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Abstract

Decision-making animals can use slow-but-accurate strategies, such as making multiple comparisons, or opt for simpler,
faster strategies to find a ‘good enough’ option. Social animals make collective decisions about many group behaviours
including foraging and migration. The key to the collective choice lies with individual behaviour. We present a case study of
a collective decision-making process (house-hunting ants, Temnothorax albipennis), in which a previously proposed decision
strategy involved both quality-dependent hesitancy and direct comparisons of nests by scouts. An alternative possible
decision strategy is that scouting ants use a very simple quality-dependent threshold rule to decide whether to recruit nest-
mates to a new site or search for alternatives. We use analytical and simulation modelling to demonstrate that this simple
rule is sufficient to explain empirical patterns from three studies of collective decision-making in ants, and can account
parsimoniously for apparent comparison by individuals and apparent hesitancy (recruitment latency) effects, when available
nests differ strongly in quality. This highlights the need to carefully design experiments to detect individual comparison. We
present empirical data strongly suggesting that best-of-n comparison is not used by individual ants, although individual
sequential comparisons are not ruled out. However, by using a simple threshold rule, decision-making groups are able to
effectively compare options, without relying on any form of direct comparison of alternatives by individuals. This
parsimonious mechanism could promote collective rationality in group decision-making.
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Introduction

Animals need to make choices between multiple available op-

tions at many stages in their life histories, such as during mate

selection, foraging, or when deciding where to shelter or to build a

nest. The fitness benefits of choosing the best option mean that

decision-making strategies will be subject to natural selection. Mul-

tiple comparison or ‘best of n’ strategies perform most accurately,

and are likely to be optimal when searching and sampling costs are

low, e.g. on a lek [1,2] and when long-term fitness implications of

the decision are high, e.g. in home range selection [3]. In other

situations, e.g. during foraging, there can be substantial time costs

to making accurate decisions [4,5], and these costs can be so great

as to make quicker less accurate decisions more efficient [6]. Ani-

mals may be best served by using a simpler ‘rule of thumb’, which

reduces sampling time, but still ensures the option they choose is

good enough. One simple but effective strategy is sequential search

in which the animal keeps searching until it finds an option that

exceeds a threshold of acceptability [2,7]. This kind of fixed-

threshold strategy is used in foraging [8], mate choice [9] and

refuge selection [10]. An intermediate strategy is to allow thresh-

olds to be influenced by experience of previous options; in effect

this would cause a ‘sequential comparison’.

Social animals make collective decisions between available

options, particularly about where the group spends its time. When

making a shared collective decision, a group faces the challenges of

integrating information from multiple individuals and managing

the different decision-preferences of group members [11]. Such

decisions are influenced by individual information, conflicts of

interest and time-constraints [12,13]. To understand how a col-

lective decision is reached, the rules followed by contributing

members of the group must be identified [14]. Emigrating social

insects are a good model system for the study of collective decision-

making, because all members share the aim of coming to a con-

sensus about a new, good nest site as soon as possible, but the

information about available site quality is distributed very un-

evenly within the colony [15,16]. To investigate the mechanism

of decision making, we used models of, and experiments on,

emigrating cavity-nesting rock ants, Temnothorax albipennis.

A colony emigration by rock ants begins with scouts searching

for and assessing new sites. Successful scouts recruit nest-mates

using tandem running, in which an informed ant leads another to

the new site [17]. When the number of ants at a site reaches a

‘quorum threshold’, the ants switch to rapid transport behaviour to

carry the brood, queen and remaining nest-mates to the new nest

[18]. Ant colonies discriminate between nest sites on the basis of a

range of attributes including cavity dimensions, light level and

entrance width [16,19]. Three possible mechanisms by which the

colony collectively chooses the better of two nests have been

proposed: i) comparison ii) recruitment latency iii) threshold rule.
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First, ants could use a comparison strategy, in which ants that have

visited both nests would compare their qualities and recruit nest-

mates only to the better one [20]. Second, ants visiting just one

nest could determine how long they hesitate before recruiting nest-

mates (recruitment latency) based on the nest quality [20]. A

combination of these two mechanisms has been used as the basis of

several decision models [18,21–24]. Although lone T. rugatulus ant

workers are capable of comparing the attributes of nest-sites which

are very close together [25], the evidence for individual ants

making direct comparisons between nests during colony emigra-

tion is weak [26], and furthermore, ant colonies are able to choose

a distant good nest over a nearby poor nest, when recruitment

latency differences would be expected to be cancelled out by travel

time (Fig. 1a) [26,27]. The third possible mechanism of choice is a

sequential search strategy, based on a very simple rule of thumb, a

‘threshold rule’, by which an ant assesses a nest against her own

fixed quality threshold, and either accepts the nest and begins

recruitment, or rejects it and continues searching [26]. Quality-

dependent recruitment latency has been demonstrated empirically

only when colonies were presented with a single new nest and were

not required to make a choice [20,22,24,28]. Robinson et al. [26]

hypothesized that these apparent recruitment latency effects could

emerge as a by-product of a threshold rule, because ants that find

a low-quality nest will tend to reject it and continue searching,

whereas ants that find a high quality nest will tend to accept it and

begin recruitment. In addition, Robinson et al. [26] hypothesized

that the apparent comparison phenomenon in which ants that

have visited equidistant poor and good nests usually recruit only to

the good nest (Fig. 1b; [20]) can be explained more parsimoniously

with a threshold rule in which the poor nest is rejected and for-

gotten, then the good nest is discovered and accepted, rather than

requiring individual ants to perform the more cognitively complex

task of remembering and comparing the qualities of different nests.

We aim to test the hypothesis that this simple parsimonious

mechanism (the threshold rule) is sufficient to reproduce observed

empirical patterns of collective decision-making.

Here we present a Markov-chain model of decision-making,

based on a simple threshold rule. Our model ants search for nests,

and compare those they find to an internal acceptance threshold,

subject to assessment error. This model includes no memory of

previous nests, and no ability to make direct comparisons between

the nests an ant has encountered. It also includes no explicit

quality-dependent recruitment latency. We compare the results of

this model to empirical results from two published studies and one

new experiment, to test whether our model can produce the

qualitative patterns seen in the empirical data. By parameterizing

our model as far as possible to previous experiments [20,26] we

test whether this simple threshold-rule is sufficient to explain

apparent recruitment latency and comparison effects. We also use

the model to predict emigration behaviour in a new experiment

that presents an ant colony with three equidistant nests, one good

and two poor (Fig. 1c). We performed this experiment using

individually radio-tagged ants to monitor individual-level behav-

iour and compare our empirical results to the model predictions.

We thus test whether a very simple individual-level ‘rule of thumb’

is sufficient to explain sophisticated collective decision-making.

Methods

Model
To investigate the proposed threshold rule, we present a very

simple model. As we are only concerned with independent dis-

covery by scouts before recruitment commences, we examine the

colony’s decision process analytically and using Monte-Carlo sim-

ulation, modelling ants as independent instantiations of a Markov

process. Ants independently accept sites according to a probability

specified by the site’s quality and their individual threshold, other-

wise they search randomly for a site to assess (Fig. 2). We have

modelled a discontinuous acceptance function here, but this could

be relaxed to be a smooth (e.g. sigmoidal) function of difference

between internal threshold and sampled quality, without qualita-

tively affecting the results. The Markov process has five states:

‘assessing home site’, ‘assessing poor site’, ‘assessing good site’,

‘committed to poor site’, and ‘committed to good site’. All

individuals start in the ‘assessing home site’ state but the home site

is considered uninhabitable in the model, and its quality is set to

Figure 1. Arenas used in emigration experiments, showing nest
locations. Dashed outline = old destroyed nest; shading = good nests.
(A) Good nest 120 cm from old nest; poor nest 30 cm [26]. (B)
Equidistant good and poor nests 45 cm from old nest [20]. (C) Three
equidistant new nests 36 cm from old nest. Dashed lines indicate points
at which tandem-runs were recorded.
doi:10.1371/journal.pone.0019981.g001

Figure 2. Schematic of model. A simulated ant continues searching
until it encounters a nest of a quality (b) exceeding the ant’s individual
threshold (a), taking into account assessment error (e). Ants may revisit
the same nest (with probability r), and do not have any memory of
previously visited nests.
doi:10.1371/journal.pone.0019981.g002

A Threshold Rule for Collective Decisions

PLoS ONE | www.plosone.org 2 May 2011 | Volume 6 | Issue 5 | e19981



negative infinity, therefore an ant can never become committed to

it. Ants can switch between the assessment states, but we assume

that once committed to a site an ant remains so and recruits nest-

mates to its preferred option; the recruitment process is not mod-

elled, and the ‘committed’ states are therefore absorbing states.

For the Monte-Carlo simulations, we model nest quality accep-

tance thresholds in the colony as a normally distributed random

variable A, with some mean and variance. An individual simulated

ant has a quality acceptance threshold a drawn at random from

this distribution. It discovers its next nest by sampling from a

probability distribution specified by its current nest, arena size and

shape, and the proximities of other available nest sites (Table 1);

part of this distribution is determined by the probability r that a

randomly searching scout rediscovers the site it has just been in.

On discovering a site, the scout evaluates the quality of the current

nest site with some error e added, sampled from a standard normal

distribution (mean 0; standard deviation 1); this corresponds to

error in the scout’s quality assessment. If this sampled quality

exceeds the scout’s acceptance threshold then it becomes com-

mitted to the site, otherwise it continues searching (Fig. 2). Accep-

tance threshold distributions and nest qualities are given arbitrary

values (Table 1), because individual probabilities of becoming

committed to a nest are hard to estimate empirically, due to the

difficulties in accurately identifying commitment and in eliminat-

ing the effects of interactions between ants. In the model, travel

times between sites are sampled from normal distributions. By

parameterizing this model to empirical ant movement speed and

specific experimental arenas (Table 1), we can approximate the

expected time for each simulated ant to find each nest, and the

time from first finding a nest to becoming committed to it (the ant

may visit other nests in between, or visit the same nest many times

before committing to it). This allows us to calculate recruitment

latencies for comparison with empirical data. In the empirical

studies, recruitment latency concerns the time from discovering a

nest to first recruiting to that nest. We do not include recruitment

in the model, so modelled recruitment latency concerns the time

from discovering a nest to ‘accepting’ that nest. For real ant

colonies, searching behaviour is much reduced when quorum is

achieved; we truncate the simulated data at the time at which

quorum was achieved in the real experiment, to increase com-

parability (see Text S1).

Model Analysis. In addition to the simulation model de-

scribed in this paper, we can derive analytic results for the pro-

posed rule for switching between nests. To facilitate this analysis

we simplify the Markov process slightly from that used in the

Monte-Carlo simulations, by discarding the state of assessing the

home site. The four states in the simplified Markov process are

thus ‘assessing poor site’, ‘assessing good site’, ‘committed to poor

site’, and ‘committed to good site’, and the state transition matrix

is (with states ordered as described above from top to bottom and

from left to right)

Q~

(1{p)r (1{g)(1{r) 0 0

(1{p)(1{r) (1{g)r 0 0

p 0 1 0

0 g 0 1

0
BBB@

1
CCCA, ð1Þ

where p is the average per-visit probability that an ant accepts the

poor site, g is the average per-visit probability that an ant accepts

the good site, and r is the probability that a randomly searching

scout rediscovers the site it has just been in. These are colony-wide

average probabilities that can easily be derived from the threshold

A and error N(0,1) distributions used in the Monte-Carlo

simulation, if comparability is desired. The matrix Q in eq. 1

can be understood as having a column corresponding to each state

Table 1. Parameterisation used in simulations of Monte-Carlo model.

Parameter Comparison with [26] Comparison with [20]
Comparison with new
multiple-nest experiment Derivation

Number of nests 3 3 4 From experiments

Arena size and shape See Fig. 1a See Fig. 1b See Fig. 1c From experiments

Position of nests Good nest (A) further than
poor nest (B) (Fig. 1a)

New nests equidistant
from old (Fig. 1b)

New nests equidistant from
old (Fig. 1c)

From experiments

Mean travel time between
nests (sec) from column nest
to row nest (SD = 1/5 mean)

Old A B

Old 1 36 143
A 36 1 116

B 143 116 1

0
BB@

1
CCA

Old A B

Old 1 54 54
A 54 1 81

B 54 81 1

0
BB@

1
CCA

Old A B C

Old 1 46 46 46
A 46 1 80 80

B 46 80 1 80

C 46 80 80 1

0
BBBB@

1
CCCCA

From walking speed
8.4 mm/s [74]

Probabilities of finding
nests (from column to row)1

Old A B

Old 0:91 0:15 0:03

A 0:06 0:80 0:06
B 0:03 0:05 0:91

0
BB@

1
CCA

Old A B

Old 0:70 0:15 0:15

A 0:15 0:70 0:15
B 0:15 0:15 0:70

0
BB@

1
CCA

Old A B C

Old 0:76 0:08 0:08 0:08

A 0:08 0:82 0:05 0:05
B 0:08 0:05 0:82 0:05

C 0:08 0:05 0:05 0:82

0
BBBB@

1
CCCCA

From arena size,
arena
shape & nest
positions;
see Text S1.

Number of ants 27 (Fig. 3); 49 (Fig. 4) 29 (Table 2); 12–63 (Fig. 5)2 13 (test 1); 20 (test 2) From experiments

Acceptance threshold
distribution (A)3

Normal distribution:
mean = 5, SD = 1

Normal distribution:
mean = 5, SD = 1

Normal distribution:
mean = 5, SD = 1

Arbitrary

Nest qualities (b)3 Old = 2inf; Poor = 4; Good = 6 Old = 2inf; Poor = 4; Good = 6 Old = 2inf; Poor = 4; Poor = 4; Good = 6 Arbitrary

Assessment error (from
which e is drawn)3

Normal distribution:
mean = 0, SD = 1

Normal distribution:
mean = 0, SD = 1

Normal distribution:
mean = 0, SD = 1

Arbitrary

1This includes r, the probability of re-discovering the same nest.
2Numbers of ants are colony specific for recruitment latency simulations; see Fig. 5.
3These acceptance threshold distributions and error rates correspond to quality-dependent nest acceptance probabilities of 0.76 for the good nest and 0.24 for the poor
nest. See Text S1 for details.

doi:10.1371/journal.pone.0019981.t001
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in the model, where that column specifies a probability distri-

bution over the next state. The probability distribution over the

initial states (‘assessing poor site’ and ‘assessing good site’) can be

derived based on the relative probabilities of an arbitrary ant scout

discovering either when searching from the home site.

Using standard techniques [e.g. 29] we derive analytic results on

the long-run behaviour of the threshold-switching rule, using the

state transition matrix Q (eq. 1) and its fundamental matrix. Of

particular relevance to our proposals is the analysis of the expected

time for the Markov-process to reach any absorbing state, when

started in some particular non-absorbing state. If we assume both

candidate nest sites are equally likely to be discovered first from the

home site, then the expected number of steps in the Markov-chain

before commitment to either nest site is reached is given by

E(time to accept any site)~
4(1{r)z2r(pzg){p{g

2((2r{1)pgz(1{r)(pzg))
: ð2Þ

Equation (2) will be used below to examine the sensitivity of

acceptance time to changes in site qualities. Note that, technically,

we should be interested in the latency between discovering a

particular site, and recruiting to that site, however in general per-

state latencies are difficult to calculate in Markov-chains, and the

overall expected latency given in equation 2 is an acceptable sim-

plification (see Text S1).

Empirical methods
Ethics statement. Our experiments on T. albipennis and

collection of colonies from the field comply with the laws of the

country in which they were carried out and the relevant national

and international guidelines [30,31].

‘Three-New-Nests’ Experiment. Six T. albipennis colonies

were collected from the Dorset coast, England, June–July 2009.

Colonies were queenright and contained 80–200 workers and

brood of all stages. Colonies were housed in artificial nests [27]

and provided with water ad libitum and honey solution and

Drosophila melanogaster weekly. We used these colonies to investigate

decision-making when a colony was offered a choice of three new

nests. Six trials were performed, each with a new colony. One day

prior to an emigration trial, we attached an RFID micro-

transponder (50065006120 mm) with a unique ID to the thorax

of every worker ant in the colony [32,33] and housed the colony in

a nest formed of a hexagonal glass slide (edge length = 30 mm), a

1.5 mm cardboard perimeter (cavity area 1496 mm2) and an

acetate lid with a central entrance hole (1.5 mm diameter) to avoid

introducing directional bias. We performed trials in a circular

arena with Fluon-coated sides, the floor of which was cleaned with

water and alcohol between trials. Three new hexagonal nests with

the same dimensions as the original nest were placed in the arena

(Fig. 1c). Two nests had clear acetate lids and one had a red filter

covering the cavity area, making the nest appear relatively dark to

the ants [34]. Ant colonies choose dark over light nests [19]. The

position of the good nest was interchanged between trials. The

new nests had 1.5 mm wide entrances in the side facing the centre

of the arena, over which RFID readers (PharmaSeq, Inc., NJ) were

placed vertically. A trial began with the original nest placed in the

centre of the arena and then destroyed by removing the lid. The

RFID readers detected ants entering and leaving the new nests

[86% tag read rate, 26] and we used handheld RFID readers to

read the tags on tandem-running ants (94% tag read rate) as they

crossed half-way lines (Fig. 1c). The identity of the leader and

follower was thus recorded and the direction of the tandem run

was noted. This procedure does not disrupt tandem runs [26]. The

time at which the transport by carrying of a nest-mate or a brood

item first occurred to each nest was recorded (i.e. the time at which

the quorum threshold was reached). Once nest-mate transport has

commenced, the RFID system becomes less reliable [26], because

nest-mates are transported in such a way as to block the RFID tag.

We therefore focused our analysis on searching and recruitment by

tandem-running during the pre-quorum period. We observed

emigrations until complete (old nest empty of brood and workers)

and recorded the nest choice of the colony after 24 hours. Colo-

nies were considered to have split if brood was present in two or

more nests.

Statistical Methods
Mean recruitment latencies were analysed using generalised

linear mixed models (GLMM) ‘glmmPQL’ in the MASS library in

R 2.4.1 with nest quality as a fixed factor, colony (empirical results)

or replicate (simulation results) as a random factor and a Poisson

error structure. Differences between recruitment latency survivor-

ship curves, were tested using generalized log-rank tests using the

function ‘survdiff’ in the survival library in R 2.4.1. Monte Carlo

simulations were carried out using MatLab 7.4.0 (see Text S1),

and matrix manipulation with Maple 14.

Results

Comparison with Poor Nest Near; Good Nest Far Data
We parameterized the model to the experimental set-up used by

Robinson et al. [26] with a nearby poor nest and a more distant

good nest (Table 1, Fig. 1a) and performed Monte Carlo simu-

lations of this experiment. The switching behaviour (ants moving

from visiting one nest to visiting the other) in the simulations is

qualitatively very similar to the empirical data (Fig. 3). In both

cases most ants that find the far (good) nest first stay at that nest,

whereas ants that find the near (poor) nest first may stay or switch.

The model simulations also reproduce the empirical results that

recruitment latency does not play an important role here. In the

empirical study, recruitment latency was measured as time from

discovering a nest to first leading a tandem run to that nest and

data are only available for ants which recruited by tandem-

running. There are more recruitment latencies for the simulated

data, as all ants make a choice in the model, whereas in the real

data not all active ants perform tandem runs. This leads to

quantitative differences between simulated and empirical data, but

qualitatively the patterns are the same: In the simulated data, as in

the empirical data, there are no significant differences between

recruitment latencies to the good and poor nests (Fig. 4a, 4b).

However, in a simulation presenting the two nests separately (i.e.

either only old nest and near poor nest are present, or only old nest

and far good nest are present) the pattern is dramatically different,

with significantly higher recruitment latencies for the poor nest

(Fig. 4c). This clearly demonstrates that differences in recruitment

latency can be generated when only one nest is present, as a side-

effect of the threshold rule.

Comparison with Two-Equidistant-Nests Data
To test whether our model can account for the patterns seen in

the original experiments, used as evidence for the recruitment

latency and comparison mechanisms [20], we also parameterised

the Monte Carlo model to this experimental set-up (Fig. 1b,

Table 1). Here two equidistant new nests, one good and one poor,

are presented to the ant colony. The empirical data for direct

comparison are shown in Table 2. Very similar results emerge in

our simulations, without any memory or comparison coded into

the model (Table 2), clearly showing that this sort of behavioural

pattern can be accounted for by the threshold rule alone, without

A Threshold Rule for Collective Decisions
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needing to include other mechanisms. However, the exact quan-

titative results of our simulations are influenced by the acceptance

threshold and nest quality parameters. Since we do not know the

shape of the real threshold distribution in an ant colony, the match

between simulated and empirical data here does not prove that

comparison plays no role in ant decision-making, but does show

that results of this type do not necessarily have to be the produced

by comparative evaluation.

In the empirical data (Fig. 5a–f), there do appear to be quality-

dependent differences in recruitment latency – however, the nests

were presented separately in these experiments. Recruitment

latency is measured using survival analysis, treating ants that find a

site but never recruit to it as censored data. Applying the same

analysis to our simulated results demonstrates that we can repli-

cate these differences in recruitment latency when the nests are

presented separately (Fig. 5g–l) but the differences disappear when

the simulations are repeated identically, but with the nests

presented together (Fig. 5m–r). This is same pattern as was

observed in the comparison with the the ‘poor nest near; good nest

far’ data, even though recruitment latencies are measured

differently in the two empirical studies. These simulation results

demonstrate that the observed empirical differences in recruitment

Figure 3. Comparison of empirical and simulated emigration behavior. Number of ants continuing to visit the same nest (stay) or going on
to visit the other nest (switch), depends on the quality of the first nest visited. (A) Empirical results, 9 colonies, mean + SD. (x2

1 = 86.6, P,0.001),
reproduced from Figure 2a, Robinson et al. [26] with permission from Royal Society Publishing. (B) Simulation results, 9 replicates, mean + SD
(x2

1 = 42.0, P,0.001). A sample set of 9 replicates are shown here for comparability with the empirical data. Running 100 repeat sets gave the same
pattern, statistically significant in 100% of cases.
doi:10.1371/journal.pone.0019981.g003

Figure 4. Comparison between empirical and simulated recruitment latency results where the higher quality is further away.
Recruitment latencies to the near (poor) and far (good) nests, mean + SE. (A) Empirical data [26]; nests presented together, n = 9 colonies. No
significant differences in recruitment latencies: GLMM: t39 = 0.08, P = 0.93. (B) Simulation data; nests presented together, n = 9 replicates. No significant
differences in recruitment latencies: GLMM: t39 = 0.71, P = 0.48. Sample set of 9 replicates shown; of 100 repeat sets, 90% showed no significant
difference in recruitment latencies. (C) Simulation data; nests presented separately, n = 9 replicates. Recruitment latencies to poor nest significantly
greater: GLMM: t88 = 2.19, P,0.05. Sample set of 9 replicates shown; of 100 repeat sets, 70% showed significantly greater recruitment latencies to
poor nest.
doi:10.1371/journal.pone.0019981.g004
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latency can be explained as a side-effect of the threshold rule,

when only one new nest is present.

To examine analytically whether recruitment latency varies

greatly with nest quality when there are two equidistant potential

nest sites available, or when there is only one nest site available, we

can make use of equation 2. We consider the two site case first; to

do this we shall hold one of the nest site qualities constant while

varying the other nest site quality, and examine the effect on the

expected time to reach commitment to either site. Figure 6

illustrates how expected decision time varies for the one and two

site cases, for a given revisiting value of r (0.7, estimated from

empirical data). We vary the quality of the poor site (A) while

keeping the quality of the good site (B) constant, holding g constant

while varying p in the interval [0, 1] (see eq. 2). For a moderate

quality of the constant nest (P(accept B) = g = 0.88, estimated from

empirical data) expected decision time varies little between the

extremes of the other nest’s quality (P(accept A) = p = 0 to 1), thus

when two nest sites are present, strong quality dependent recruit-

ment latency is not evident (Fig. 6, solid line). This contrasts

markedly with the situation where there is only one potential nest

site; this is equivalent to setting p = g in equation 2. Now a much

more pronounced relationship between the quality of this site, and

the expected time until commitment, is evident (Fig. 6, dashed

line). These analytic results agree qualitatively with results from

the Monte-Carlo simulation (Fig. 5). This is good evidence for

the threshold rule, but does not in itself rule out sequential com-

parisons since a version of the model with sequential comparisons

gives almost indistinguishable results (see Text S1, Fig. S2). How-

ever, the sequential comparison model makes greater cognitive

demands on individuals, who must remember the qualities of

visited sites and evaluate this in making subsequent comparisons.

Three-New-Nests: Simulation Predictions and Empirical
Data

A total of 752 ants (across 6 colonies) were individually radio-

tagged and their scouting activity was monitored during emi-

gration experiments in which each colony chose between one

good and two poor nests (Fig. 1c). According to the threshold

rule, ants which independently (i.e. not by following a tandem

run) visit the good nest (A) and one of the poor nests (designated

B) and then visited another nest before quorum was reached (at

which point carrying behaviour begins), should be equally likely

to return to good nest A or discover the other, equidistant, poor

nest (designated C). In contrast, if ants are using best-of-n direct

comparisons, ants which have visited good nest A and then nest B

should be more likely to return to A than to discover C.

In the empirical data, 20 individuals out of the 752 we

monitored fulfilled the necessary behavioural criteria of finding A

and then B before quorum was reached. This sample size is small

because this behaviour was fairly rare – as would be predicted by

our model, ants finding A tended to start recruiting, rather than

discover B. Using this sample size of 20 ants for 100 simulation

replicates gives 95% confidence intervals of 7–12 ants returning to

A; 8–13 ants discovering C. The empirical data fit well within

these limits, with 11 ants returning to A and 9 discovering C. This

does not differ significantly from random choice (binomial test,

P = 0.82). This supports the threshold hypothesis and shows no

evidence that ants act on information from comparison of nests to

allow them to preferentially return to a better nest.

Although our data show that ants did not preferentially return

to the good nest, the comparison hypothesis could still be sup-

ported if those that did return to it did so more directly because

they had remembered its high quality. This is not the case: ants

made 0–27 (median = 3) repeat visits to B before returning to A,

compared to 0–6 (median = 0) visits to B before discovering C

(Mann-Whitney test: U = 73, N = 20, P = 0.07). The trend is in the

opposite direction to that predicted by the hypothesis that ants

make a comparison and act on it to return more directly to better

nests. These data are consistent with threshold-based choice.

A second test of whether individual ants are comparing nests

involves decisions to recruit nest-mates by leading a tandem-run

to the new nest. If ants are using a ‘best-of-n’ comparison strategy,

the sampling period before recruiting should be independent of

the quality of the first nest they visit, whereas if ants use an

internal threshold rule, the number of nests they sample before

recruiting should be strongly dependent on the quality of the first

nest they visit, with ants that find the high quality nest first being

likely to initiate recruitment to this nest immediately. In the

empirical data, 13 individual ants initiated recruitment by leading

a tandem run, of which 8 had discovered the good nest first, and 5

had discovered a poor nest first. Using these sample sizes for 100

simulation replicates predicts that ants finding the good nest first

should not visit any other nest before recruiting (median total

nests visited: 95%CI 1-1) whereas ants finding the poor nest first

should be more likely to visit other nests before recruiting (median

total nests visited 95%CI 1-2). The empirical data fit these

predictions. Ants which found the good nest first visited a median

of only that 1 nest before recruiting, whereas those which found

the poor nest visited a median of 2 different nests before leading a

tandem run (Mann-Whitney test, U = 36, N = 13, P,0.05). The

data do not support the recruitment latency mechanism, as there

are no quality-dependent differences in time from nest discov-

ery to recruitment by tandem-running (good nest: mean 6

SD = 20619 min; poor nest: mean 6 SD = 28624 min; t-test:

t12 = 0.71, P = 0.49).

Discussion

Our results show that a very simple individual mechanism can

produce effective collective decision-making. The predictions of

our threshold decision-making model correspond well with

empirical data from house-hunting ants. Our simulations of the

Table 2. Empirical and simulation results for apparent comparison of nests.

Empirical Resultsb Simulation Resultsc

Percentage of active ants that visit both nestsa 79% 85% (71–96)

Percentage of switching ants that recruit to good nest 92% 98% (83–100)

aActive ants are the ants that discover one or both of the new nests before quorum is reached and nest-mate carrying begins.
bEmpirical results are from 3 colonies [20].
cSimulation results given as mean and 95% confidence intervals from 100 replicates.
doi:10.1371/journal.pone.0019981.t002
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threshold rule not only predict successfully the empirical ant

behaviour newly reported here, but also can explain the empirical

results in two previously published studies [20,26] under the as-

sumption of very large differences in nest quality. This explanation

of empirical data is supported by our analytical modelling results.

Our results clearly support the hypothesis that this simple par-

simonious mechanism (the threshold rule) is sufficient to reproduce

observed empirical patterns of collective decision-making: our

results can account for both apparent direct comparison of nest

quality and for apparent quality-dependent recruitment latency,

which had been previously proposed as mechanisms of collective

choice. Our parsimonious threshold model is sufficient to explain

the data without assuming more complex behavioural mecha-

nisms. This highlights the need for carefully designed experiments

to determine whether or not individuals make comparisons, and

demonstrates that group-level comparison behaviour does not

necessarily imply individual-level comparison behaviour. In the

case of ants, evidence of the ability of lone individuals to make

direct comparisons of alternatives has only recently been published

[25]; as our results show, previously published studies were not

sufficient to demonstrate this. Further empirical investigation is

required to establish what role, if any, direct comparison by in-

dividual ants plays in the collective decision-process.

We can subdivide comparison behaviour into two types that

can aid decision-making: best-of-n comparisons and sequential

comparisons. Best-of-n comparison mechanisms are characterised

by a sampling period, and preferential return to the best option

[35]. We conducted a multiple-nest experiment to test directly if

real ants show these behaviours. Neither is observed. In contrast,

the results support the threshold model: if the first nest they

encountered was of a high quality, the ants started recruitment

immediately without continuing to sample, and those ants which

had the opportunity to compare nests did not act on this infor-

mation by preferential or more direct return to better nests.

Sequential comparisons occur when each time an animal en-

counters a new option, it compares the new option to its memory

of previously encountered options and is more likely to accept the

new one if it compares favourably. This is similar to the threshold

model, but thresholds are influenced by experience. In one variant

of this, individuals sample several options and then accept the next

option they encounter which exceeds the quality of all previous

options. This strategy can be shown to provide the optimal

solution to the ‘secretary problem’; a sequential search problem in

which previously encountered options are subsequently unavail-

able [36]. We modelled a sequential comparison mechanism (see

Text S1) to compare with our threshold model. The results show

that this type of comparison model predicts similar recruitment

latency results to our threshold model. We therefore cannot rule

out this sequential comparison mechanism, but note that it is a less

parsimonious solution. Our threshold model is sufficient to explain

the data without invoking memory and comparison during the

decision process.

Our simulated ants have no memory of previously visited nests,

and yet behaviour previously described as ‘comparison’ still

emerges in our simulations (Table 2). This clearly shows that

empirical data of this sort cannot be used as evidence that an

animal is really remembering and comparing. The decision

process we propose is ‘memoryless’ in the sense that individual

ants do not have to remember previously visited alternatives

during their search for an acceptable nest. Our model deals only

with the decision process up to the point at which an ant accepts a

nest. After that point, real ants clearly do use memory of nest

location in order to recruit nest-mates to that nest by tandem-

running [20]. Recruitment is the most easily identifiable action

indicating commitment, but ants that have accepted a nest may

also act on their commitment by making repeat visits to the nest

[26,37]. By making repeat visits, ants are able to assess nest area

more accurately [37] and would also contribute to the accumu-

lation of a quorum at their chosen nest, causing the switch to rapid

nest-mate carrying behaviour [18]. Memory is therefore an

important part of the implementation of the decision, but ants

following the threshold rule do not need to invest in remembering

the qualities or locations of multiple nests during the decision-

making process.

Figure 6. Analytical results of Markov Chain model. Expected
time for an ant to accept any site across varying qualities of site A,
calculated from equation 2. Dashed line: only site A present. Solid line:
two nests present; site B fixed at P(accept nest B) = 0.88 (estimated from
data, see Text S1, Fig. S1). For two nests present, either site is equally
likely to be discovered first. Nest rediscovery probability r = 0.7
(estimated from data, see Text S1, Table S1). The reduced effect of
site A’s quality on expected decision time is robust to variations in site
B’s quality, except where this becomes low (see Fig. S1).
doi:10.1371/journal.pone.0019981.g006

Figure 5. Comparison between empirical and simulated recruitment latency results where new nests are equidistant. Empirical and
simulated recruitment latencies (solid line = good nest; dashed line = poor nest). The latency between entry and recruitment (mean 6 SD), and the
number of ants analysed, are shown next to the corresponding survivorship curve. (A–F) Empirical results with nests presented separately,
reproduced from Figure 4, Mallon et al. [20] with permission of Springer Science and Business Media. Recruitment latencies to the poor nest are
significantly greater in four of six colonies (generalised logrank test). (G–L) Simulated recruitment latencies, nests presented separately. Recruitment
latencies to the poor nest are significantly greater. Empirical number of ants is matched for each colony. Sample graphs are shown; running 100
replicates of each gives the same pattern of results, with significant differences between recruitment latencies in 95% (Colony 5) or 100% (Colonies 1–
4 and 6) of simulations. (M–R) Simulated recruitment latencies, nests presented together. There are no longer any significant differences between
recruitment latencies. Empirical number of ants is matched for each colony. Sample graphs are shown; running 100 replicates of each gives the same
pattern of results, with no significant difference between recruitment latencies in 96% (Colony 1), 93% (Colony 2), 90% (Colony 3) 90% (Colony 4),
96% (Colony 5) 93% (Colony 6) of simulations.
doi:10.1371/journal.pone.0019981.g005
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The second previously-proposed mechanism, quality dependent

recruitment latencies, is an attractive idea – it does not rely on

comparisons, and self-organised decisions can emerge because ants

finding a poor nest delay before recruiting, effectively giving others

that have found a good nest a head-start in the recruitment

process. The initial advantage is amplified by recruitment, and this

can be shown to be sufficient to account for collective choice [24].

In both the threshold rule and the recruitment latency hypothesis,

a scout makes a probabilistic, quality-dependent decision about

whether to recruit each time she visits a nest. The difference

between these mechanisms come from the assumptions made

about what the scout does after leaving the nest, and how this

results in a colony decision-mechanism. In our threshold rule, the

ant either commits or continues searching. In the recruitment

latency hypothesis, ants which do not immediately start recruiting

may subsequently recruit, with a quality-dependent latency. In the

original formulation of this idea [20] it is mentioned that ants

might discover other nests during this latent period, but it is not

suggested that the latency is actually a result of the search for other

nests. Searching for alternatives has a more prominent role in later

versions of the recruitment latency model [24] making it more

similar to our threshold model, however, the idea of simple

quality-dependent recruitment latencies functioning as a choice

mechanism still appears often in discussions of collective decision-

making [11,38,39]. There are two empirical problems with such a

mechanism. Firstly, colonies are able to choose a good nest, even

when it is so much further away than a poor nest that travel time

should cancel out differences in recruitment latency [27]. Sec-

ondly, all empirical evidence for quality-dependent recruitment

latencies comes from studies offering a colony just one new nest

[20,22,24,28]. When recruitment latencies are measured in

multiple nest experiments, no quality-dependent recruitment

latencies differences are observed [this study and 26]. We used

modelling to investigate these empirical results. Our simulation

and analytical results reproduce quality-dependent recruitment

latency in a single-nest experiment, but show that the presence of

an extra nest disrupts the quality-dependence of the latency to

commitment and recruitment (Figs. 5–6). When a single poor nest

is offered, acceptance times in the model will be geometrically

distributed, with few ants accepting the site early due to rare

assessment errors or low individual-thresholds, and the remainder

continuing to re-assess the same site until they eventually decide it

is good enough. When a second higher quality site is introduced,

the same small proportion of ants will accept the poor site early

due to low-threshold or assessment error, but the remainder will

now tend to discover the alternative, superior site, and recruit

to this quickly on average because of its increased quality. The

same pattern would be observed for a threshold-rule with direct

comparison (see Text S1), and also for a quality-dependent re-

cruitment latency-rule, if it is assumed that ants search for

alternatives during the latency period and have a high probability

of finding other sites [20]. However, these alternative models are

less parsimonious, requiring ants to remember the qualities and/or

locations of visited sites and evaluate this in making subsequent

comparisons or use the information to decide when and where to

start recruiting. These results also clearly demonstrate that a

phenomenon observed when only one option is available, cannot

be assumed to function in the same way when choosing between

multiple options (see also [7]).

Another well-studied example of collective decision-making is

nest-site choice by swarming honeybees (Apis mellifera). Like ant

colonies, bee swarms are able to choose between different nest

sites, and individual bees do not need to have visited multiple sites

for the swarm to be able to choose between them [40]. However,

the way the scouts act on this information differs between the two

groups. The ants seem to use a binary decision process to either

accept that nest or continue searching. Ants accepting a nest

recruit others, causing a positive feedback process, but ant scouts

do not modulate their recruitment according to nest quality, e.g.

by recruiting at a faster rate or for longer to a higher quality nest

[20,26]. In contrast, bees use a graded process, whereby scouts

initially discovering a new nest-site almost always recruit [41],

but the duration and rate of the recruiting waggle-dances are

dependent on nest quality [42]. This means that more recruits are

brought to better nest-sites, leading to a positive feedback process

usually resulting in a unanimous choice of the better site [42]. One

possible reason for this difference in strategy could be differences

in nest availability: if suitable honeybee nest sites are relatively

rare, then it might be better for scouts to avoid ever rejecting a

potential nest outright.

Collective decisions are also made in other contexts, such as

choice of foraging site. Here again, comparisons of sites by indi-

viduals seems to play little role. Foraging honeybees do not com-

pare food sources [43], nor do they compare the waggle-dances of

recruiters at the hive [44]. Rather, multiple sites ‘compete’ for

foragers, with bees foraging more persistently at high quality sites

and recruiting to them more energetically [43,45]. Foragers can

also directly inhibit recruitment if they perceive danger at a par-

ticular food source by the use of ‘stop-signals’ directed at bees

recruiting to that source [46]. In trail-laying ants and bees,

pheromone trails to better foraging sites are more strongly

reinforced and this again leads to a collective choice without any

necessity for individuals to visit multiple sites [47,48]. Just as for

nest-site choice, foraging recruitment can either be graded (laying

more pheromone to a better food source, e.g. [47,49]) or a binary

decision (all-or-nothing recruitment, e.g. [50,51]).

Direct comparison of alternatives is seen in a range of animals

and contexts, including foraging in scrub jays and humans [8,52],

mate choice in bower-birds and dance-flies [53,54] and shell

assessment by hermit crabs [55]. A best-of-n comparison strategy

would maximise decision accuracy [2], so why do neither indi-

vidual bees nor ants appear to use this strategy when foraging or

choosing a new home? One possibility is that multiple comparisons

are too cognitively complex for ant and bee brains. However,

small insects including bees are competent at related cognitive

processes, including contextual learning, discrimination between

stimuli and associative recall [56]. Male dance-flies compare the

size of potential mates before choosing [54], and there is evidence

to suggest that honeybee workers are capable of comparative

evaluation of flowers [57] and that lone T. rugatulus ant workers are

capable of comparing the attributes of nest-sites which are very

close together [25]. There may, therefore, be reasons other than

cognitive constraints for why relying on individual best-of-n

comparisons to inform collective choices does not appear to have

evolved as a decision mechanism in bees or ants. One possible

reason is that during their evolutionary history the ants have

typically been faced with decisions about whether to accept a

single option at a time, rather than simultaneously having in-

formation about multiple options, and this has shaped the

evolution of their decision process [7]. Another possible reason is

the potential speed advantage of avoiding a sampling period.

Sampling periods can be costly [2,7] and pose the mathematically

complex problem of deciding how long to sample for before

starting the decision process [58]. Avoiding best-of-n comparisons

allows a potentially vulnerable colony to select the first nest

encountered, if it is good enough. Perhaps even more important is

distributing the decision-making process, relying less on informa-

tion-processing by a single individual; rather allowing the decision
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to emerge from a collective process to which even partly-informed

individuals can contribute. In this colony-level cognition, the

relevant information about the environment is represented within

the individuals in a colony, their actions and interactions. At the

collective level this generates new information: which nest the

colony should choose [59]. In both bees and ants, the information

held by individuals is integrated into a colony choice by means of a

quorum threshold, which triggers rapid implementation of the

decision [18,60]. Although the colony will usually choose the site

which reaches quorum first, this does not mean that the colony as

a whole must ‘satisfice’, accepting the first nest surpassing some

minimum standard. Using quality-dependent initiation (in Tem-

nothorax ants) or modulation (in honeybees) of the recruitment

process leading to the attainment of a quorum, the colony in effect

carries out a concurrent but indirect collective comparison process,

which may implement optimal decision-making through the

actions of partly-informed individuals [61]. This ensures that the

nest to reach a quorum first is also likely to be the best option, even

when there is an array of possible alternatives [16,42]. Thus

without the individuals using a ‘best-of-n’ comparison strategy, the

colony is able to solve a ‘best-of-n’ challenge [16,62].

A further possible advantage of avoiding individual direct

comparisons is that it would remove the risk of ‘irrational’ decision

behaviour at the individual level [26], associated with comparative,

relative evaluation of options such as best-of-n, or sequential

comparisons. Individuals following our proposed threshold rule

make an absolute evaluation of quality, and this evaluation of one

option is not influenced by the other alternatives available, in

contrast to the context-dependent decision-making used by many

other animals including humans [8,63,64]. Although at the

collective level, a comparison between options is effectively being

made, a non-comparative individual-level mechanism for this

decision could protect the colony from irrationality in decision-

making. For example, emigrating T. albipennis colonies follow

rational transitivity patterns in decision making [16] and in the

related species T. curvispinosus and T. rugatulus, colonies seem to be

immune to irrational distractor effects from irrelevant alternatives

[25,65]. Although work on T. rugatulus suggests that this collective

immunity can emerge even if individuals are susceptible to

distractor effects provided their individual contribution to the

collective decision is small [25], our work suggests this collective

rationality can emerge without depending on low numbers of ants

visiting both nests – if individual ants follow the threshold rule, then

the colony can escape these irrational comparison behaviours.

Using an absolute evaluation method does have a potential

drawback, if the acceptance threshold is not appropriate to the

environment. When used in individual decision making (e.g.

during mate choice in cockroaches, [9]) the success of this sort of

sequential search strategy will be highly sensitive to the threshold

used. For example, if all available options are poor quality, an

animal may reject them all, and end up worse off than if it had

accepted a poor option. In contrast, when this strategy is used for

group decision making, variation in acceptance thresholds across

the group provides protection against this sensitivity. If all options

are poor quality, some low-threshold individuals will still accept

one, allowing the group to make a choice. Similarly, intra-colony

variation in task response thresholds promotes effective division of

labour in social insect colonies, with more individuals engaging in

a particular task when the stimulus for that task increases [66–68].

Our model assumes that individual thresholds are fixed over the

time-scale of the emigration process, however further flexibility

would be available if acceptance thresholds were updated based on

experience over the course of an individual’s life-time [69,70].

Flexible task thresholds promote flexible division of labour in social

insect colonies [71–73]. How much acceptance threshold variation

actually occurs within a colony, and whether ant acceptance

thresholds are fixed throughout life or changed by experience, are

issues remaining to be explored.

In summary, our simple individual-threshold model is sufficient

to explain empirical decision-making data, without assuming more

complex behavioural mechanisms. Since the scientific method

gives preference to the more parsimonious model, this result shows

that care is needed in inferring individual behaviour from group

behaviour. We propose that, in general, individual decision-

makers can use this simple threshold rule to provide their group

with an elegant solution to the problem of making a collective

choice. This strategy allows the group to make a rational, well-

informed and rapid decision.

Supporting Information

Figure S1 ‘Expected decision time in a two-nest scenario.
Expected time for an ant to accept any site across varying qualities

(probabilities of acceptance) of sites A and B, calculated from

equation 2.

(TIF)

Figure S2 ‘Expected decision time in one-nest scenario.
Expected time for an ant to accept any site, using the parameters

of Figure 6, for the no-comparison threshold-rule of the main text

(red), and for the direct-comparison threshold-rule described

above (green).

(TIF)

Text S1 This supplementary model information covers
details of model parameterisation for the analytical and
simulation modelling. It also describes an alternative analytic

model of thresholds with sequential-comparison. It provides the

basic model code of the Monte Carlo model.

(DOC)

Table S1 Further details of model parameterization.

(PDF)
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