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Abstract

Background: In November 2007 a study published in Nature Medicine proposed a simple test based on the abundance of
18 proteins in blood to predict the onset of clinical symptoms of Alzheimer’s Disease (AD) two to six years before these
symptoms manifest. Later, another study, published in PLoS ONE, showed that only five proteins (IL-1a, IL-3, EGF, TNF-a and
G-CSF) have overall better prediction accuracy. These classifiers are based on the abundance of 120 proteins. Such values
were standardised by a Z-score transformation, which means that their values are relative to the average of all others.

Methodology: The original datasets from the Nature Medicine paper are further studied using methods from combinatorial
optimisation and Information Theory. We expand the original dataset by also including all pair-wise differences of z-score
values of the original dataset (‘‘metafeatures’’). Using an exact algorithm to solve the resulting (a,b){k Feature Set
problem, used to tackle the feature selection problem, we found signatures that contain either only features, metafeatures
or both, and evaluated their predictive performance on the independent test set.

Conclusions: It was possible to show that a specific pattern of cell signalling imbalance in blood plasma has valuable
information to distinguish between NDC and AD samples. The obtained signatures were able to predict AD in patients that
already had a Mild Cognitive Impairment (MCI) with up to 84% of sensitivity, while maintaining also a strong prediction
accuracy of 90% on a independent dataset with Non Demented Controls (NDC) and AD samples. The novel biomarkers
uncovered with this method now confirms ANG-2, IL-11, PDGF-BB, CCL15/MIP-1d; and supports the joint measurement of
other signalling proteins not previously discussed: GM-CSF, NT-3, IGFBP-2 and VEGF-B.
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Introduction

In November 2007, a study published in Nature Medicine [1]

immediately attracted both scientific and media attention. A

multidisciplinary team led by Stanford researchers proposed a

simple test, based on the abundance of 18 plasma signalling

proteins, for early detection of clinical Alzheimer’s disease (AD).

They showed that a molecular signature can be used to predict

the onset of clinical symptoms of AD as early as two to six years

before these symptoms manifest. These initial findings have

important consequences as the scientific and social significance of

being able to predict the onset of AD before clinical symptoms

appear is of unquestionable benefit. The relative simplicity of the

proposed method and the quality of the execution of the study

contributed to the immediate interest in the scientific community.

The basic experimental design was remarkably simple. Using

the abundance of 120 signalling proteins on a training set of 83

archived plasma samples, Ray et al. [1] identified an 18-protein

signature, a subset of the set of 120 signalling proteins they were

measuring, which proved to be useful to predict clinical symptoms

of AD. The signature was able to show an overall effectiveness of

91% and 81% for AD predictability on two separate test sets: one

comparing patients who developed clinical AD with Non-

Demented Controls (NDC), and another comparing patients with

Mild Cognitive Impairment (MCI) that developed AD with those

who did not. Predicting AD within patients with a MCI as early as

possible is particularly important because during the observation

period of memory testing, which can take up to several months,

profound neuropathological damage may occur [2].

Soon after this discovery was published, and using the same

datasets available on the public domain, Gómez Ravetti and

Moscato [3] showed that the abundance of only five proteins was

sufficient to obtain an even better total prediction accuracy. They

used an integrative bioinformatics approach, based on the (a,b)-k-

Feature Set methodology [4–12], that reduced the search of

predictive biomarkers to only a subset of Ray et al.’s [1]: IL-1a
(interleukin 1a), IL-3 (Interleukin 3 (colony-stimulating factor,

multiple), EGF (epidermal growth factor (b-urogastrone)), TNF-a
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(Tumour Necrosis Factor a) and G-CSF (colony stimulating factor

3 (granulocyte)).

Their results indicated that, using the abundance of just these

five proteins together with simple established logistic-type

classifiers, it was possible to distinguish NDC from samples with

AD with a higher accuracy than that of the signature proposed by

Ray et al. [1].

However, it is important to understand the context in which

such accuracies are to be interpreted. As Ray et al. [1] already

stated in their supplementary material, since many of the patients

are still alive, it is not possible to be completely sure that the study

participants that were labelled as AD samples are indeed

individuals that will develop AD. An accurate AD diagnosis can

only be obtained post-mortem with the histological analysis of

brain material. The same can probably be stated of NDC, based

on the same argument. Therefore, by ‘‘accuracy’’ what is actually

reported in these performance tests is the overall percentage agreement

with the current clinical diagnosis. That means that the existing

classifiers have a high level of agreement with current clinical

diagnosis but, as some of the samples might have been assigned an

inaccurate label, they might also not be as robust as they could.

Motivation
One of the most relevant characteristics of Gómez Ravetti and

Moscato’s study [3] is that they report results of not one, but 24

different classifiers available in the Weka software package [13].

They proposed that the consensus of the prediction of different

classifiers, inspired by different mathematical principles, would

provide a more reliable prediction than the results of a single

classifier. This allowed to establish the relevance of the 5-protein

signature since it was able to distinguish between AD samples and

NDC with a higher overall percent agreement with clinical

diagnosis. Since this average was obtained from the results of 24

different types of classifiers, instead of a single one, the study

provided strong evidence that the 5-protein signature is indeed a

useful biomarker panel. Figure 1 illustrates the performance of the

uncovered 5-protein signature.

Three facts are worth mentioning from the previous works by

Gómez Ravetti and Moscato [3] and Ray et al. [1]: first, the

majority of the classifiers performed better using the 5-protein

signature than the 18-protein signature. Second, both in Ray et

al.’s [1] and Gómez Ravetti and Moscato’s [3] studies, some

classifiers disagreed with the clinical diagnosis labels on the same

samples of the datasets. Third, as Figure 1 clearly illustrates, the

average of the Z-scores of their 5-protein biomarker is already a

simple, yet powerful, discriminator between the two groups.

However, all 5 proteins have, on average, a smaller Z-score in AD

samples than in NDC. Since the measured protein abundances

were standardised by a Z-score transformation, a positive value

indicates the excess of a particular protein over the average value

of 120 proteins. In essence, this means that the measures of each

protein are, in fact, only relative to the variation of the other 119.

Figure 2 shows that the average value of all proteins, excluding the

5 identified by Gómez Ravetti and Moscato’s [3], also distin-

guishes well between the classes. Therefore, it is difficult to state

whether the 5 proteins proposed by Gómez Ravetti and Moscato

[3] or all other 115 are displaced with respect to the average.

Also, as both previous studies provide only aggregated results,

this manuscript proposes a case-by-case analysis of the samples,

with a methodology inspired by personalised medicine, using

robust diagnostic methods. Although the overall performance of

several classifiers is still reported in this work, the results under

consideration are also systematically analysed for the samples

individually.

Relative pair-wise protein variation of abundance levels are

explored by expanding the original set of biomarkers with new

‘‘artificial’’ features, called ‘‘meta-features’’, that model the relative

protein imbalance. Using the meta-features, the relative proteins

variations become explicit, providing useful information.

As illustrated by Figure 3, since the difference of values between

two features might be interesting to distinguish between two

classes, even when those features are not useful for that purpose

alone, the working hypothesis is that the use of meta-features

might reveal if there exists a characteristic signature of the

imbalance of cell signalling processes for AD prediction. Such a

characteristic imbalance could also be regarded as a new

molecular signature for predicting AD, which might add new

information to other early detection tests or inspire entirely new

ones. Indeed, the analysis of Figure 4 suggests that there is useful

information within the meta-features that can distinguish between

AD and NDC samples as most of the AD samples cluster together

and only a few AD samples remain in the control group. The 290-

protein Z-score differences presented in Figure 4 are a signature

obtained with (a,b)-k-Feature Set methodological approach [3,6–

11,14] on the set of meta-features only, and ordered using the

Memetic Algorithm proposed by Moscato et al. [15]. The original

120 (single) features, which do not represent imbalance informa-

tion, were not considered to guarantee that the discriminative

information was indeed brought by imbalance information. These

results motivate further study on the topic. The heatmap on the

left of Figure 4 represents the samples from the training set, while

the heatmap on the right represents the samples from the test set.

The Non-AD (The test set samples include Other Dementia (OD)

samples, which have not developed AD but are still demented

controls) samples are marked in green, and the samples labelled

AD are marked in blue.

Materials and Methods

Datasets
The modified datasets, used in the experiments, are based on

those provided by the recent work of Ray et al. [1]. Quoting from

their supplementary information: ‘‘Autoradiographic films were scanned

and digitized spots were quantified with the Imagene 6.0 data extraction

software (BioDiscovery Inc.). Local background intensities were subtracted

from each spot, and the average of the duplicate spots for each protein was

normalized to the average of six positive controls on each membrane. For

statistical analysis expression data from the two filters per sample were

normalized to the median expression of all 120 proteins followed by Z score

transformation (data file is available online).’’

The Z-score transformation has the effect of transforming the

original distribution to one in which the mean becomes zero and the

standard deviation becomes one. A Z-score quantifies the original

score in terms of the number of standard deviations that the score is

from the mean of the distribution. In other words, this means that a

positive value in the original dataset indicates the excess of a

particular protein over the average value of 120 proteins. That is,

each value is relative to the variation of the other 119.

Equation 1 calculates the Z-score of the abundance level xfs of

protein f for a sample s, where ms is the mean of the values of all

features, for sample s, and ss is the associated standard deviation.

Zsf ~
xfs{ms

ss

ð1Þ

The original dataset consisted of a Training Set with 43 AD

samples and 40 NDC samples, a Test Set with 42 AD samples and

39 NDC samples and another Test Set with 22 samples that had

Alzheimer: Early Detection
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Figure 1. Stacked values of the Z-Scores of the 5-protein signature introduced by Gómez Ravetti and Moscato [3]. Figures 1A–B
present the stacked values of the Z-Scores of samples in the training and independent test set respectively. The 5-protein signature includes the
relative abundances of IL-1a (interleukin 1 a), IL-3 (Interleukin 3 (colony-stimulating factor, multiple)), EGF (epidermal growth factor (b-urogastrone)),
TNF-a (Tumour Necrosis Factor a) and G-CSF (colony stimulating factor 3 (granulocyte)) on a panel of 120 proteins used as reference set. Both
Figures 1A–B shows that the stacked values of the Z-Scores of this panel of five proteins are lower in those patients that will develop clinical
symptoms of AD in two to five years. The figures have samples as ordered in the original publication by Ray et al. [1]. In Figure 1A the leftmost 44

Alzheimer: Early Detection
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MCI and developed AD and 17 samples that had MCI but did not

develop AD. The Other Dementia (OD) samples present in the

original test sets are disconsidered for classification purposes, as

they might have characteristics that could mask the pursued

patterns. They are, however, still present on Figures 4 and 5. The

OD samples found on the test set with NDC and AD samples have

either Frontotemporal dementia or Corticobasal degeneration,

while those found on the test set with samples that already had a

MCI may have either a Lewy-Body dementia, Vascular dementia

or Frontotemporal dementia.

The training and test sets considered in this paper are

‘‘enlarged’’ versions of the original. They include the original

120 features for each sample plus 7,140 ‘‘meta-features’’,

generated by applying the difference operator between each

possible pair of features. Symmetric meta-features are not

considered, as they are equivalent (e.g.: the information provided

by a meta feature obtained by subtracting the value of two features

F1-F2 is equivalent to the one given by F2-F1).

As depicted by Equation 2, the meta-features model imbalance

information, as each value is the displacement of one score with

respect to the other involved in the meta-feature. Moreover, as

illustrated by Figure 3, such a displacement may reveal interesting

information to distinguish between classes that would not be

obvious through the analysis of the features alone.

xf1s{ms

ss

{
xf2s{ms

ss

~
xf1s{xf2s

ss

ð2Þ

Methods
The proposed computational methodology includes four basic

steps on the expanded datasets, in this order: (1) feature selection,

(2) classification, (3) analysis and (4) filtering.

Feature selection is performed using the same methodology

presented in [3,6–11,14,16]: first, the dataset is pre-filtered and

discretised using Fayyad and Irani’s [17] entropy-based algorithm,

which minimizes the class entropy and discards features according to

the Minimum Description Length principle. The result is an instance

of the (a,b)-k-Feature Set problem [3,6–11,14]. In this combinatorial

optimization problem, three parameters are necessary: a, which

determines the number of features that must explain the dichotomy

between samples in different classes; b, which determines how many

features must explain the similarities between samples in the same

class; and k, which specifies the size of the desired signature.

In this work, the five features of Gómez Ravetti and Moscato

[3] are forced into the signature and k is set to 10, aiming to obtain

a signature of about the same size as Ray et al.’s [1], while

doubling Gómez Ravetti and Moscato’s [3] and allowing the same

number of new features or meta-features to be introduced. The

rationale behind this is to guide the search towards a small

signature with features and meta-features that are related to the

ones that are already known to be effective in distinguishing

between NDC and samples with AD, therefore helping to guide

the search towards an even more effective signature. The a
parameter is chosen to be the maximum possible such that the

combinatorial optimization problem admits at least one feasible

(i.e.: it is possible to explain the differences between the samples in

different classes with at least a features, and the similarities

between those in the same class with at least b features, for all pairs

of samples) solution, assuming a fixed signature size (a defined k)

and not considering any restrictions imposed by a b value (b~0).
One way to determine this is to count the number of features that

differ from each other on pairs of samples with different clinical

diagnosis labels. The value of a would therefore be the smallest of

these counts. The value of b is chosen in a similar way, considering

the features that do not differ from each other on samples with the

same clinical diagnosis label, such that the combinatorial

optimization problem also admits at least one feasible solution

and this choice does not force a change on the value of a or k. The

k best features that explain the dichotomy between classes are

chosen such that they not only satisfy the a,b and k values, but also

explain the differences and similarities of a greater number of pairs

of samples. The determination of b and selection of the best k
features that satisfy a,b and k are done by solving the associated

Integer Program (IP) using the ILOG CPLEX optimization

package version 11.2. See [3,6–11,14,16] for details on the IP

formulations and other previous applications.

Next, classification is performed with 25 different classifiers of

different types. Table 1 lists all the classifiers under consideration

and their types. They are the same 24 classifiers that Gómez

Ravetti and Moscato [3] considered plus the Bagging algorithm,

which is considered one of the best classifiers [18] available in the

Weka package [13]. Each classifier is run on the selected panel of

features and meta-features, using the continuous (non-discretized)

values, and all default parameters of Weka as of version 3.6.1 (The

only exception is IBk, in which the parameter k is set to 2, to

distinguish it from IB1. PAM’s [19] threshold is also set to zero, to

avoid the shrinkage process, which is also a feature selection

procedure that we wish to avoid, as a more sophisticated method is

already previously applied.) No fine tuning is done. Since an

independent test set is already provided and the average performance

of all classifiers is already considered, no cross-validation is performed.

The case-by-case analysis is done by plotting the histogram of

the number of classifiers that disagree with the clinical diagnosis

label given to each sample. With the objective of providing the

classifiers only with training examples that characterise their class

well, which would provide them with better hints for pattern

searching, the samples for which more than 30% of the classifiers

do not agree with the clinical diagnosis are removed from the

training set. The process is then repeated with this (new) reduced

training set until no more than than 30% of the classifiers disagree

with the clinical diagnosis of all samples, the reduced training set

yields the same signature as in the previous iteration, or the

number of available training samples gets too low. The

methodology of reducing the size of the training set by excluding

samples, both in semi-supervised or unsupervised settings, is called

‘‘data pruning’’ and has been previously used to avoid overfitting

and improve generalisation [20,21].

Results

The first fact worth mentioning is that, considering the

expanded dataset, 118 out of the 120 proteins passed the entropy

filter as part of a meta-feature, while only 12 of them pass when

considered alone in the original dataset. More interestingly, 91 out

of these 118 features passed the entropy filter only in metafeatures

that do not include any of the 12 features that passed the entropy

values correspond to those samples labelled ‘AD’, and in Figure 1B the leftmost 42 are labelled in the same way. The samples marked in red
developed AD while the ones marked in blue are ‘Non-AD’ samples (Non-Demented Controls plus Other Dementias). Since a Z-Score transformation
was performed on the dataset, the measured values of each protein are, in fact, relative to the variation of the other 119.
doi:10.1371/journal.pone.0017481.g001
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Figure 2. Stacked values of the Z-Scores of the set of all proteins except for those proposed by Gómez Ravetti and Moscato [3].
Figures 2A–B present the stacked values of the Z-Scores of samples in the training and independent test sets, respectively. The samples marked in red
samples developed AD the ones marked in blue are ‘Non-AD’ samples (Non-Demented Controls plus Other Dementias). Like in Figure 1, since a Z-
Score transformation was performed on the dataset, the measured values of each protein are, in fact, relative to the variation of the other 119.
Because of that, and the fact that both Figures 1–2 distinguish well between classes, it is difficult to state whether the 5 proteins of Gómez Ravetti
and Moscato [3] or the other 115 are the ones that are displaced with respect to the average.
doi:10.1371/journal.pone.0017481.g002
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filter alone. In other words, these features are only interesting to

distinguish between cases and controls when the imbalance

information is considered, and their importance is not dominated

by any of the features that are already known to be interesting.

Tables 2, 3, 4 compare the average results of three signatures

obtained in this work and the two signatures previously identified

known ones by Gómez Ravetti and Moscato [3] and Ray et al. [1]

when performing on the Training Set, Test Set with NDC and

samples with AD (referred simply as Test Set), and Test Set with

MCI samples that developed and did not develop AD (Test Set

MCI), respectively. The values shown are the average results of the

25 classifiers under consideration.

First Iteration of the Method
The first signature, obtained in the first iteration of the method

depicted in the previous section, included the following features

and meta-features: EGF, IL-1a, IL-3, TNF-a, G-CSF, ‘‘BLC

(chemokine (C-X-C motif) ligand 13) –RANTES (chemokine (C-C

motif) ligand 5)’’, ‘‘MIP-1d (chemokine (C-C motif) ligand 15) –

IL-11 (interleukin 11)’’, ‘‘TNF-a–ANG-2 (angiopoietin-2)’’, ‘‘TNF-

a–FAS (Tumor Necrosis Factor receptor superfamily, member 6)’’

and ‘‘IL-11–I-TAC (chemokine (C-X-C motif) ligand 11)’’.

Referred as ‘‘S1’’, it improved Ray et al.’s [1] classification

accuracy of 93% to 94.4%. Gómez Ravetti and Moscato’s [3]

signature still holds the best results when performing on the test set

with NDC and samples that developed AD, with 92.3% of

accuracy in average. Their results still outperform all others both

in sensitivity (94.8%) and specificity (90.2%).

When performing on the test set with MCI samples that

developed AD and MCI samples that did not, this signature

improved Ray et al.’s [1] accuracy of 66.2% to 70.4% mainly due

to an improvement of 6.5% in sensitivity, which reached 82%.

Although an improvement in specificity was not expected, since

there are no MCI samples in the training set, it was also raised to

60.2%.

Figure 6 shows the number of classifiers that disagree with the

clinical diagnosis label for each sample, when performing against

the training set. It is interesting to notice that there is a set of

samples that several classifiers, of a wide-range of different types,

consistently disagree with the clinical diagnosis label attributed to a

sample. Therefore, it is reasonable to think that these samples

might either be mislabelled, that the clinical diagnosis is

inadequate, or other latent clinical factors, such as the presence

of other existing patient conditions (diseases, medication, or other

factors) affected the cell signalling proteins present in this

signature. This is consistent with Ray et al.’s [1] remark that

there might be mislabelled samples in the dataset, due to the fact

that the patients were still alive and an accurate diagnosis could

only be issued with the post-mortem analysis of the brain cortex.

Second Iteration of the Method
Following the hypothesis that some of the training samples

might not have the correct label or might not characterise their

target classes well, a new training set was generated by

disconsidering samples for which more than 30% of the

classifiers disagreed about the label: s3, s7, s47, s66 and s77.

This threshold was determined through the visual analysis of

Figure 6, aiming to cut off the highest histogram peaks while

observing the samples that did not cluster to their clinical

diagnosis label group also in Figure 4 (samples s47, s77, s54, s50,

s66, s68, s3 and s1), and trying not to discard too many samples.

It is interesting to notice that amongst the samples that did not

cluster well on Figure 4 only sample s54 did not appear on

Figure 6.

Using this new training set, a new signature was obtained on a

second iteration of the proposed method. The new signature,

referred as ‘‘S2’’ included the following features and meta-

features: EGF, IL-1a, TNF-a, G-CSF, ‘‘EGF–IGFBP-2 (insulin-

like growth factor binding protein 2, 36 kDa)’’, ‘‘GM-CSF

(colony stimulating factor 2 (granulocyte-macrophage)) –IL-1a’’,

‘‘IL-1a–IL-11’’, ‘‘MIP-1d–NT-3 (neurotrophin 3)’’, ‘‘PDGF-BB

(platelet-derived growth factor beta polypeptide (simian sarcoma

viral (v-sis) oncogene homologue)) –VEGF-B (vascular endothelial

growth factor B)’’ and ‘‘TNF-a–ANG-2’’. It is worth noticing

that, after filtering the training set, the obtained signature no

longer included IL-3 because the entropy filter discarded it. That

could be because most of the information provided by IL-3 that

distinguished cases and controls was in the excluded samples.

Even though some of the meta-features were also replaced in this

signature, that was not because they did not pass the entropy

filter, but because the feature selection method chose to select

different ones.

The performance of this second signature on the training set still

outperforms the other signatures, reaching an average of 98% of

learning accuracy, against Ray et al.’s [1] 93%. This second

signature matches Ray et al.’s [1] accuracy of 90% against the

Test Set with AD and NDC samples, but is still outperformed by

Gómez Ravetti and Moscato’s [3] accuracy of 92.3%.

The most remarkable characteristic of this new signature,

however, is not the improvement in total accuracy, but in

sensitivity, when the Test Set with samples that already had a MCI

is used as benchmark.

 

 

 

Figure 3. The difference of values of two features might be
interesting to distinguish between two classes, even when
those features alone are not useful for that purpose. In this
example, the samples on the left hand side belong to Class A and the
samples on the right hand side belong to Class B. The lines represent
the Z-scored abundance levels of feature f1,f2 and the meta-feature
f1-f2 for each sample. In this case, f1 and f2 are not effective at
distinguishing between Class A and Class B, and would not pass the
discretization algorithm’s entropy filter [17]. However, if the difference
between them is considered, we have a clear distinction, and the
resulting meta-feature would be interesting and would pass the
entropy filter. Roughly speaking, a feature is interesting to distinguish
between two classes if it is possible to determine a pattern of up/down
regulation of the samples’ Z-scored abundance levels that characterizes
each class uniquely (i.e.: in feature ‘f1-f2’, all the samples Z-scored
abundance levels are down regulated for Class A and up regulated for
Class B. Such a distinction cannot be made either with features ‘f1’ or
‘f2’ alone.).
doi:10.1371/journal.pone.0017481.g003
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Figure 4. Heatmaps of the training (left) and test (right) sets, considering only the meta-features. The ordering of both rows and
columns was done using the Memetic Algorithm presented in [15]. The Non-AD samples are marked in green, and the samples labelled AD are
marked in blue. The ordering shows that there seems to be a robust molecular genetic signature that can be obtained by pattern recognition
algorithms that explore all possible protein abundances differences in this panel of 120 proteins as variables of interest, a mechanism that quantifies
the imbalance of cell signalling in plasma. An annotated version of this heatmap is available in the supplementary material. Please refer to it for
detailed information about the ordering, selected features and values. On the training set, the samples that did not cluster with their associated
clinical diagnosis group are samples s47, s77, s54, s50, s66, s68, s3 and s1, respectively.
doi:10.1371/journal.pone.0017481.g004
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Even though a loss in specificity is observed, a good

performance for this item is not expected, as no training samples

had MCI. Figure 7 shows that, using the second signature, more

than 30% of the classifiers disagree about the clinical diagnosis

label of only 1 sample (s15). Therefore a third iteration takes place

with a new training set that disconsiders this sample. However, the

obtained signature is the same as that obtained in the previous

iteration, which interrupts the procedure.

A Step Further
Finally, a signature consisted of the six meta-features of the

previous signature is taken under consideration to evaluate their

contribution on the observed performance. The meta feature

‘‘GM-CSF–IL-1a’’ was replaced by its equivalent meta feature

‘‘IL-1a–GM-CSF’’. They are equivalent from the feature

selection point of view because they have the same absolute

value. In other words, the (a,b){k Feature Set feature selection

approach could select either meta-feature and discard the other,

as it would be redundant. Therefore only one is present on the

dataset, as this halves the size of the associated problem. This

modification is proposed only to help with the visualisation on

Figure 5.

Figures 5A–C present the stacked values of of the differences of

Z-Scores in the training, independent test set of samples with AD

and NDC samples, and the independent test set with MCI samples

that developed and did not develop AD, respectively. The figures

Table 1. List of classifiers and their types.

Type Classifier Type Classifier

bayes BayesNet bayes NaiveBayes

bayes NaiveBayesSimple bayes NaiveBayesUpdateable

functions Logistic functions MultilayerPerceptron

functions SimpleLogistic functions SMO

lazy IB1 lazy IBk

lazy KStar lazy LWL

meta AdaBoostM1 meta Bagging

meta Decorate meta RandomCommittee

meta OrdinalClassClassifier meta MultiClassClassifier

meta ClassificationViaRegression rules PART

trees J48 trees LMT

trees NBTree trees RandomForest

other PAM

List of classifiers considered in this work and their types as categorised in Weka
[13] version 3.6.1. No fine tuning is done, and all default parameters, as of the
same version of the software, are used, except for IBk, in which k is set to two,
to distinguish it from IB1. In PAM the threshold is set to zero to avoid the
shrinkage process and force the classifier to use all the previously selected
features. Please note that PAM [19] is not included in the Weka package.
doi:10.1371/journal.pone.0017481.t001

Figure 5. Histogram of the number of classifiers, out of the 25 under consideration, that disagreed with the clinical diagnosis
attributed to the samples, when performing on the training set using the proposed 5 feature and 5 meta-feature signature. Samples
with no such disagreement are omitted. Interestingly, many classifiers consistently disagree with the clinical diagnosis on the same samples, which
hints for the questioning of their usefulness in the training set to distinguish between AD and NDC. One of the reasons for that is that the cell
signalling could be altered by other medical conditions, such as other diseases and use of medication. Using an arbitrarily chosen threshold of 30% of
the classifiers, or 8 classifiers or more (rounded up) disagreeing with the clinical diagnosis label of a sample, it is reasonable to suspect that samples
s3, s7, s47, s66 and s77 are not suitable to be part of the training set. The signature used for this experiment includes the following features and meta-
features: EGF, IL-1a, IL-3, TNF-a, G-CSF, ‘‘BLC-RANTES’’, ‘‘MIP-1d-IL-11’’, ‘‘TNF-a - ANG-2’’, ‘‘TNF-a - FAS’’ and ‘‘IL-11-I-TAC’’.
doi:10.1371/journal.pone.0017481.g005
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show that the stacked values of this panel of 6 meta-features are

lower in those patients that will develop clinical symptoms of AD

in two to five years.

It is interesting to notice that this signature, composed only

of meta-features, distinguishes well between AD and NDC on both

training (see Figure 5A) and test with AD and NDC samples (see

Figure 5B) sets and also on the test set with MCI samples that

developed and did not develop AD (see Figure 5C). As shown on

Figures 5B–C, it is also remarkable that the signature also

distinguishes well between samples that developed AD and OD.

The fact that the average results of this set of tables differed from

those of the previous signature by less than 1% on the training set,

2% on the Test Set and even yielded a better sensitivity on the Test

Set MCI suggests that these particular single features were not

playing a key role to distinguish between AD and NDC in this

signature, and supports the theory that there is useful information

within the meta-features to distinguish between the classes. Also,

since the results for Test Set MCI also did not change significantly, it

is reasonable to say that the sample pruning and usage of

metafeatures introduced a good generalization in the signature.

Discussion

ANG-2 (ANGPT2, Angiopoietin 2) is a regulator of angiogen-

esis. Ahmed et al. [22] have recently shown that apoE(2/2) mice

that were fed a Western diet had a significant reduction of

atherosclerotic lesion size and oxidized LDL and macrophage

content of the plaques after a single systemic administration of

ANG-2 adenovirus [22]. Thirumangalakudi et al. observed that

ANG-2 levels in microvessels were increased in AD patients but

not in age-matched controls [23].

Neurons and neuronal nuclei in hippocampus have been

reported to express RANTES (CCL5, chemokine (C-C motif)

ligand 5) which could induce an inflammatory cell infiltration in

AD [24] (see also [25]). RANTES has also been observed as

upregulated in the cerebral microcirculation of AD patients (in

another study by members of the same team [26]), as well as by

other groups of researchers [25,27]. Even though this biomarker

does not appear in any of the selected meta-features of the 10

feature signature, it appeared quite intensely in the 290 feature

signature of Figure 4.

Table 3. Average results of classification performed on the Test Set with NDC and samples that developed AD.

Test Set

Signature avg acc stdev acc avg sens stdev sens avg spec stdev spec

S1 0.854 0.039 0.915 0.047 0.803 0.069

S2 0.905 0.031 0.937 0.047 0.878 0.040

S3 0.890 0.021 0.923 0.044 0.862 0.038

Ray et al. 0.906 0.030 0.917 0.042 0.896 0.051

Gómez Ravetti and Moscato 0.923 0.031 0.948 0.037 0.902 0.053

When performing on the independent test set with NDC and AD samples, Gómez Ravetti and Moscato [3] still hold the best results, obtaining an average of 92.3% of
accuracy. Th e signature obtained by just selecting features to complement Gómez Ravetti and Moscato’s [3] signature, S1, almost matched Ray et al.’s [1] sensitivity,
even though it did not perform so well in terms of specificity. It includes EGF, IL-1a, IL-3, TNF-a, G-CSF, ‘‘BLC-RANTES’’, ‘‘MIP-1d-IL-11’’, ‘‘TNF-a - ANG-2’’, ‘‘TNF-a - FAS’’
and ‘‘IL-11-I-TAC’’. The second signature, obtained in the same manner after discarding samples, performed significantly better, almost matching Ray et al.’s in accuracy.
It includes EGF, IL-1a, TNF-a, G-CSF, ‘‘EGF-IGFBP-2’’, ‘‘GM-CSF-IL-1a’’, ‘‘IL-1a-IL-11’’, ‘‘MIP-1d-NT-3’’, ‘‘PDGF-BB-VEGF-B’’ and ‘‘TNF-a-ANG-2’’. Interestingly, the last signature,
S3, obtained by just discarding the single features of S2, yields very similar results. That supports the theory that the (single) features were not playing a key role in
distinguishing between AD and NDC on S2, and that the meta-features indeed hold useful information for that purpose.
doi:10.1371/journal.pone.0017481.t003

Table 2. Average results of classification performed on the Training Set.

Training Set

Signature avg acc stdev acc avg sens stdev sens avg spec stdev spec

S1 0.944 0.045 0.952 0.038 0.936 0.065

S2 0.980 0.028 0.980 0.033 0.981 0.034

S3 0.974 0.032 0.974 0.039 0.975 0.035

Ray et al. 0.930 0.050 0.940 0.046 0.920 0.072

Gómez Ravetti and Moscato 0.902 0.057 0.900 0.061 0.903 0.070

The signature obtained by just selecting features that best complement Gómez Ravetti and Moscato’s [3], S1, improves Ray et al.’s [1] classification accuracy on the
training set of 93% to 94.4%, with improvements both in sensitivity and specificity. This signature includes the following features and meta-features: EGF, IL-1a, IL-3,
TNF-a, G-CSF, ‘‘BLC-RANTES’’, ‘‘MIP-1d-IL-11’’, ‘‘TNF-a - ANG-2’’, ‘‘TNF-a - FAS’’ and ‘‘IL-11-I-TAC’’. The performance of the second signature, S2, obtained in the same
manner after discarding samples s3, s7, s47, s66 and s77 is still better than that of the other signatures, with an even greater gap, reaching an average of 98% of learning
accuracy. Even though this does not necessarily imply an improvement also on independent test sets, this provides good evidence that the discarded samples were
indeed problematic. This signature includes the following features and meta-features: EGF, IL-1a, TNF-a, G-CSF, ‘‘EGF-IGFBP-2’’, ‘‘GM-CSF-IL-1a’’, ‘‘IL-1a-IL-11’’, ‘‘MIP-1d-
NT-3’’, ‘‘PDGF-BB-VEGF-B’’ and ‘‘TNF-a-ANG-2’’. The signature obtained by just discarding the single features from S2, S3, also shows a very good performance on the
training set. It is remarkable that the average results differed by less than 1% from those from the 4 feature and 6 meta-feature signature. That suggests that the single
features were not playing a key role to distinguish between AD and NDC, and supports the theory that there is useful information provided by the meta-features to
distinguish between the classes.
doi:10.1371/journal.pone.0017481.t002
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FAS/CD95, the Tumor Necrosis Factor Receptor Super Family

6 gene (TNFRSF6), has also appeared in our signature. Increased

levels in cerebrospinal fluid in AD patients have been reported in

[28]. The upregulation has been motivating several disease

mechanistic explanations [29–37]. Several researchers have then

tried to find polymorphisms that may have been correlated with

AD and that avenue of research has not been highly prosperous

[38–42], but there exist some studies with relatively positive results

[34,41,42].

Serum levels of BLC have been reported as being elevated in

multiple sclerosis [43]. Weiss et al. have shown that neural

precursors cells express a receptor for BLC [44]. Upregulation of

BLC was observed in scrapie-infected brain tissue in [45]. Baker,

Martin and Manuelidis also reported in 2002 that microglia of

Figure 6. Histogram of the number of classifiers, out of the 25 under consideration, that disagreed with the clinical diagnosis
attributed to the samples, when performing on the training set using the proposed 4 feature and 6 meta-feature signature. The
performance of the signature obtained after the removal of samples s4, s7, s47, s66 and s77, against the training set, improved significantly. More
than 30% of the classifiers disagreed with the clinical diagnosis of only one sample s15. However, since only 8 classifiers got it wrong, which was the
threshold limit rounded up, and no classifier disagreed with the clinical diagnosis of this sample on the previous iteration, it was not considered
problematic and the training set was not reduced even more. The signature used for this experiment includes the following features and meta-
features: EGF, IL-1a, TNF-a, G-CSF, ‘‘EGF-IGFBP-2’’, ‘‘GM-CSF-IL-1a’’, ‘‘IL-1a-IL-11’’, ‘‘MIP-1d-NT-3’’, ‘‘PDGF-BB-VEGF-B’’ and ‘‘TNF-a-ANG-2’’.
doi:10.1371/journal.pone.0017481.g006

Table 4. Average results of classification performed on the Test Set with samples that already had a MCI that developed AD or not.

Test Set MCI

Signature avg acc stdev acc avg sens stdev sens avg spec stdev spec

S1 0.704 0.058 0.820 0.097 0.602 0.134

S2 0.678 0.033 0.818 0.066 0.555 0.071

S3 0.677 0.029 0.840 0.070 0.534 0.076

Ray et al. 0.662 0.046 0.755 0.112 0.581 0.081

Gómez Ravetti and Moscato 0.650 0.053 0.731 0.131 0.579 0.085

All the obtained signatures perform better than the previously know ones on the blinded test set with MCI samples that developed AD or not. Interestingly, the Ray et
al.’s [1] sensitivity of 75.5% was improved to 84% on the signature obtained by discarding the single features of the signature obtained by selecting features that
complement the part of Gómez Ravetti and Moscato’s [3] signature that passed the entropy filter after discarding samples s3, s7, s47, s66 and s77. This signature is
composed by ‘‘EGF-IGFBP-2’’, ‘‘IL-1a-GM-CSF’’, ‘‘IL-1a-IL-11’’, ‘‘MIP-1d-NT-3’’, ‘‘PDGF-BB-VEGF-B’’ and ‘‘TNF-a-ANG-2’’. As expected, since we did not have training samples
that already had a MCI, the specificity was not improved.
doi:10.1371/journal.pone.0017481.t004
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Creutzfeldt-Jakob disease-infected brains characteristically present

an upregulation of BLC [46]. In contrast, the selection of a

metafeature involving RANTES and BLC indicates that the

difference of z-scores of RANTES and BLC are differentially

observed in AD and NDC participants of this study. As RANTES

upregulation in AD has been put forward as a mechanism for

neuroprotection [26] the concurrent lack of upregulation of BLC

may point to a protective response that is not properly functioning

in early AD worth investigating.

NT-3 (neurotrophin 3, Nerve growth factor 2) [47–50] also

appears in a meta feature with MIP-1delta (CCL15, chemokine

(C-C motif) ligand 15). This is a novel biomarker that may interest

several AD researchers as the selective targeting of several

neurotrophin receptors has been proposed as a viable mechanism

of intervention for neuroprotection [51–56] (with much of the

attention being on the p75(NTR), the common neurotrophin

receptor [53,57–66]). Hippocampal upregulation of NT-3 has

been observed in mouse models of AD [67]. The ratio of NGF/

NT-3 (NGF is the Nerve growth factor) was observed to be

significantly upregulated in AD (in a comparison with control

samples) in hippocampus and frontal cortex [68]. Lesne et al.

propose that NT-3 reduces Abeta-induced apoptosis by limiting

the cleavage of caspase-3, caspase-8, and caspase-9 [69].

The joint identification of PDGFB/PDGF-BB (platelet-derived

growth factor beta polypeptide (simian sarcoma viral (v-sis)

oncogene homologue), a member of the neurotrophic factor

family [70] and VEGFB/VEGF-B (vascular endothelial growth

factor B) is intriguing. At the time of the publication of Ray et al.’s

[1] manuscript, on which database our work is based, VEGF-B

was generally recognized as an angiogenic factor, although of low

activity. Almost a year later, Poesen et al. proposed that the

60 kDa VEGF-B isoform is a neuroprotective factor [71] and Falk

et al. later shown that exogenous VEGF-B is neuroprotective in a

culture model of Parkinson’s disease [72]. New roles for VEGF-B

Figure 7. Stacked values of the differences of Z-Scores of only the meta-features of the 4 feature and 6 meta-feature signature. The
signature used in this experiment includes the following meta-features: ‘‘EGF-IGFBP-2’’, ‘‘IL-1a-GM-CSF’’, ‘‘IL-1a-IL-11’’, ‘‘MIP-1d-NT-3’’, ‘‘PDGF-BB-VEGF-B’’ and
‘‘TNF-a-ANG-2’’. Figures 7A–C present the stacked values of of the differences of Z-Scores in the training, independent test set of samples with AD and NDC
samples, and the independent test set with MCI samples that developed and did not develop AD, respectively. The figures show that the stacked values of
this panel of 6 meta-features are lower in those patients that will develop clinical symptoms of AD in two to five years. In Figures 7A–C the samples marked in
red are those that developed AD, the samples marked in blue are those that did not develop AD (NDC Figures 7A–B, and samples that had a MCI and did not
develop AD on the Figure 7C) and the ones marked in green are OD. Since these values correspond to a difference of Z-Scored values, the average is common
and cancelled, thus the measured values of each protein are no longer relative to the variation of the other 119, but only of the other protein involved in the
meta-feature. It is interesting to notice that this signature, composed only of meta-features, distinguishes well between AD and NDC on both training (see
Figure 7A) and test with AD and NDC samples (see Figure 7B) sets and also on the test set with MCI samples that developed and did not develop AD (see
Figure 7C). As shown on Figures 7B–C, it is also remarkable that the signature also distinguishes fairly well between samples that developed AD and OD.
doi:10.1371/journal.pone.0017481.g007
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are being discovered, like those on lipid uptake, more specifically,

on controlled endothelial uptake of fatty acids [73].

A link with CSF2/GM-CSF (colony stimulating factor 2

(granulocyte-macrophage)) with AD is more well-established

[36,74–78]. A similar remark could be applied to IGFBP-2

[79,80].

It is also interesting to note that TNF-alpha was present in all

signatures. A very recent study by O’Bryant et al. with serum

protein based multiplex biomarker data from 197 patients

diagnosed with AD and 203 controls showed a 0.74 fold change

in AD patients [81]. They have also observed a 0.7 fold change on

G-CSF (colony stimulating factor 3 (granulocyte)). These results

may somewhat indicate that two of the proteins in Gómez Ravetti

and Moscato’s 5-protein signature [3], and the signature obtained

on the first iteration of our method may indeed change in both

studies.

The work of [82] showed that there are indications that plasma

levels of EGF are linked with cognitive decline in Parkinsons

disease, indicating it may not be entirely AD-specific as single

biomarker.

Conclusions
In this paper we modelled the relative protein imbalance using

‘‘artificial’’ features, called ‘‘metafeatures’’. Selecting features and

metafeatures using the (a,b){k Feature Set Problem approach it

was possible to show that a specific pattern of cell signalling

imbalance in blood plasma provided valuable information for

distinguishing between NDC and AD patients. Moreover, the

obtained signatures were able to predict AD in patients that

already had MCI with up to 84% sensitivity, while also

maintaining a strong prediction accuracy of 90% on a indepen-

dent dataset with NDC and AD samples.

Using a data-pruning strategy, we found good evidence that, as

already remarked by Ray et al. [1], the dataset indeed had

‘‘suspicious’’ training samples, that could have the wrong diagnosis

label or did not characterise their classes well due to other clinical

factors. We believe that their removal could have introduced

better generalisation to the obtained signatures. That also supports

the theory that, even though our reported accuracy for predicting

AD and NDC is lower than the best reported [3], it does not

necessarilly mean that the signature does not perform well, as

there might also be test samples with the wrong clinical diagnosis

or that also do not characterise their classes well due to other

clinical factors.

The novel biomarkers uncovered with the proposed method

now confirms ANG-2, IL-11, PDGF-BB, CCL15/MIP-1d; and

supports the joint measurement of other signalling proteins in

plasma not previously discussed: GM-CSF, NT-3, IGFBP-2 and

VEGF-B.
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