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Abstract

Background: In 2003, a phase Il placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546
individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical
samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during
the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular
surveillance and phylodynamic analysis of HIV-1 in Thailand.

Methodology and Findings: Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a
function of vaccination treatment, viral load (VL) and CD4" counts, to indentify transmission clusters and to investigate the
timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRFO1_AE (85% of the infections),
subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts
and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<<0.02) in genetic
diversity were observed in CRFO1_AE IDU with different VL and CD4" counts. No phylogenetic structure was detected
regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections
fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread
among IDU. CRFO1_AE was estimated to have emerged in Thailand in 1984.5 (1983-1986), 3—6 years before the first
recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high
despite decreasing prevalence rates since the mid 1990s.

Conclusions: Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest
that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence.
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Introduction [3-5]; and although the former has now diminished considerably,
the latter has remained high [7].

In 1991, AIDS prevention became a national priority in
Thailand and between 1993 and 1997 the government increased
the national budget, launched several campaigns to control and
inform about AIDS spread (Ministry of Public Health, Thailand;

eng.moph.go.th) and initiated the “100 percent condom program”

HIV/AIDS emerged late in Thailand compared to other
countries worldwide [1]. The first case was reported in 1984,
although this was a returned emigrant who developed AIDS
elsewhere [2]. A few more cases were reported in 1984-1988
between men who had sex with men (MSM) and injecting drug

users (IDU) [3]. In 1989 AIDS hit Thailand hard after HIV spread
very quickly through the IDU community, and a year later entered
the commercial sex worker (CSW) networks [1,4]. In subsequent
years, prevalence rates among these high-risk groups grew
explosively from almost zero to 30 to 50% [5-7]. Since then,
the Thai HIV epidemic has been largely driven by GCSW and IDU
[1], whose epidemics appear to be linked [8,9]. Over the last 12
years, for example, heterosexual (HT) and IDU transmissions
accounted for 80-85% and 5% of the infections, respectively
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[10]. All these policies slowed down the spread of AIDS and the
national prevalence rate was reduced by 0.6% points [7]. These
AIDS campaigns were mostly successful at reducing HIV
infections in CSW, whose prevalence rate is now only 5%, but
older HIV epidemics in IDU and MSM continue unabated
(prevalence rates are >25%; [7]), fueling epidemics in CSW [11]
and causing new outbreaks [1]. Almost 1.5% adults are still
infected with HIV in Thailand (~610,000 infected individuals)
making AIDS a leading cause of death (30,000 deaths in 2007;
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[6,7]). The Thai HIV epidemic has become now more
heterogeneous [12] and it is increasingly affecting people
traditionally considered to be at lower risk of infection [7]. Of
even more concern, there are already signs that the epidemic
could grow in coming years: prevalence rates among high-risk
groups have increased, condom use has decreased, and risky
sexual behavior is on the rise [7,13].

In the early years of the AIDS epidemic in Thailand HIV-1,
subtypes were segregated by risk group. Subtype B was predom-
mant in IDU; while CRFO1_AE (a recombinant between subtypes
A and E) was predominant in HT and MSM [9,14]. As the Thai
epidemic progressed, CRFO1_AE increased in frequency across all
high-risk groups [15,16] and by 1995 it became also the
predominant subtype in IDU [17]. Thus, between 1995 and 2004
CRFO01_AE accounted for 80-97% (depending on the study) of the
new HIV-1 infections [3,18]. But the Thai molecular epidemiology
has been gradually growing in complexity and now it seems to be
entering a new phase [3,9]. New recombinant CRF15_01B,
CRF01_AE/B and CRFOI_AE/C isolates are constantly being
identified both within HT and IDU [3,9,19-22] and some may be
increasing their frequency rapidly (13% CRFOI_AE/B in IDU;
[9]). Under this new epidemic scenario, molecular surveillance
becomes crucial to monitor emerging trends in HIV transmission,
assess intervention strategies, and evaluate vaccine efficiency and
design [9,22-25].

HIV spreads through often complex contact networks or
transmission (infection) chains [26,27]. The characteristics of such
networks play a crucial role in determining short- and long-term
disease dynamics [28]; hence, understanding those networks may
translate into more efficient prevention measures and treatment
interventions [29,30]. Several phylogenetic studies suggest that
transmission chains associated with acute (early) HIV-1 infection
may greatly contribute to viral transmission and spread of the
epidemic [31]. Data from both sexually- and drug-related acute
infections in Europe [31-36], Canada [37,38], and Panama [39]
have reported clustering in 24-65% of HIV-1 sequences.
However, in a genetic analysis of 130 early diagnosed HIV-1
infections in IDU from Bangkok only 7.4% of the subtype B and
16.5% of the CRFO1_AE isolates formed transmission clusters
[40]. Similarly, in a recent study of sexually infected HIV-1
patients (mostly MSM) in North America, clustering was detected
in only 11% of the isolates [41]. Therefore, it seems like the extent
to which acute transmission of HIV-1 is clustered remains open.

Thailand is one of the key international partners in the HIV
vaccine efficiency trials with three trials already completed
[42-44]. In 2003, the first phase III placebo-controlled trial
(VAX003) of a candidate HIV-1 vaccine (AIDSVAX B/E) was
completed in individuals at high risk for HIV-1 infection [45-47].
The study enrolled 2,546 uninfected IDU from and around
Bangkok of which we obtained clinical samples for 215 who
became infected with HIV-1 between 1999 and 2003 despite
intensive risk reduction counseling. Plasma samples from these
individuals were obtained within the first 13 months after
infection, and envelope glycoprotein (gp120) viral sequences were
generated. These sequences (the “VAXO003 dataset”) have recently
been released to the scientific community through the Global
Solutions for Infectious Diseases HIV sequence Database (www.
GSID.org).

Here, we analyze the VAX003 data to assess HIV-1 variation as
a function of treatment (vaccine or placebo), viral load, and CGD4*
counts. Moreover, we perform a molecular surveillance of the
VAXO003 gpl120 dataset to identify HIV-1 circulating subtypes in
Bangkok and infer transmission networks in IDU. Finally, we
combine the VAX003 dataset with other Thai sequences available
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in the HIV Los Alamos database (www.hiv.lanl.gov) to investigate
the timescale and molecular population dynamics of HIV-1 in
Thailand. The VAX003 dataset is the largest collection of gp120
sequences from infections resulting from new and recent
transmissions in Thailand and one of the few datasets collected
from a large IDU cohort. These data provide a unique
opportunity to study HIV-1 evolution in an epidemiological
context and we anticipate it will contribute to the analysis and
interpretation of the results from the RV144 Phase III HIV
vaccine trial recently completed in Thailand [48,49].

Results

Molecular surveillance and subtype diversity

We indentified 182 CRFO1_AE (84.7%), 29 subtype B (13.4%),
and 4 discordant isolates that presumptively are CRF15_AE
(1.9%). This latter recombinant type is mostly CRFO1_AE but also
includes most of gpl20 (except for approximately the first 36
nucleotides) and the external portion of gp41 from subtype B [8].
Full genome sequencing of these discordant HIV isolates are
needed to confirm this result. Number of isolates (as percentages)
per year (1999 to 2003) was similar within each subtype
(Table S1).

Estimates of genetic diversity (6) were similar (~0.11) across
subtypes (Table 1). Selection estimates (®) were generally below 1
although subtype B [0panmt. =0.777; ®omegantap =0.778 (0.673~
0.901)] showed higher (and significant for omegaMap) average
dn/ds rates than CRFOI_AE [0panit, = 0.580; ®omegantap = 0.404
(0.366-0.443)]. Population recombination rates (PomegaMap), hOW-
ever, were significantly lower for subtype B [3.95 (3.45—4.53)] than
for CRFOI_AE [15.56 (14.65-16.65)]. DNA genetic divergence
(£SD) was higher for subtype B (0.096%=0.019) than for
CRFO1_AE (0.067x0.011). 8, opayy, and genetic divergence
were also estimated in the North American VAX004 gpl20
dataset [50] for comparison between B subtypes (Table 1). 0
estimates were again similar between datasets, but ®pami,
estimates were lower for the VAX004 dataset (0.432) than for
the VAXO003 dataset (0.777), while genetic divergence was
significantly higher for the VAX004 dataset (0.112*0.015).

Phylogenetic analysis
The GTR+I'+I model [51] was chosen as the best-fit model for
both the VAX003 gp120 dataset and for all their corresponding

Table 1. Overall subtype diversity estimates.

HIV-1 0 OpamL O P GD

VAX003- 0.110 0.581 0.404 15.56 0.067
CRFO1_AE (182)

(0.366-0.443) (14.65-16.65) (0.067-0.067)

VAX003- 0.112 0.777  0.778 3.95 0.096
Subtype B (29)

(0.673-0.901)  (3.45-4.53) (0.094-0.098)

VAX004- 0.105 0432 - - 0.112
Subtype B (345)

(0.112-0.112)

Genetic diversity (0), selection in PAML (wpami) and omegaMap (®omegamap)s
population recombination rate in omegaMap (pomegamap), and genetic
divergence (GD). Number of isolates analyzed is indicated between parentheses
in the first column. Estimates from the North American VAX004 subtype B trial
were included for comparison.

doi:10.1371/journal.pone.0016902.t001
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codon-position partitions. ML and Bayesian phylogenies did not
show any obvious structure based on treatment, VL or CD4*
categories (Fig. 1). Individuals within each factor seemed to be
randomly distributed across the phylogeny.

Transmission clusters

ML and Bayesian phylogenetic analyses of HIV-1 subtype B
and CRFO1_AE showed 3 and 31 well-supported clades (bootstrap
proportions =70% and posterior probability =0.95), respectively
(Fig. 1). These transmission networks involved 10 (34.4%) subtype
B and 91 (50%) CRFO01_AE IUD isolates distributed in 2 small
(<5 1solates)/ 1 large (=5 1solates) and 26/5 clusters, respectively
(Table S2). Attendance to a particular clinic and estimated date of
seroconversion (considered as a time window of =6 months) were
found to be associated with 1 and 1 subtype B clusters,
respectively, and 6 and 13 CRFOI_AE clusters, respectively.
Some overlap between factors was observed in some clusters (e.g.,
clade 2 in subtype B and clade 7 in CRFO1_AE). Nonetheless,
these results suggest that between 1999 and 2003, the estimated
date of infection seemed to play a larger role than geographic
location at establishing transmission chains in CRFO1_AE IDU
from Bangkok (Table S2).

Viral evolution and patient factors

Average 0, p, and o intra-patient estimates within categories
were very low for both subtypes (Table 2). For most CRFO1_AE
datasets ®>1, while for the rest ®=1. On the contrary, for most
subtype B datasets ®<<1, but ®>1 was also found in several cases.
These intersubtype differences, nonetheless, were non-significant.
CRFO01_AE sequences from individuals with lower VL and higher
CD4" counts showed lower 0 values (0.005-0.006) than individ-
uals with higher VL (P=0.016) and lower CD4" (P=0.007) counts
(0.007-0.009). These two factors were inversely correlated
(Pearson correlation coefficient= —0.218, P=0.003).

Population dynamics

BEAST’s estimate of the substitution rate was 0.0055 (0.0050—
0.0060) for CRFO1_AE and 0.0027 (0.0015-0.0038) for subtype B.
The Most Recent Common Ancestor (MRCA) was dated in
1984.5 (1983-1986) for CRFO1_AE and in 1965 (1950-1979) for
subtype B. The BSP analysis of CRFOI_AE sequences (Fig. 2)
suggested that the relative genetic diversity increased exponentially
between 1984 and 1991, moderately between 1992 and 1995,
decreased between 1996 and 2004 with a spike in 19992000, and
then increased slightly between 2005 and 2006 (the age of our
most recent sample).

Discussion

Molecular surveillance and subtype diversity

The predominant HIV-1 subtype circulating in IDU (215
patients) from Bangkok during 1999-2003 was CRFO1_AE (85%).
Subtype B accounted for 13% of the infections and CRF15_AE
for 2%. Two early (1995 to 1998) molecular surveys in Bangkok
[17,40] including 102 and 130 IDU, respectively, and using the
C2-V4 env region (345 bp), reported also high percentages of
subtype B isolates (20-21%) but no CRF15_AE recombinants.
Additional surveillances among IDU in Bangkok [21] during
1997-1998 (111 patients) using env (530 bp) and protease (297 bp)
still detected high percentages of subtype B isolates (23%), but also
3.6% CRF15_AE isolates. Interestingly in Northern Thailand, a
near full HIV-1 genome study (1999-2002; 38 patients) among
IDU detected an increasing proportion of CRF15_AE (13% total)
infections but no pure subtype B isolates, suggesting that the latter
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subtype became extinct in this region [9]. Although full HIV-1
genome surveys increase the probability of finding intersubtype
recombinants, our surveillance from 1999 to 2003 suggests that
subtype B is declining and CRF15_AE is increasing among IDU
from Bangkok as previously predicted by others [24] and observed
in other high-risk groups across the country [3,22,52]. Nonethe-
less, considering subtype B prevalence rate and genetic diversity
(Table 1), it may remain circulating in Thailand for many years.
This information is important to ensure that the virus diversity
upon which vaccines are designed matches the circulating viral
population. Fortunately, vaccine candidates used in the RV144
Phase III HIV vaccine trial largely contain both subtype B and
CRFO1_AE viruses [48,49].

Our estimate of gp120 genetic divergence in CRFO1_AE viruses
(0.067%0.011) from IDU was higher than previously reported for
env (0.059%0.011) in Northern Thai IDU patients [9], but much
lower than those reported for the C2-V4 env region (mean: 0.109—
0.150) in other Thai regions among mostly (95%) sexually infected
individuals [3]. These comparisons must be considered with
caution since the env regions compared are not exactly the same
and we removed many of the variable sites after the GBlocks
analysis. Genetic divergence estimates using the full VAX003
gp120 alignment were of 0.100%0.015. But independently of what
dataset we consider, both Tovanabutra et al. [9] and our own
estimates are higher than those reported in other Asian IDU
groups in, for example, China [53] or Vietnam [54,55], and closer
to those observed in sexual transmission cohorts [3], where
diversity is generally higher [56]. This result then suggests that the
IDU epidemic in Thailand is likely to be mature and that extensive
exchange between sexual and IDU exposures and transmissions
has been ongoing for years [9], which is also supported by our
phylogenetic results below.

gp120 subtype B sequences from Bangkok are significantly less
divergent than those from the North American VAX004 vaccine
trial (Table 1). This and previous gpl20 CRFO1_AE estimates
indicate that Thai HIV-1 populations are more homogeneous
than those observed in other areas like Vietnam (see below) or
North America. The increased homogeneity of viruses in Bangkok
has been attributed to the relatively recent introduction of HIV in
Thailand (1984) and a pronounced founder effect resulting from
the rapid spread of the virus [1,4]. This result then suggests a
greater opportunity to overcome the challenge of HIV diversity
[57] and to detect protective immunity induced by candidate
vaccines in Thailand compared to North America or Africa, where
viral genetic diversity is much higher. Indeed, the outcome of the
RV144 vaccine testing in Thailand seems to have had greater
success by better coverage of this limited diversity with vaccinated
volunteers showing 31.2% fewer infections than placebo recipients
[48,49]. American subtype B viruses also appear to be under
stronger purifying selection (= 0.43-0.58) than the Thai subtype
B viruses (0.78). This suggests that differences could exist in the
intrinsic immune response among ethnicities [58] or transmission
type (i.e., IDU vs MSM) [59].

Our genetic estimators indicate that CRFO1_AE experienced
almost four times more recombination than subtype B (Table 1).
Consequently, one could also expect that higher recombination
rates would inflate @pang, estimates [60-62], but that does not
seem to be the case, since subtype B showed significantly higher
levels of selection than CRFOI1_AE for all estimators. Similarly,
CRFO1_AE presented a mean substitution rate per site twice as
high as that observed for subtype B. Significant differences in
adaptive selection and substitution rate between HIV-1 subtypes
have been reported before [59,63] and were attributed to
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Figure 1. HIV-1 subtype phylogenetic trees. Maximum likelihood phylogenetic inference of Bangkok HIV-1 CRFO1_AE and subtype B population
structuring as a function of treatment [placebo (P) and vaccine (V)], viral load (VL), and CD4" counts. Branch lengths are shown proportional to the
amount of change along the branches. Clades supported by bootstrap proportions =70% and posterior probabilities =0.95 in the Bayesian analysis
(transmission chains) are shown in red color and their terminals in bold. Only one clone per isolate (numbered) is represented for simplicity.

doi:10.1371/journal.pone.0016902.g001

differences in immune selective pressure from the host and in
mutation rate or generation time of the virus.

Phylogenetic structure of HIV-1 in Thailand

Our CRFO1_AE and subtype B phylogenetic trees suggest that
HIV populations in IDU from Bangkok are not structured by any
of the epidemiological and clinical factors studied (Fig. 1).
Moreover, our BEAST analyses of both VAXO003-LA gpl120
subtypes did not show phylogenetic structuring based on
transmission type either (Fig. S1). These results agree with
previous CRFO1_AE star-like phylogenies reported in IDU from
Bangkok [40]. Geographically broader CRFO1_AE phylogenetic
studies in Central [64], Northern [9] and across Thailand [3,22]

Table 2. Mean patient diversity estimates.

HIV-1 0 PLDhat OpAML  OHYPHY

Subtype CRFO1_AE

Treatment
Placebo (92) 0.007 48 1.045  1.208
Vaccine (87) 0.007 3.0 1057  1.229
VL Categories (RNA copies/mL)
1: <1x10* (29) 0.005 6.1 0999  1.150
2: 1x10%-5x10" (48) 0.006 3.7 1030 1.198
3: 5x10%-10x10 (40) 0.007 28 0958  1.110
4: 10x10*-25x10* (45) 0.008 4.4 1265  1.451
5: >25x10% (21) 0.009 25 0905  1.082
CD4" counts (cells/mm?)
1: <3x10% (31) 0.009 24 0921  1.082
2: 3x10%-5%10? (79) 0.007 3.8 1100  1.250
3: 5x10%-7x10? (39) 0.006 3.7 1.003 1187
4: >7x10% (34) 0.006 59 1119 1317
Subtype B
Treatment
Placebo (17) 0.008 5.5 0.775 0.869
Vaccine (14) 0.008 4.4 0978 0997
VL Categories (virions/mL)
1: <1x10* (8) 0.004 38 0.653 0707
2: 1x10%-5%10" (9) 0.009 23 0.873  0.887
3: 5x10%-10x10* (7) 0011 114 0998  1.199
4:>10x10* (7) 0.007 19 1.100  1.047

CD4" counts (cells/mL)

1: <3x10% (31) 0011 124 0870 0.899
2: 3x10%-5%10? (79) 0.006 5.2 0.847  0.950
3: 5%10%-7x107 (39) 0.010 20 0762 0818
4: >7x10% (34) 0.006 4.3 1121 1.078

Genetic diversity (0), population recombination rate in LDhat (p ppat), and
selection estimates in PAML (wpami) and HYPHY (®uyphy). Number of isolates
analyzed is indicated between parentheses.
doi:10.1371/journal.pone.0016902.t002
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also showed lack of structuring based on transmission type,
sociodemographic factors and geographic location. In the
Wirachsilp et al. [3] study, for example, sequences from Bangkok
clustered together with sequences from other regions. Similarly,
Keele et al. [65] also showed that viral env genes evolving from
individual transmitted or founder HIV-1 subtype B viruses
generally exhibited a star-like phylogeny, such as the one observed
in North American viruses [41].

Given the age of the HIV-1 epidemic in Thailand and the fact
that the virus is thought to mutate at a rate of 1% per year [66,67],
the possibility existed that different clades would have emerged in
different regions or high-risk groups in Thailand. Indeed
phylogenetic structuring based on these factors has been observed
before between subtypes in, for example, Africa [68] and Asia [69]
and within subtypes in, for example, Vietham [54] and China
[70]. But contrary to what happened in those HIV/AIDS
epidemics, the Thai epidemic spread exponentially across the
whole country and risk types [1], which could erase early genetic
differentiation and results in star-like gene genealogies [71,72].
Moreover, both molecular (this study and [8,9]) and Thai
behavioral [11,73] data indicate that bridging between drug and
sexual epidemics through CSW has been ongoing for years, which
again reduces the opportunity for differentiation.

Phylogenetic clusters in acute transmissions

The extent to which acute transmission of HIV-1 is clustered is
not clear. Some studies [31-38,74] report high clustering (24 to
65%) levels, while others [40,41] show much lower values (7 to
17%) for the same subtypes and transmission routes. Our more
comprehensive phylogenetic analyses of IDU from Bangkok show
higher proportions of early subtype B (35%) and CRFO01_AE
(50%) infections falling into clusters, confirming that transmission
chains associated with acute infection play a key role in HIV-1
transmission and spread [31]. Transmission clusters in Nguyen et
al. [40] were inferred using the C2-V4 env region (345 bp). This
gene region, although broadly used in HIV genetic studies, is less
informative than the gpl20 (~1.5 kb) region used here for
estimating phylogenetic clustering. As for Pérez-Losada et al. [41],
that study covered North America, while our Thai study and
others before, focus on a single city, a small country or a recently
infected area. This suggests that the size and population structure
of the studied area affect our ability to identify HIV-1 transmission
chains. Moreover, differences in clustering have been also
observed between subtypes, transmission routes and regions
[33,34,41]. Hence future HIV vaccine trials should pay attention
to potential sources of clustering that can effectively render
samples non-independent.

Viral evolution and patient factors

No significant differences in recombination, mutation, and
selection rates were observed among vaccinated and placebo
individuals in both subtype B and CRFO1_AE. This is consistent
with the overall outcome of the VAX003 trial where immuniza-
tion with AIDSVAX B/E did not significantly affect the rate of
infection, the VL, the CD4" count, or the clinical outcome of
vaccine recipients compared to placebo recipients [45]. Lower VL
and higher CD4" counts, however, were significantly associated
with lower mutation rates in CRFO1_AE (Table 2). Since genetic
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Figure 2. HIV-1 CRFO1_AE past population dynamics. Bayesian skyline plot of the HIV-1 CRFO1_AE subtype in Thailand. Solid black lines show
the median estimate and dashed black lines the 95% high posterior density limits. The estimated incidence and prevalence rate are indicated in red

and blue, respectively (see text for details).
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diversity may be positively correlated with N, one could expect
that greater VL (census size) would also cause an increase on the
number of effective virions [41].

Population dynamics of Thai HIV-1 subtypes

Previous full-genome phylogenetic analyses of HIV-1
CRFOI_AE in Southeast Asia [54] indicate that CRFOI_AE was
introduced from Africa to Thailand and then spread elsewhere.
Our coalescent estimate of the time of emergence of CRFOI_AE
in Thailand was 1984.5 (1983-1986). An slightly earlier estimate
(1981£2 years) was previously reported by Liao et al. [54] using
the same method but including 64 near full-length CRF01_AE
nucleotide sequences from Africa, China, and Vietnham. Hence,
both studies suggest that CRFO1_AE was circulating cryptically in
Thailand for 3-10 years before it was first detected in 1989 [75].
Similar time lags between evolutionary estimates and the
recognition of symptomatic patients have been observed before
in other countries such as United States [76] and Vietnam [54]. In
Western countries, the estimated median incubation period before
AIDS development in the absence of antiretroviral therapy is 10—
12 years [77], although in Thailand a shorter incubation period (7
years) has been suggested [78]. HIV testing in Thailand started in
1985 and only 3 cases were detected [79]. There were no cases
reported in 1986, but many thousands were detected over the next
3 years, particularly among IDU from Bangkok [75]. By February
1990, almost 15,000 cases of HIV-1 infection have been already
documented across the country [80]. Similarly to what happened
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in other regions, CRFOI_AE could have been introduced in
Thailand years before its detection in 1989.

Phylogenetic analyses of HIV-1 subtype B env data collected
worldwide [76] indicate that this subtype was introduced from
Africa to Haiti and then spread elsewhere (pandemic clade). In
that study, the Thai subtype B isolates did not seem to form a
separate cluster (independent HIV-1 expansion), hence our
coalescent estimate of the time of emergence of subtype B
(1965£15) approximates that of the emergence of the subtype
worldwide (1968-1969%3 years) [41,76]. Discrepancies between
these and our current estimate are probably due to differences in
sample size: the subtype B dataset analyzed here is geographically
more restricted and includes fewer sampling points. A short
interval of sampling years, for example, provides less information
about the average rate during that interval than does a long
mterval [63,81]. The larger HPD intervals of the Thai estimate
supports that idea.

Our BEAST analysis of CRFO1_AE past dynamics (Fig. 2)
agrees well with the history of HIV/AIDS spread in Thailand and
the prevalence and incidence rates reported [6] and predicted
using backcalculation models [82]. Prior to 1987 the prevalence of
HIV in Thailand was low, but once HIV entered the MSM, IDU
and CSW networks (1988-1993) prevalence rates exploded rising
from virtually zero to up to 50% [4-7] and so did the relative
genetic diversity (N.t). In 1991, AIDS prevention became a
national priority at the highest level and several campaigns were
launched to control AIDS spread (Ministry of Public Health,
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Thailand; http://eng.moph.go.th/). Consequently, prevalence
rates began to decline soon after (Fig. 2; see also [10]) and HIV
incidence was reduced by a third [82]. Concomitantly, N.t leveled
off and slowly began to decline in 1996. In 1998, due to the Asian
Financial Crisis, HIV/AIDS funding was severely reduced [83]
and many programs like the HIV prevention schemes were
downscaled or suspended [7,83,84]. This led to a decline in
awareness and possibly an increase in unsafe sexual behavior [7].
Consequently, the incidence rate spiked for two years and so did
N,t. In 2002 Thailand launched the third National Plan for the
Prevention and Alleviation of HIV/AIDS (Ministry of Public
Health, Thailand; eng.moph.go.th). Consequently, both incidence
and N,1 decreased again until 2004, but since then the former has
remained constant and the latter has increased slightly and
remained relatively high. Under circumstances of low surveillance
and high HIV diversity, new or existing infective strains could
expand exponentially and provoke a resurgence of AIDS across
the country. There are already signs that the epidemic could grow
in coming years [7,13]. More importantly, the epidemic has never
cased off among certain groups like IDU, where infection rates are
still very high (~30%; [7]) and continue to be a reservoir for HIV
fueling old and causing new epidemics [1,11]. Thailand must then
increase prevention efforts, especially among high-risk groups such
as IDU and MSM, but also among the general population since
the AIDS epidemic seems to be more heterogeneous now [12]. In
light of these concerns, the current government has increased
HIV/AIDS prevention efforts. In 2007, a three-year strategic plan
was announced that would focus on those most at risk of HIV
infection and difficult-to-reach groups [85]. How these new
policies are going to affect HIV-1 diversity and dynamics is for
further studies to see.

Materials and Methods

VAX003 vaccine trial participants

The 2,546 volunteers participating in the VAXO003 trial
(NCTO00006327) were recruited from 17 clinics in and around
Bangkok [45—47]. They all were considered at high risk for HIV-1
infection through injection drug use. The vaccine trial protocol did
not specify racial categories and no effort was made to distinguish
linguistic and geographic groups. Volunteers were randomly
assigned to vaccine or placebo groups according to a 1:1 ratio.
All subjects were immunized with AIDSVAX B/E, a bivalent
vaccine prepared by combining purified recombinant gp120s from
two different strains of the HIV-1 virus incorporated in alum
(aluminum hydroxide) adjuvant: the subtype B strain (MN) and
the subtype CRFOI_AE isolate (A244). All subjects were
immunized according to a 0, 1, 6, 12, 18, 24, and 36-month
schedule. Serum samples were collected immediately prior to each
injection and two weeks after each injection, with a final blood
sample taken at 6 months following the final injection. The
specimen taken prior to each injection was used to calculate pre-
boost anti-gpl120 titer values and submitted for HIV testing
(ELISA). The immunoassays selected for HIV diagnosis were
unaffected by antibodies to the AIDSVAX B/E antigens. If
evidence of HIV infection was obtained, confirmatory testing was
carried out by immunoblot. Once HIV-1 infections were
confirmed, HIV-1+ subjects were enrolled in a separate protocol
(Step B) where plasma and cells were collected at regular intervals
for up to two years post infection. Plasma samples were used for
measurement of viral loads and envelope glycoprotein sequencing.
Frozen lymphocytes were cryopreserved for immunologic and
genetic testing. The date of infection was defined as the midpoint
between the last seronegative specimen and the first seropositive
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specimen. The estimated time of infection ranged from 0 to 13
months with a mean time of infection of 3-4 months. Viral load
(VL) and CD4" measurements were taken and patients were
subdivided into 4 or 5 categories for genetic analyses (see Table 2).

Molecular datasets

Of the 2,546 volunteers enrolled in the trial 230 became
infected with HIV-1 [45] and we obtained clinical samples for 215
of them. Three to six clones per individual were collected from the
same earliest post-infection plasma sample and sequenced for the
viral gpl120 gene (665 sequences total). A listing of the sequence
data used for this analysis has recently been released online and
can be accessed at www.gsid.org. All gpl20 sequences were
determined using an ABI 3100 sequencer and assembled using
Sequencher (www.genecodes.com).

HIV-1 subtype was determined using the REGA HIV
Subtyping Tool 2.0 [86] and the Recombinant Identification
Program: RIP 3.0 [87] at Los Alamos (http://hiv-web.lanl.gov/
content/index). Discordant (intersubtype recombinants) isolates
were visually inspected and confirmed in RDP 3.0 [88,89]. Two
main HIV-1 subtypes were identified, CRFOI_AE (182 isolates)
and subtype B (29 isolates) (see the Molecular Surveillance and
Subtype Diversity section). Because of their genetic and epidemi-
ological differences [90], these subtypes were analyzed separately.
For population dynamic analyses full VAX003 gp120 sequences
(only one clone per patient) were combined with other full length,
dated Thai gp120 sequences from the Los Alamos database as of
January 2010 to generate final datasets of 343 CRFOI_AE (from
1990 to 2006) and 47 subtype B (from 1990 to 2003) isolates.
These combined datasets included 217/34 IDU, 36/4 HT, 3/0
CSW and 87/9 unknown risk-group CRFO01_AE/subtype B
isolates.

Sequence alignment

Nucleotide sequences were translated into amino acids and
aligned in MAFFT 5.7 [91] using the global algorithm (G-INS-i).
Ambiguous regions in the resulting alignment were identified and
removed using GBlocks 0.91b [92]. Conserved amino acid regions
were translated back to nucleotides generating alignments of
1,317-1,329 sites for CRFOI_AE and 1,398-1,413 sites for
subtype B. Full gp120 sequences (1,497-1,629 bp) were analyzed
for each patient, in which case the alignments were trivial.

Phylogenetic analysis

The best-fit model of DNA substitution was selected with the
Akaike Information Criterion [93] as implemented in jModelTest
1.0 [94]. Maximum likelihood phylogenetic trees were inferred in
RAxML 7.0.3 using 3 codon-position partitions [95]. Nodal
support was assessed using the bootstrap procedure [96] with
1,000 replicates. Heuristic searches were performed under the
best-fit model. In addition, Bayesian trees were inferred in
MrBayes 3.1.1 [97] using also 3 codon-position partitions. We
ran four chains (one cold and three heated) for 2x107 generations,
sampling every 1,000 steps. Each run was repeated twice.
Convergence and mixing of the Markov chains were assessed in
Tracer 1.5 [98].

Phylogenetic transmission (infection) clusters [29] were defined
as those clades with bootstrap proportions =70% and posterior
probabilities =0.95. Attendance at a particular clinic (which
served as proxy for location of residence) and estimated date of
seroconversion were screened for all the isolates contributing to
clusters. Genetic divergence estimated as the mean pairwise
genetic distances under the K2P model [99] was also calculated for
comparison with previously published estimates.
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Genetic estimates and patient factors

The VAXO003 trial included vaccinated and non-vaccinated
individuals with different VL and CD4" counts. These individuals
do not constitute natural populations, therefore, all genetic
estimators described in this section were either applied to intra-
patient datasets (3 to 6 clones) or full-subtype datasets (29 subtype
B and 182 CRFOI_AE isolates). Genetic diversity (0) and
population recombination rate (p) was estimated for each patient
using LDhat 2.1 [100]. Here, each analysis was repeated 10 times
and the p mean estimate was used for subsequent analyses.
Molecular adaptation was assessed using the ratio of nonsynon-
ymous (dy) to synonymous (ds) substitution rates () and estimated
using the model MO (one-ratio) in PAML 3.14 [101] and Fixed
Effects Likelihood (FEL) in HYPHY 1.0 [102]. In the latter case,
recombination was taken into account by first detecting recom-
bination breakpoints with GARD [103] and then estimating the
dn/ds ratios independently for each fragment. Simultaneous
estimation of ® and p was also performed in omegaMap [62]
for the full-subtype datasets.

Average estimates of p, 0, and ® were compared across factors
(e.g., vaccinated and placebo; see Table 2) using the Kruskal-
Wallis test in Aabel 3 (www.gigawiz.com). Tests based on linear
models (e.g., ANOVA) were not applied because their underlying
assumptions were not met by some of the data sets.

Population dynamics

Past population dynamics of CRFOI_AE in Thailand was
inferred in BEAST 1.5.3 [104] using the Bayesian Skyline Plot
(BSP) model [105] and a relaxed clock (lognormal) model of rate of
substitution [106]. BSP searches showed overdispersed 95% High
Posterior Density (HPD) intervals for subtype B, hence the
exponential growth model was used instead. Relative genetic
diversity through time (N.t) was estimated directly from dated
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