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Abstract

Background: In humans, imaging of tumors provides rapid, accurate assessment of tumor growth and location. In
laboratory animals, however, the imaging of spontaneously occurring tumors continues to pose many technical and
logistical problems. Recently a mouse model was generated in which a chimeric protein consisting of HIF-1a oxygen-
dependent degradation domain (ODD) fused to luciferase was ubiquitously expressed in all tissues. Hypoxic stress leads to
the accumulation of ODD-luciferase in the tissues of this mouse model which can be identified by non-invasive
bioluminescence measurement. Since solid tumors often contain hypoxic regions, we performed proof-of-principle
experiments testing whether this transgenic mouse model may be used as a universal platform for non-invasive imaging
analysis of spontaneous solid tumors.

Methods and Materials: ODD-luciferase transgenic mice were bred with MMTV-neu/beclin1+/2 mice. Upon injection of
luciferin, bioluminescent background of normal tissues in the transgenic mice and bioluminescent signals from
spontaneously mammary carcinomas were measured non-invasively with an IVIS Spectrum imaging station. Tumor volumes
were measured manually and the histology of tumor tissues was analyzed.

Conclusion: Our results show that spontaneous mammary tumors in ODD-luciferase transgenic mice generate substantial
bioluminescent signals, which are clearly discernable from background tissue luminescence. Moreover, we demonstrate a
strong quantitative correlation between the bioluminescent tumor contour and the volume of palpable tumors. We further
demonstrate that shrinkage of the volume of spontaneous tumors in response to chemotherapeutic treatment can be
determined quantitatively using this system. Finally, we show that the growth and development of spontaneous tumors can
be monitored longitudinally over several weeks. Thus, our results suggest that this model could potentially provide a
practical, reliable, and cost-effective non-invasive quantitative method for imaging spontaneous solid tumors in mice.
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Introduction

In human medicine, the detection and evaluation of tumors has

been an area of ongoing research for many years. The advent of

radiology as a diagnostic aid provided the first opportunity to

image internal tumors non-invasively, and progress over the past

three decades has resulted in a wide array of non-invasive, live-

tissue imaging options [1,2,3,4]. Examples of technology in this

rapidly expanding field include x-rays, ultrasonic imaging,

computed tomography, positron emission tomography, magnetic

resonance imaging, and nuclear scintigraphy. Many of these

imaging modalities can provide astonishingly detailed information

about a tumor, including size, shape, location, vasculature and

architecture; but most of the advanced techniques require

extensive training and experience to master, hence the existence

of board-certified radiologists within the medical profession.

In the laboratory, tumor imaging is a very different process. The

evolution of animal models for tumor research has resulted in the

predominant use of immunocompromised mice as hosts for

human xenograft and mouse allograft tumors, allowing researchers

to observe the growth and development of tumors in a ‘‘living test

tube.’’ While these models have made tremendous contributions to

our knowledge in the field of oncology, they also possess inherent

drawbacks which limit their usefulness [5,6]. First and foremost, it

has long been known that xenografts/allografts in mice do not

necessarily mimic the behavior they exhibit in their native

microenvironment [6,7,8]. Furthermore, the mice used in these

models are invariably immunocompromised to prevent rejection

of the xenograft. This condition alters the natural inhibitory

factors that cancer is subjected to in an otherwise immunocom-

petent host [6,7], allowing the xenograft to grow and even

metastasize. In the meantime, it also abolishes the pro-tumorigenic
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inflammatory responses that are relevant to the natural evolution

of tumors [9].

The recognition of the deficiencies of xenograft/allograft

models has led to a number of efforts to develop better mouse

tumor models, imaging systems, or both. With the recent advances

in genetic manipulation in mice, we are now able to selectively

knock out a tumor suppressor gene or overexpress an oncogene

which results in the spontaneous development of tumors in specific

tissues [6,10,11]. These models, of course, are not perfect, and

mouse tumors do not always behave similarly to their human

counterparts. In many instances, however, these spontaneous

murine tumor models can closely mirror human tumors with the

same genetic alterations. They are also excellent animal model

systems for determining the efficacy of anti-cancer therapeutics.

Although these genetically modified mice have provided us with

a superior model of spontaneous tumor development, the non-

invasive imaging of these tumors continues to pose a problem.

Imaging methods that are common in human oncology such as

ultrasonography, computed tomography, and magnetic resonance

imaging are often impractical for use in the laboratory due to

expense, safety, and the need for extensive technical expertise. The

most popular alternative has been the pursuit of bioluminescent or

fluorescent imaging techniques. In recent years, a number of

effective in vivo imaging models have been developed which

depend either upon the conditional expression of bioluminescent

reporter genes in concert with genes associated with a certain type

of tumor, or upon the use of fluorescent reporter molecules

directed towards specific cancer-associated cell proteins [12]. The

limitations of these models is that they are specific for only a single

type or subtype of cancer, and may not be broadly applied to

tumors of differing origins.

The core of developing any universally applicable tumor

imaging system is the differentiation of tumor cells from normal

tissue. At the physiological and metabolic levels there are

differences between cancerous tissue and normal tissue that, if

exploited, might provide a foundation for a more broadly

applicable tumor imaging system [13]. It has long been known

that despite their efforts to encourage angiogenesis, solid tumors

experience a certain degree of relative hypoxia when compared

with surrounding tissue [14,15,16]. Recently, a mouse model has

been developed in which regions of hypoxia may be imaged via

bioluminescent imaging [17]. In this model, Safran, et al. created

a transgenic mouse expressing the oxygen-dependent degradation

(ODD) domain of the Hypoxia Inducible Factor 1-a (HIF1-a)

gene fused to a luciferase bioluminescent reporter gene. The

HIF1-a gene is ubiquitously transcribed and translated, but

under normoxic conditions, the enzyme HIF prolyl hydroxylase

utilizes oxygen to hydroxylate the HIF ODD. The hydroxylated

ODD then recruits von Hipple-Lindau protein (pVHL), a

ubiquitin E3 ligase, leading to poly-ubiquitination of HIF1-a
and its subsequent degradation by the proteasome (Fig. 1A).

Conversely, under hypoxic conditions, lack of hydroxylation of

the ODD domain leads to the accumulation of HIF1-a
which acts as a transcriptional regulator for a number of

Figure 1. The effect of hypoxia on the HIF1-a degradation pathway and the scheme of the use of the ODD-Luciferase transgene for
bioluminescent imaging of spontaneous tumors. (A) HIF prolyl hydroxylase depends upon the substrate oxygen for hydroxylation of the ODD
domain in constitutively expressed HIF1-a protein in normoxic cells, ultimately leading to the degradation of HIF1-a via the ubiquitin-proteasome
pathway. The expression of the ODD-Luciferase transgene is identically regulated, leading to the accumulation of the ODD-Luciferase protein under
hypoxic conditions. (B) A schematic of the generation of mammary carcinoma-prone MMTV-neu/ODD-Luc/Beclin1 +/2 mice.
doi:10.1371/journal.pone.0018269.g001
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hypoxia-induced genes. By universally expressing the ODD-

luciferase gene in mice, Safran, et al. developed an organism in

which luciferase is continuously transcribed and translated in all

cells, but is also be rapidly degraded under normoxic conditions.

Only under conditions of hypoxia does luciferase accumulate and

thus, by providing the substrate luciferin, regions of hypoxia

within these mice may be imaged with bioluminescent imaging

equipment.

We reasoned that solid tumors should be visible in ODD-

luciferase expressing mice due to the relative hypoxia experienced

by the tumor cells and hypothesized that the ODD-luciferase

transgenic model could serve as a universal platform for non-

invasive imaging of spontaneous solid tumors in mice. In this

report we conducted proof-of-principle studies by cross-breeding

transgenic mouse strains known to be predisposed to the

development of mammary gland tumors, the MMTV-neu [18]

and Beclin1 +/2 [19] mouse strains, with the ODD-luciferase mice

developed by Safran, et al. and subsequently characterized tumors

via bioluminescent monitoring. Our results show that mammary

tumors which develop in ODD-luciferase transgenic mice generate

substantial bioluminescent signals which are clearly discernable

from background tissue luminescence. Furthermore, we were able

to clearly track tumor growth and development longitudinally over

several weeks and were able to observe changes in tumor size in

response to chemotherapeutic treatment using this system. Thus,

our study provides experimental evidence supporting the principle

that this system may have potential for providing a universal

model for the non-invasive monitoring of spontaneously occurring

solid tumors in mice.

Results

Generation of ODD-luciferase transgenic mice
predisposed to mammary tumors and determination of
baseline organism-wide bioluminescent signals
associated with relative hypoxia

Early imaging data on ODD-Luc mice was obtained by Safran,

et al. in their description of this model [17]. Our initial objective

was to determine whether or not ODD-Luc transgenic mice

could be successfully interbred with other, non-ODD-Luc

transgenic mice to produce tumorigenic offspring capable of

being imaged with available bioluminescence detection tech-

nology. Specifically, we sought to exploit the principle of tumor

hypoxia as a means of monitoring tumor growth and response to

treatment in populations of wild-type and reduced-autophagy

mice. In our laboratory, we maintain a colony of mice

heterozygous for the haploinsufficient tumor suppressor gene

beclin1 [19], an autophagy-related gene commonly deleted in

human breast cancers. In an effort to generate mammary

tumors with beclin1 deletion, these mice were crossed with mice

bearing the MMTV (mouse mammary tumor virus promoter)-

neu transgene. Mutation of the human neu homologue, the her2

oncogene, is associated with the development of certain human

breast tumors [20,21,22,23]. The resulting MMTV-neu/beclin1+/

+ or +/2 mice were further crossed with ODD-luciferase mice. As

expected, offspring develop mammary gland tumors with high

frequency (Fig. 1B, Table S1).

Prior to tumor development, we analyzed the baseline biolumi-

nescence in these tumorigenic mice. Figure 2 shows representa-

tive images of normal, tumor-free (as determined by post-imaging

necropsy), aged (18 month old) female mice. Images were

obtained of four views: dorsal, ventral, right lateral, and left

lateral (Fig. 2A), with the radiance for each image independently

scaled. Radiance is defined as photons/second/cm2/steradian

and is considered the rate at which any given point in the image

generates photons. This rate is commonly used to compare

bioluminescent signals among different images taken in different

subjects or at different times, as it eliminates much of the

variability inherent in comparing raw photon ‘‘counts’’ for a

given area for a given image. In each view we observed a unique

signal distribution correlating to hypoxic area nearest the camera

lens. In the dorsal view, the kidneys generate a marked signal,

while in the ventral view, the abdominal fat pad and teats

generate relatively high background signals over the abdomen

and the thyroid generates a high intensity signal in the cervical

region. The lateral views each contain high intensity regions that

correlate with the respective kidney for that side, as well as signals

generated by the abdominal fat pad and the thyroid (Fig. 2A).

Later, the images were merged and forced to conform to a

common scale, (Fig. 2B), providing an accurate comparison of

relative hypoxia among views and revealing that the ventrum was

consistently the region with the highest background signal.

Finally, a variety of areas were observed to undergo transient

or shifting hypoxia, including the ears, tail, rump, feet, and scruff.

These areas can become transiently hypoxic in association with a

variety of factors, including changes in ambient temperature,

length of time under anesthesia, and sometimes the degree of

strength with which the mice were scruffed for restraint prior to

luciferin injection. However, it is clear that the bioluminescence

in these regions is low and transient when compared to the major

hypoxic regions of the kidneys, ventral abdomen, and thyroid

gland.

Analysis of spontaneously developing mammary tumors
in ODD-luc transgenic mice

Subcutaneous tumors began to appear on MMTV-neu/ODD-

luc/Beclin1 mutant mice at approximately 11 months of age,

regardless of beclin1 deletion status (Table S1). Initial imaging

candidates were selected and, when the tumors had reached

approximately 1 cm in diameter, the mice were subjected to

imaging and subsequently sacrificed. Necropsy was performed for

acquisition of gross and histological pathology data. As shown in

Figure 3A, the imaging sessions revealed obvious hypoxic

signatures that correlated with the observable tumor shape and

size. One subject (upper panels) bore a spherical mammary

carcinoma over the right shoulder generating a substantial

bioluminescent signal sufficient to suppress the normally

significant background signal generated by the kidneys. Another

subject (bottom panels) possessed a multilocular mammary

carcinoma located in the right ventral abdomen. Unlike the

subject in the upper panels, the tumor in this mouse generated a

signal similar in intensity to the right kidney, as evidenced by the

hypoxic zone noted just cranial to the tumor signal (Fig. 3A,

arrow). In both cases, tumors were clearly identifiable as areas of

relative hypoxia when compared to their surrounding, normoxic,

tissues.

In addition, we monitored palpable tumors over a six-week

period in several mice. Tumor contour was clearly visible on

bioluminescent imaging and changes in tumor size, shape, and

regions of hypoxia were observed. The imaging signature for

tumors consisted of a peripheral region areas of high signal

intensity surrounding a central region of low signal intensity. The

intensity of luciferase signals at the specific peripheral areas varied

among tumors and also varied within tumors at different time

points, but the distribution pattern and the collective contour or

outline of the high-intensity signaling always correlated with visible

tumor boundaries (Fig. 3B).

Non-Invasive Imaging of Spontaneous Tumors in Mice
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Histological analysis of ODD-luc/MMTV-neu mammary
carcinoma and the expression pattern of ODD-Luciferase

The heterogeneous nature of the signals observed in these

spontaneous tumors suggested that the tumors were also

heterogeneous and the different areas of the same tumor might

experience varying levels of hypoxia (Fig. 4A). In an effort to

correlate the observed signal patterns with tumor anatomy and

physiology, all imaged tumors were dissected during necropsy

following the conclusion of the imaging time course and were

submitted for histological processing and analysis. Histological

slides revealed that observed tumors were multilocular in nature,

each possessing multiple small discrete nodules (Fig. 4B, C). Each

nodule in a given tumor was made of layers of viable cells

surrounding a core of dead, necrotic tissue as evidenced by the

lack of DAPI-stained nuclei (Fig. 4A, C). The peripheral areas

were found to generate high- intensity bioluminescent signals.

When these peripheral tissue samples were subjected to

immunofluorescent staining with anti-luciferase primary anti-

body, the resulting fluorescein signal clearly illustrates an increase

in ODD-Luciferase expression in living cells as distance from the

available blood supply increases, with a precipitous drop in

ODD-Luciferase expression in the necrotic core of the nodule

(Fig. 4C). Furthermore, low signal intensity was observed in the

central nodules of these tumors (Figure 4A). This is likely

attributable to a combination of increased necrotic tissue, which

is incapable of generating a signal due to a lack of viable cells

containing the necessary ODD-luciferase enzyme, and to

decreased vascular supply, which limits the delivery of the

substrate luciferin to the tissues located in at the center region of a

tumor.

Figure 2. Evaluation of baseline bioluminescent signals in MMTV-neu/ODD-Luc/Beclin1 +/+ or +/2 mice. (A) Representative dorsal, ventral,
right lateral, and left lateral views of two female mice expressing the ODD-Luc and MMTV-neu transgenes. Each image is individually scaled for
radiance according to scale bars shown. (B) The images in panel (A) are adjusted to conform to the same radiance scale, showing the relative intensity
of signaling among all images.
doi:10.1371/journal.pone.0018269.g002
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Tumor-related bioluminescent signal contour, but not
radiance, correlates with tumor size

We initially expected to see a correlation between overall tumor

radiance and tumor size, but quickly realized that three factors

complicated this relationship. As previously noted, the tumors

being imaged in this study were all heterogeneous in nature, thus

resulting in non-uniform levels of ODD-Luciferase expression and

activity (Fig. 4A–B). Second, the phenomena of cycling hypoxia

[24,25] led us to believe that the radiance signals from any given

tumor could fluctuate over time. Finally, the existence of necrotic

tissue and restricted blood flow in the center of growing tumors

meant that the relative volume of hypoxic tissue is not

proportional to the total tumor volume. In fact, our observations

showed that there was remarkably little difference in tumor

radiance over nearly five weeks of observation, despite a significant

increase in tumor size (Fig. 5C). The variance observed in tumor

radiance was remarkably consistent both between tumors and also

between views, indicating that the changes were likely related to

the kinetics of luciferin injection and uptake, rather than to an

actual change in the hypoxic area of the tumors (Fig. 5C).

However, by utilizing the region of interest (ROI) tool in the

Living Image software suite, we could clearly identify the

perimeter of a tumor in a given view based on the peripheral

high-signal areas of bioluminescence and obtain a calculated area

from that view (Fig. 5A–B). When compared to manually obtained

measurements of area for each palpable tumor, the software-

obtained areas of tumor bioluminescent contour correlated closely

and provided an accurate determination of tumor cross-sectional

area (Fig. 5A, B, D). It is important to note that imaging position

had an effect on accuracy in determining tumor cross-sectional

area, and that the best values were obtained by imaging the mice

with the tumor facing directly towards the lens, as expected

(Fig. 5B, D).

Regression of tumors in response to drug treatment can
be tracked via bioluminescent imaging

We then performed a proof of principle study to determine if the

new spontaneous tumor model could be used for non-invasive in

vivo imaging of tumor size in response to chemotherapeutics. As

shown in Figure 6A, a mouse bearing a palpable tumor was

treated with doxorubicin and prednisone for a course of two

weeks. As witnessed in both the photographic and bioluminescent

images, the palpable tumor decreased in size during the drug

treatment. To gain a more quantitative measurement of tumor

regression, the tumor dimensions were obtained manually by the

use of calipers while the measurement of the bioluminescent

region of interest (red circles) was obtained through the Living

Image software from the ventral and lateral views. The tumor

volume was then calculated based on these measurements as

described in material and methods. As shown in Figure 6B, the

regression of the tumor volume as measured by bioluminescence

signal contour correlates with that determined manually. These

results indicate that this imaging system can be used as a technique

to track the regression of spontaneous tumors during drug

treatment.

Nascent impalpable mammary tumors are detectable
and may be tracked longitudinally in MMTV-neu/ODD-
Luc/Beclin1 +/+ or +/2 mice via bioluminescent imaging

In the early phase of this study, only mice bearing palpable

tumors were imaged. This work established that tumors could be

successfully monitored over time for changes in size, shape, and

hypoxic regions. Following this finding, we scanned large numbers

of mice on a weekly basis to determine at what stage tumors could

be imaged. Existing literature has shown that bioluminescent

xenografts can be imaged to the single-cell level in nude mice [26]

but our system relies upon being able to separate the signal of a

hypoxic tumor from the background bioluminescence previously

described. We found that this system was capable of detecting

tumors in mice at least several weeks before they were palpable.

Figure 7 illustrates the continuous tracking of bioluminescent

signal in the region of the left cranial mammary gland over a

period of 67 days. As expected, the thyroid region and the

extremities show hypoxic signals. Starting from day 7, a hypoxic

signal (indicated by an arrow, Figure 7) is noticeable and it persists

throughout the whole experimental period. The tumor corre-

sponding to the hypoxic signal only became palpable on day 48.

These data indicate that this imaging model may serve as a

sensitive technique for the detection of the development of very

small subcutaneous tumors in haired mice.

Discussion

Xenografts have served as a valuable model system for cancer

biology for many years, but they are subject to significant

limitations. While they provide relatively easy imaging of cancer

growth, they place the tumor in a non-native, immunocompro-

mised environment that fails to recreate its original in situ milieu.

The advent of genetic manipulation has led to the development of

improved mouse models of cancer in which tumors appear

spontaneously and develop naturally in their native environment.

These genetically driven models, while superior in providing a

Figure 3. Bioluminescent images of spontaneous tumors. (A)
Photographic and luminescent images of two female mice, one bearing
a subcutaneous tumor above the right scapula (top panels) and another
bearing a subcutaneous tumor on the right abdomen/inguinal region
(bottom panels) with photographs of the dissected tumor masses.
White circles denote the approximate boundaries of the tumor masses
in this view. Note the underlying strong signal generated by the right
kidney (arrow) intensified due to decreased subcutaneous and adipose
tissue mass. (B) Longitudinal tracking of subcutaneous tumor develop-
ment in a female mouse.
doi:10.1371/journal.pone.0018269.g003
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more accurate reflection of natural tumor development and

behavior, are difficult to image in the laboratory using existing

techniques and technology. Here we report a system that could be

used as a potentially universal platform for the non-invasive

imaging of spontaneously-occurring, solid tumors. Using the ODD-

luciferase transgenic mouse in concert with tumorigenic mouse

mutants, we have analyzed base-line background signals from non-

tumor-bearing mice, imaged a series of spontaneously developing

mammary tumors over time, and conducted a proof-of principle

study showing the feasibility of this model.

Our results indicate that bioluminescent imaging of tumor-

bearing ODD-luciferase mice can detect mammary tumors. Further-

more, by using the contour of the luminescent signal, we can

accurately track tumor growth over time. In particular, this

approach can track shrinkage of tumor in vivo in response to

cancer chemotherapy. Finally, we have shown that this model is

sensitive enough to allow detection of tumors many weeks before

they become physically palpable. Taken together, these proof-of-

principle findings support that this imaging model is suitable for the

non-invasive monitoring of spontaneous mammary tumors in mice.

One important conclusion from our study is that the

bioluminescent signal contour rather than the bioluminescent

radiance correlates with tumor size. The bioluminescent signal

intensity is determined by two major factors, the accumulation of

luciferase and the availability of the substrate luciferin. Luciferase

accumulates in living but hypoxic cells. Lack of vascularization in

mammary tumors on the one hand creates the hypoxic cellular

environment which promotes the accumulation of the ODD-

luciferase fusion protein; on the other hand, it leads to necrotic cell

death at the center of the tumors (Figure 4C). As the tumor volume

increases, so does the tumor necrotic center. Consequently the net

accumulation of luciferase does not correlate with the tumor

volume (Figure 5C). In addition, lack of vascularization greatly

reduces the availability of the substrate, luciferin, in the center

region of a tumor. This is likely another major reason why the

center region of a tumor has low level of bioluminescence intensity

and the bioluminescent radiance does not correlate with tumor

volume. In contrast, the cells in the peripheral regions of the

tumors that undergo normoxia/hypoxia transition (Figure 4) are

alive. They experience certain levels of hypoxic stress and have

access to the substrate luciferin. Thus these cells consistently

exhibit higher bioluminescent signals, forming a bioluminescent

contour that reflects the actual size of the tumor.

Although this study was limited to the evaluation of mammary

tumors, any other tumor that experiences hypoxia should be visible

through the use of this system. Thus, this model has the potential for

widespread utilization, as it relies upon a characteristic innate to all

solid tumors, the presence of relative hypoxia due to poor vascular

Figure 4. Histological analysis of mammary carcinomas and the expression of ODD-luciferase. (A) Representative subcutaneous tumors
on the left cervical and right abdominal aspects of a female MMTV-neu/ODD-Luc/Beclin1 +/2 mouse. White circles denote approximate boundaries of
tumor masses. (B) Hematoxylin and Eosin stained paraffin-embedded tumor tissue sections at 2006 (top panels) and 10006 (bottom panels)
magnification. White arrows denote the presence of mitotic cells in the viable peripheral tumor tissue. (C) Immunofluorescent analysis of two tumor
tissue samples with anti-luciferase antibody. Left panels show immunofluorescent signaling representing the presence of luciferase. Center panels are
DAPI stained representing the nuclei of viable cells. Right panels are merged fluorescein/DAPI images. NC: necrotic core (region without DAPI
staining). Histograms illustrate the fluorescein signal intensity in relation to the distance from local vasculature.
doi:10.1371/journal.pone.0018269.g004
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infiltration of the mass. Thus, an additional option for the non-

invasive imaging of a variety of spontaneously occurring tumors is

available which will facilitate our ability to gather data in genetically

driven mouse cancer models. Moreover, the capability of

monitoring the development of the same spontaneous tumors over

time makes this model particularly appealing for the in vivo

evaluation of the efficacy of novel cancer chemotherapeutics.

Drawbacks to this model certainly exist, the key one being the

presence of background signals as noted on Figure 2. It is clear

that hypoxia is intrinsic in some normal tissues, such as the kidneys

and thyroid, which may make the observation or localization of

tumors arising near or from these tissues impractical. Moreover,

the generally high background observed in the images of the

ventral abdomen indicates that tumors located on the dorsal

surface of the animal may be more readily imaged than those

located elsewhere. Furthermore, our model is also dedicated to the

exploration of the mammary carcinoma, an exclusively subcuta-

neous tumor, and it is difficult to accurately predict what attempts

to image deeper tumors may find. Deep tumors likely will emit

signals strong enough to be detected, but the distortion of the

signals due to travel through heterogeneous tissues will add an

additional level of complexity to data interpretation and analysis.

Further work will be needed to experimentally determine which

types of solid tumors are amenable to this imaging model.

Materials and Methods

Ethics Statement
The study involved mice and the protocol had been approved

by University of Medicine and Dentistry of New Jersey-Robert

Figure 5. Correlation of tumor bioluminescence signal and tumor volume. (A) Manually calculated tumor area compared to computer-
obtained tumor bioluminescent contour by view (left lateral, or LL, versus dorsal, or D) of subcutaneous abdominal tumor in a female MMTV-neu/
ODD-Luc/Beclin1 +/2 mouse over time. (B) Manually calculated tumor area compared to computer-obtained tumor bioluminescent contour by view
(right lateral, or RL, versus dorsal, or D) of subcutaneous cervical tumor in the same female MMTV-neu/ODD-Luc/Beclin1 +/2 mouse over time. (C)
Computer-obtained radiance (photons/second/cm2/steradian) in both cervical and abdominal tumors over time, by view (right or left lateral and
dorsal). (D). Statistical analyses of results from (A) and (B) to determine the correlation between the tumor size measured manually and by
bioluminescent signal contour. Pearson coefficients and P values are shown.
doi:10.1371/journal.pone.0018269.g005

Non-Invasive Imaging of Spontaneous Tumors in Mice
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Wood Johnson Medical School/Institutional Animal Care and

Use Committee (IACUC). Approval ID: I07-038-3. All mice were

housed under standard conditions per IACUC and university

vivarium protocols in a barrier facility.

Transgenic Mouse Generation
FVB/N-Tg (MMTV-neu)202Mul/J (referred to herein as

MMTV-neu) mice, stock number 02376 were obtained from

Jackson Laboratories (Bar Harbor, ME) at eight weeks of age

and bred with C57BL/6 background Beclin1 wild-type (+/+) and

heterozygous (+/2) mice from a sustained laboratory colony.

FVB.129S6-Gt(ROSA)26Sortm1(HIF1A/luc)Kael/J (referred to herein as

ODD-Luc) mice were obtained from Jackson Laboratories at eight

weeks of age and cross bred with Beclin1+/+,MMTV-neu and

Beclin1+/2,MMTV-neu mice to generate Beclin1+/+,MMTV-neu,

ODD-Luc and Beclin1+/2,MMTV-neu,ODD-Luc offspring for im-

aging.

Mouse Genotyping
Mice were genotyped via tail tip amputation and digestion for

DNA extraction utilizing the Qiagen DNeasy assay (Alameda, CA).

Following DNA extraction, DNA samples were subjected to

polymerase chain reactions with times, temperatures, and DNA

primers tailored per existing protocols for the beclin1 [19], MMTV-

neu, and ODD-Luc genes (available from Jackson Laboratories, www.

jaxmice.jax.org). PCR products were loaded into wells in gels

consisting of 1.5% agarose, suspended in TSA buffer, and subjected

to electrophoresis. The gels were imaged on a UVP Gel

Documentation System (Upland, CA) and compared to known

controls to determine genotype with respect to genes of interest.

Mouse Imaging
Mice were selected for imaging and placed in the IVIS

induction chamber three at a time and subjected to inhalational

isoflurane anesthesia (Abbott, Abbott Park, IL) at 3% with 1 L/

min flow of oxygen. Following induction, mice were individually

removed from the induction chamber and given an intraperitoneal

injection of 50 mg/kg luciferin (Promega, Madison, WI) suspend-

ed in sterile phosphate-buffered saline (Invitrogen, Carlsbad, CA).

After a ten minute incubation period, the mice were placed on the

heated imaging platform of the IVIS Spectrum imaging station

(Caliper, Hopkinton, MA) with inhalational isoflurane anesthesia

at 1.5% with 1 L/min flow of oxygen during the imaging

procedure. White light and luciferase activity images were

obtained at 30 second intervals for five minutes. Following

imaging, mice were removed from the imaging stage and allowed

to recover from anesthesia in a heated cage. Mice were observed

for normal behavior prior to being returned to their original

housing. Images were subjected to interpretation on Living Image

software (Caliper) for evaluation and quantification.

Immunofluorescence
Paraffin-embedded, slide-mounted tissue sections were depar-

affinized and hydrated per standard protocol. Following rehydra-

tion, slides were placed in 10 mM Sodium Citrate buffer and

placed in a boiling water bath for twenty minutes. Slides were

cooled and washing, and tissue sections were blocked for one hour

with 10% goat serum in phosphate-buffered saline/Triton X-100

(PBST) in a humid, light-tight box at room temperature. Following

blocking, tissue sections were exposed to a 1:50 dilution of primary

anti-firefly luciferase antibody #G7451 (Promega) in PBST

overnight. After washing, secondary donkey-anti-goat antibody

#SC-2020 (Santa Cruz Biotech, Santa Cruz, CA) was applied at a

1:100 ratio in PBST with a 1:10000 dilution of DAPI stain

(Invitrogen) for one hour. Slides were then mounted in vectashield

medium (Vector Labs, Burlingame, CA) and immediately

evaluated for fluorescence on a Zeiss (Thornwood, NY) Axioplan

2 microscope with an EXFO X-cite 120 Fluorescence Imaging

System (Quebec, Canada). Digital images were obtained and

Figure 6. Tracking the regression of spontaneous tumors during drug treatment. (A) Photographic and bioluminescent images of a
shrinking palpable tumor over a 14- day drug treatment as described in materials and methods. White arrow in photographic view indicates location
of tumor. The red circles in bioluminescent view indicate region of interest. (B) Relative tumor volume expressed as a percent of initial tumor from
manually measuring tumor volume (&) vs. software calculated (ROI) tumor volume (e) based on bioluminescence signal contour over the course of
drug treatment as described in materials and methods. Pearson coefficient (r) and P value are shown.
doi:10.1371/journal.pone.0018269.g006
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stored on an Apple (Cupertino, CA) Macintosh G4 computer.

Histograms were generated using ImageJ software, freely obtained

from the National Institutes of Health at http://rsp.info.nih.gov/ij.

Mouse Necropsy and Histology
Mice were humanely euthanized via cervical dislocation.

Immediately following euthanasia, tumors were dissected out

and photographs were taken of the tumor in situ. Tumors were

then removed, measured, weighed, photographed and sectioned if

necessary, and portions were placed in Millonig’s 10% buffered

formalin (Surgipath, Richmond, IL) for 24 hours prior to being

placed in 70% ethanol. Remaining tissue was snap-frozen and

stored in liquid nitrogen for future use. Following tumor removal

and preservation, a complete necropsy was performed and any

gross pathology was noted. Formalinized/ethanol-preserved tissue

was submitted to Tissue Analytical Services at the Cancer Institute

of New Jersey for paraffin-embedding, sectioning, selective

hematoxylin and eosin (H&E) staining, and mounting on glass

slides. H&E stained slides were imaged on a Zeiss Axioplan 2

microscope with a Zeiss HAL 100 light source. Digital images

were obtained via a Sony Cybershot DSC-HX1 camera mounted

with a Micron Optics (Cedar Knolls, NJ) MM99-HX1 microscope

adapter.

Tumor area, tumor volume, radiance calculation, and
statistical analysis

Manual measurements of tumor area were obtained by

measuring the widest and narrowest axes of the tumor with

calipers and then calculating the area of an oval by the following

equation: A = p*a*b, where a is the radius of the short axis and b is

the radius of the long axis. Computer-obtained cross-sectional

tumor areas were obtained with Living Image software (Caliper)

through the use of the automatic region of interest (ROI) function.

Images were forced to conform to predetermined scales of

radiance, and ROIs were automatically generated around tumors

with a threshold of 25%, a lower limit of 1, and a minimum size of

20. ROIs were then evaluated for total area and total radiance via

the Living Image software, and results were exported to Microsoft

Office 2007 (Microsoft, Redmond, WA) for analysis and graphing.

Tumor volume manual measurements were obtained by

measuring the widest and narrowest axes of the tumor with

calipers from two different views (right lateral and ventral) and

then calculating the volume of an ellipsoid by the following

equation: V = 4/3 * p * a * b * c, where a is the radius of the x axis,

b is the radius of the y axis, and c is the radius of the z axis.

Computer-obtained tumor volume was obtained with the Living

Image software through the use of the free-style region of interest

function. A region of interest was manually drawn around the

bioluminescence of the tumor from two different views (right

lateral and ventral). Software generated x, y, and z axis radii from

the region of interest were used for the volume of an ellipsoid

equation.

The size of a palpable tumor in each mouse was measured over

the experimental period either manually or by bioluminescence

detection. The Pearson correlation coefficient (r) was used to

assess the correlation between results obtained by the two

measurements. All p values are reported as testing the null

hypothesis of zero correlation (r= ).

Tumor treatment
Treatment of tumor-bearing animals was conducted as follows:

Doxorubicin (4 mg/kg, Sigma) was given every other day for 2

weeks by intraperitoneal injection. In addition, prednisone

(0.2 mg/kg, Sigma) was given orally daily for 2 weeks by gavage.

Mice were subjected to imaging every other day, starting on day 1

and before each new doxorubicin injection.

Supporting Information

Table S1 Total Number of F2 (mmtv-neu/ODD-Luc beclin1+/+ or
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