished EtOH-induced CPP was supported by simple main

effect analyses, in which strong conditioning was apparent in

Figure 1. EWcp lesion histology. Representative photomicrographs of Thionin-stained sections from anterior, medial, and posterior EWcp
(numbers indicate distance from bregma) taken from mice that underwent (A) successful EWcp lesion surgery or (B) sham surgery. Lesions generally
ablated large portions of the anterior and medial EWcp, leaving minimal damage to surrounding tissue. Sham animals displayed no evidence of
damage to the EWcp, despite occasional visibility of the electrode tract (posterior panel). White arrows point toward intact EWcp observed in sham
animals.
doi:10.1371/journal.pone.0026997.g001

EWcp-Ucn1 in Ethanol Preference

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26997



CRF-R2 WT mice (simple main effect of subgroup; F1,15 = 25.24,

p,.0005), but not CRF-R2 KO mice (p = .56).

Deletion of Ucn1 does not alter EtOH-induced CPA
In a separate experiment using an EtOH conditioning protocol

that produces CPA rather than CPP, Ucn1 KO and WT mice

again spent approximately 50% of their time on the grid floor

during the Pre-Test, and this did not differ by genotype or

subgroup (data not shown). While EtOH conditioning resulted in a

significant CPA (main effect of subgroup; F1,68 = 5.25, p,.05;

Figure 3C), this effect did not interact significantly with genotype

(p = .40), indicating that Ucn1 KO and WT mice were equally

sensitive to the conditioned aversive effects of EtOH.

Discussion

The principal findings of the current study were that EtOH

intake and preference depended on an interaction between

whether or not mice expressed Ucn1, and whether or not mice

Figure 2. Effects of EWcp lesion on 2-BC EtOH drinking in Ucn1
KO and WT mice. (A) EtOH Intake (g/kg), (B) EtOH Preference, and (C)
Total Fluid Consumption (mL/kg) of male Ucn1 KO and WT mice
following either sham surgery or EWcp lesion. Asterisks indicate
significant difference from the respective WT-Sham group (*p#.005,
**p#.001, ***p,.0001). Numbers in parentheses indicate group sizes.
The same animals contributed to panels A, B, and C.
doi:10.1371/journal.pone.0026997.g002

Figure 3. Involvement of Ucn1 and CRF-R2 in EtOH-induced
reward and aversion. Graphs show percent change in time spent on
Grid Floor between the Pre-Test and the Test following (A) EtOH-CPP in
Ucn1 KO and WT mice, (B) EtOH-CPP in CRF-R2 KO and WT mice, and (C)
EtOH-CPA in Ucn1 KO and WT mice. Multiple asterisks indicate
significant difference between WT subgroups (**p,.001, ***p,.0005).
Single asterisk indicates significant main effect of subgroup (*p,.05).
Numbers in bars indicate group sizes.
doi:10.1371/journal.pone.0026997.g003

EWcp-Ucn1 in Ethanol Preference
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had received surgical ablation of the EWcp. In addition, we

demonstrated that Ucn1 signaling (most likely via CRF-R2) is

necessary for the conditioned rewarding effects of EtOH, and that

this cannot be attributable to a generalized learning deficit in

Ucn1 KO mice. Together, these results indicate that EWcp-Ucn1

neurons influence the magnitude of EtOH intake and preference

for EtOH-containing fluids, and that this involvement is likely

related to Ucn1’s role in mediating sensitivity to the rewarding, but

not aversive, effects of EtOH.

Although EWcp lesion and/or deletion of Ucn1 were both

capable of attenuating measures of EtOH consumption, it is

important to note that these manipulations differentially affected

the outcomes of EtOH intake vs. EtOH preference. When

examining EtOH intake, our analyses revealed that EWcp lesion

reduced drinking in both Ucn1 KO and WT mice. Although

examination of the 6% concentration suggested a potential

interaction between genotype and surgery, examination of the

10% concentration indicated that EWcp lesion was equally

effective at reducing EtOH-drinking in both Ucn1 KO and WT

mice. The fact that EWcp lesion decreased 10% intake in mice

lacking Ucn1 suggests that other neural systems in the EWcp

besides Ucn1 may also contribute to intake of 10% EtOH.

Indeed, the receptor for the orexigenic peptide, ghrelin (growth

hormone secretagogue receptor; Ghsr) is densely expressed in the

mouse EWcp [36], and our laboratory reported that systemic

administration of a Ghsr antagonist not only prevented EtOH-

induced neural activity within the EWcp, but also reduced intake

of 20% EtOH in a model of binge-like drinking [16].

Furthermore, the receptor for the anorexigenic peptide, leptin

(Lepr) is also expressed in the mouse EWcp, and Lepr signaling

increases the expression of Ucn1 peptide by directly activating

EWcp neurons [39]. In addition, mutant mice that are either

leptin-deficient (ob/ob) or leptin-resistant (db/db) showed de-

creased EtOH preference relative to their wild-type littermates in a

2-BC procedure [49]. These studies suggest that signaling via EW-

Ghsr and/or EW-Lepr may be important for EWcp-Ucn1’s effects

on EtOH preference and reward. Finally, Ucn1 is also highly co-

localized in the EWcp with the anorexigenic neuropeptide

cocaine- and amphetamine-regulated transcript (CART) [35,50],

and although a role for CART in EtOH-related behaviors

has been supported by several studies [51–53], the contribution

of EWcp-CART neurons to these phenotypes has not yet been

thoroughly examined.

The EWcp also expresses high levels of the peptides cho-

lecystokinin, nesfatin-1, and neuropeptide B [54–57]. Since these

peptides have anorexic properties, it is logical to assume that they

could also contribute to EWcp’s involvement in consummatory

behaviors. This would be in agreement with our observations that

EWcp lesions can alter fluid consumption [33,34]. However, the

reductions in EtOH intake observed here were not simply due to a

non-specific decrease in consumption, because the total volume of

fluid consumption was not affected (Fig. 2C), and the effect on

EtOH preference was dependent on both Ucn1 genotype and the

type of surgery, as discussed below.

In contrast to effects on EtOH intake, analysis of EtOH pre-

ference revealed a significant interaction between surgery and

genotype. Post-hoc comparisons at concentrations of both 6% and

10% confirmed that deletion of Ucn1 reduced preference only in

mice with an intact EWcp, and that lesion of EWcp reduced

preference only in mice expressing Ucn1. These findings provide

strong evidence that EWcp-Ucn1 neurons are necessary for driving

high EtOH preference, and suggest that our previous report of

dampened EtOH preference in EWcp-lesioned B6 mice can be

attributed primarily to the reduction of Ucn1-positive terminals

within EWcp target regions [33]. The potential dissociation

between Ucn1’s involvement in regulation of EtOH preference and

the contribution of other EWcp peptide systems to regulation of

EtOH intake is intriguing, and requires further investigation.

One potential caveat of examining genetically-engineered KO

mice is that observed effects can sometimes be better attributed to

developmental compensations within systems related to the deleted

gene, rather than to the absence of the gene itself. In fact, one

possible explanation for why we uncovered a role for Ucn1 in

EtOH preference, but not EtOH intake is that this effect was masked

by developmental compensations in Ucn1 KO mice. However,

because Ucn1 is the only component of the CRF system that is

expressed in the EWcp, and because the EWcp is the primary site

of Ucn1 expression in the mammalian brain [58-60], our

observation that EWcp lesion differentially affected EtOH

preference in Ucn1 KO and WT mice suggests that the effects

of Ucn1 deletion on EtOH-related behaviors can be primarily

ascribed to the actions of EWcp-Ucn1 neurons. Furthermore, we

have previously shown that Ucn1 is only expressed postnatally in

the EWcp [61], limiting the potential impact of compensations on

development. Indeed, converging lines of evidence provide

additional support for the involvement of EWcp-Ucn1 neurons

in EtOH sensitivity [14,31].

The current data complement a wealth of existing literature on

the contribution of specific components of the CRF system to

EtOH-related behaviors. Importantly, the function of EWcp-Ucn1

neurons appears to differ substantially from the role of CRF-

containing neurons in the central nucleus of the amygdala (CeA).

While we speculate that the involvement of EWcp-Ucn1 neurons

in EtOH preference and reward predominates during the initial

stages of the addiction process, CeA-CRF neurons are thought to

be integral for the transition to EtOH addiction and the negative

reinforcement processes that prevail during dependence and

withdrawal [62,63].

For example, excessive release of CeA-CRF occurs during

EtOH withdrawal [64,65], CeA-CRF mRNA is upregulated

following EtOH dependence [66,67], and CRF’s ability to release

GABA from CeA interneurons is potentiated in EtOH-dependent

rats [67]. Although we have not yet ruled out a potential role for

Ucn1 in EtOH dependence, the current results support a general

framework in which CRF and CRF-related peptides display

unique relationships with distinct aspects of the addiction process.

Indeed, while CRF is required for EtOH-induced psychomotor

sensitization and binge-like EtOH intake, it appears that Ucn1 is

not critical for these behaviors [42,43].

It is important to note that although Ucn1 binds with high

affinity to both CRF receptors [24,25], it remains unclear

specifically which EtOH-related behaviors involve EWcp-Ucn1

actions at CRF-R1 vs. CRF-R2. Numerous reports have demon-

strated that genetic deletion or pharmacological blockade of CRF-

R1 decreases EtOH consumption [42,68–70], and these effects are

generally more pronounced in animals with an extensive history of

EtOH exposure [67,71–77].

In contrast, several studies have concluded that CRF-R2

signaling acts to decrease EtOH consumption [70,78,79]. However,

CRF-R2 regulation of behavior is often reported as bi-directional

[80–82], and one study demonstrated that intra-CeA CRF-R2

activation had opposing effects on EtOH self-administration in

dependent vs. non-dependent rats [83]. Indeed, the observations

that deletion of CRF-R2 blocked EtOH-CPP (Fig. 3B) and

protected against prolonged increases in EtOH preference

following stress [84] indicate that the precise role of CRF-R2

signaling in EtOH-related behavior may rely on a complex

interaction between several experimental variables.
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Because earlier studies from our laboratory found that EWcp

lesion decreased the number of Ucn1-positive terminals in the

lateral septum and dorsal raphe nucleus [33], and because CRF-

R2 expression is enriched in those areas relative to CRF-R1

[85,86], we have hypothesized that EWcp-Ucn1 mediates its

effects on EtOH-related behaviors primarily via CRF-R2 rather

than CRF-R1. Although this idea is supported by our observation

that Ucn1 KO mice and CRF-R2 KO mice are both resistant to

EtOH-CPP (suggesting that Ucn1 acts via CRF-R2 to mediate the

conditioned rewarding effects of EtOH), this hypothesis awaits

further confirmation. Nevertheless, accumulating evidence sug-

gests that the importance of urocortin peptides and CRF-R2

signaling in mediating emotional states [87,88] and drug-induced

behaviors [89,90] remains underappreciated.

In summary, we utilized two complementary methods (genetic

knockout of Ucn1 and electrolytic lesion of EWcp) in an

examination of 2-BC EtOH consumption, and accompanied

these studies with place conditioning experiments capable of

dissociating sensitivity to the rewarding vs. aversive effects of

EtOH. Taken together, our results implicate the EWcp in EtOH

intake, EWcp-Ucn1 neurons in EtOH preference, and Ucn1/

CRF-R2 in EtOH-induced reward. Future studies examining

different drinking paradigms, different concentrations of EtOH,

potential effects of dependence, and additional EtOH-related

behaviors will assist in delineating the specific components of the

CRF system (and the specific neural substrates) that work in

concert to drive the progression of EtOH addiction.
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