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Abstract

Background: Annual biological rhythms are often depicted as predictably cyclic, but quantitative evaluations are few and
rarely both cyclic and constant among years. In the monsoon tropics, the intense seasonality of rainfall frequently drives
fluctuations in the populations of short-lived aquatic organisms. However, it is unclear how predictably assemblage
composition will fluctuate because the intensity, onset and cessation of the wet season varies greatly among years.

Methodology/Principal Findings: Adult mosquitoes were sampled using EVS suction traps baited with carbon dioxide
around swamplands adjacent to the city of Darwin in northern Australia. Eleven sites were sampled weekly for five years,
and one site weekly for 24 years, the sample of c. 1.4 million mosquitoes yielding 63 species. Mosquito abundance, species
richness and diversity fluctuated seasonally, species richness being highly predictable. Ordination of assemblage
composition demonstrated striking annual cycles that varied little from year to year. The mosquito assemblage was
temporally structured by a succession of species peaks in abundance.

Conclusion/Significance: Ordination provided strong visual representation of annual rhythms in assemblage composition
and the means to evaluate variability among years. Because most mosquitoes breed in shallow freshwater which fluctuates
with rainfall, we did not anticipate such repeatability; we conclude that mosquito assemblage composition appears adapted
to predictable elements of the rainfall.
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Introduction

Annual rhythms are a fundamental biological response to the

seasons. They arise when organisms time growth, reproduction

and dispersal to make optimal use of predictable seasonal events

[1,2]. As an aggregate affect across many species, community

(assemblage) structure may also fluctuate seasonally in a

predictable manner [3]. However, environments are frequently

unpredictable and complex biotic interactions may overwhelm

rhythmic responses. Nevertheless, annual rhythms are often

depicted and interpreted as cyclic and constant from year to year,

but quantitative demonstrations are few and rarely both cyclic and

repeatable.

Highly predictable variation in day-length underpins seasonality

in temperate regions, but in the tropics day-length varies little and

rainfall assumes a much greater role in defining seasons. However,

rainfall is inherently less predictable than day-length. Most tropical

regions experience a monsoonal climate characterised by intense

seasonality of rainfall (summer wet – winter dry) [4], but

paradoxically the monsoon tropics has the greatest annual

variability in rainfall in the world [5]. This paradox has profound

and unresolved implications for the region’s biota. Whilst some

biologists have emphasized flexibility in life histories and

behaviour as adaptations to life in the monsoon tropics [6,7],

others have focussed on adaptive responses to the underlying

seasonality [8,9].

Organisms whose lifespan is less than the relevant environmen-

tal periodicity can respond rapidly to the onset and/or

prolongation of favourable conditions regardless of their predict-

ability [10]. Tropical mosquitoes undergo several to many

generations per year and can reproduce prolifically [11]. As their

larvae and pupae are obligately aquatic, and development is

affected little by temperature variations encountered in tropical

lowlands, they are ideal subjects with which to identify

relationships between rainfall and abundance.

Here, we examine seasonal and among-year variation in the

composition of mosquito assemblages from the monsoon tropics

using an extensive long-term monitoring dataset, and demonstrate

strikingly cyclic patterns that vary little from year to year

regardless of among-year variation in rainfall.

Methods

Biology of Tropical Mosquitoes
Female mosquitoes can lay from 30–300 eggs per oviposition

episode and may have a number of oviposition episodes,

depending on age and food requirements. In the tropics, most

species complete several to many generations per year, life cycles
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generally being completed in from 1.5–5 weeks [11]. Although

development rates are sensitive to variations in temperature, the

range of temperatures encountered in the lowland tropics drives

variation in rates that is measured in days rather than months

[12,13]. Most tropical mosquitoes lack any dormancy mechanism,

the major exception being the tribe Aedini (includes the genera

Aedes and Verrallina), whose eggs can be resistant to desiccation for

months or even years. Aedini eggs are laid on moist substrates and

depend on subsequent immersion for hatching and subsequent

larval development [14].

Study Area and Mosquito Surveys
Mosquito populations were monitored at eleven woodland sites

between the coastal city of Darwin (12u279 S, 130u509; Northern

Territory, Australia) and the freshwater and tidal wetlands that

almost surround the city [15]. With 88% of the mean annual

rainfall of 1708 mm falling in the five ‘summer’ months (Nov. –

March) at a mean rate of 9.9 mm d21 (Figure 1a), the city’s

climate far exceeds the 55% and 3 mm d21 thresholds employed

to define a monsoonal climate [4]. Marked variation among years

in rainfall, especially during the transitional months, affects the

length of the ‘green’ season by up to three months [16,17], but

cumulative rainfall (Figure 1b) provides reliable annual saturation

of soils.

Temperatures are high throughout the year. Mean monthly

maxima range from 30uC in July to 33uC in October to December

and in April, whilst mean monthly minima range from 19uC in

July to 25uC from October to February [18]. In most years,

overnight temperatures do not drop below 15uC. Day-length

varies annually from 11.2 to 12.9 hours, with global radiation

remaining relatively constant throughout the year because on the

inverse seasonal relationship between cloud cover and potential

solar radiation [18].

The number and identity of blood-seeking adult female

mosquitoes were monitored overnight once per week at 11 sites

for five years (2001 to 2005; 2,871 trap-nights), and weekly at one

of these sites for 24 years (Palm Creek, 1982 to 2005; 1,253 trap-

nights)), using suction traps baited with carbon dioxide. These

were standard EVS CO2-baited mosquito traps [19] which detect

a wide range of species [20]. Palm Creek was selected for long-

term analysis because it offers the combination of long-term data

with little human environmental change in its mosquito catchment

area.

Samples were frozen after collection for later identification by

the staff of Medical Entomology of the Department of Health and

Families in Darwin. Samples of less than 300 individuals were

identified and counted fully. For larger catches, the full catch and a

sub-sample of c. 300 specimens were weighed and the sub-sample

fully identified and enumerated. The sample was checked for

species absent from the sub-sample. The ratio of weights provided

a conversion factor to estimate the total number of individuals of

each species in the sample. The abundance of a species present in

the sample but absent from the sub-sample was scored as the total

number present in the sample.

Data Analysis
For both the 11-sites and Palm Creek datasets, weekly counts/

estimates of the abundance of each species were averaged up to

months (n = 60 and 288 months respectively), the former after

combining sites into a single dataset. The resulting two datasets

each comprise a matrix of species by months. For each month in

the 11-sites data set, we summed the estimated number of

mosquitoes and number of mosquito species, and calculated

species diversity using Simpson’s Diversity Index. This diversity

index ranges from 0 (low diversity) to almost 1, a high diversity

score indicating both greater species richness and relatively little

variation among species in their abundance [21].

Each data set was then ordinated. Ordination is a form of data

reduction applicable to multi-dimensional data sets. Assemblages

or communities of species may be envisaged as points in an n-

dimensional hypervolume in which each dimension represents the

abundance of a species, and the Euclidean distance between pairs

of points is a measure of the dissimilarity of those assemblages. In

ordination, one seeks to reduce the number of dimensions for ease

of interpretation – usually but not necessarily to one to three

dimensions – whilst retaining as much of the original distance

information as possible. Non-metric multidimensional scaling

(MDS or NMDS) is a robust non-parametric form of ordination

Figure 1. Seasonal pattern of rainfall for Darwin, northern
Australia. Based on 68 years of data (1941–2008): (A) monthly; and (B)
cumulative monthly calculated with actual years. Data are median 6
10th and 90th percentiles.
doi:10.1371/journal.pone.0008296.g001
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[22] with wide application to the analysis of species assemblages,

including the analysis of change to ecological communities [23].

We chose MDS because our species assemblage abundance scores

are strongly skewed by an abundance of zeros and thus not

normally distributed. MDS has previously been used to represent

annual cycles in assemblage composition [3,24].

Computationally, the first step is to calculate a triangular matrix

of dissimilarity among all pairs of samples. The Bray-Curtis

distance measure is appropriate for assemblage data because it

gives no weight to zero/zero (mutual absence) data. It ranges from

0 (identical) to 1 (no overlap), and is calculated as:

BC~

Pn

i~1

jXij { Xik j

Pn

i~1
Xij z Xik

� �

where BC = the Bray Curtis index of dissimilarity; Xij, Xik = the

number of individuals of species i in the samples j and k; and

n = the number of species in the samples [21]. MDS then seeks

solutions for pre-determined levels of dimensionality whilst

miminising stress using iterative selection of steepest descent in

stress. Stress is ‘‘a measure of difference in monotonicity in the

relationship between’’ the original and reduced dimensional

dissimilarity matrices [25], and is thus greatest when the number

of dimensions is least. Solution axes provide relative scaling of final

dissimilarity but are otherwise arbitrary. The cloud of points may

thus be rotated around their centroid (the mean of axis scores),

allowing one to align maximum linear variance in the ordination

with an axis for further consideration – a process known as

varimax rotation.

For the purpose of ordination, mosquito species present in fewer

than four samples were excluded, leaving 43 species in each

dataset [26]. Monthly species data were ln(x+1)-transformed to

reduce the overwhelming effect of a few abundant species.

Ordination was undertaken in the software PC-ORD 4.01 [25]

using the Bray-Curtis distance measure and MDS. Four hundred

iterations were allowed to generate minimum-stress solutions.

Outputs were evaluated in from 1 to 6 dimensions and the optimal

dimensionality identified as that in which the stress was

significantly (P,0.05) better than random and in which the

addition of another dimension reduced ordination stress only

slightly. The 11-site ordination was repeated with different

random starting coordinates to check for robustness. The solutions

presented have been subject to varimax rotation.

To identify the species influencing ordination structure, a biplot

vector for each species was fitted through the ordination centroid

[25]. Ordination points (months) are scored for the point on the

line to which they are perpendicular, and the correlation between

this position and the species’ abundance calculated. The vector is

rotated around the ordination centroid to optimise the correlation.

For each species, the optimal correlation was evaluated for

significance (P,0.05) after application of the sequential Bonferroni

correction for the number of species in the ordination.

Species represented by a significant biplot vector in the 11-site

ordination were characterised for breeding site ecological

attributes (salinity: brackish/salt cf freshwater; waterbody type:

temporary pools cf containers cf permanent or semi-permanent

waterbodies). The angle of biplot vectors was used as a measure of

the seasonal peak of each species, and mean seasonal peaks of

attribute groups evaluated with Watson-Williams (circular) F-tests.

Species belonging to more than one attribute group were excluded

from analysis. Post-hoc evaluations of waterbody types were pair-

wise with a Bonferroni correction.

Results

Five years of data from 11 trap sites yielded 56 species from an

estimated 617,272 mosquitoes, of which 334,291 (54%) were

identified. In some years, mosquito abundance peaked early in the

wet season and again early in the dry season, but in all years was

low later in the wet season and later in the dry season (Figure 2a).

Species richness varied predictably with time of year, peaking in

the wet-dry transition (April – 33.8 species61.92 SD) and

bottoming in the dry-wet transition (October – 18.8 species61.79

SD) (Figure 2b). Diversity was consistently high from late in the

wet season (March) to mid-late dry season (August) but highly

variable in the dry-wet transtion and early to middle wet season

Figure 2. Trends in mosquito abundance over five years. Based
on weekly sampling of 11 sites around the city of Darwin: (A) weekly
average number of individuals; (B) total number of species; and (C)
species diversity (Simpson’s Diversity Index). Median monthly rainfall
(68 years) is shown in (D) for comparison.
doi:10.1371/journal.pone.0008296.g002
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(Figure 2c), the latter reflecting the propensity for a few species to

establish vast numerical preponderance at these times.

A two-dimensional ordination solution (Figure 3a) was optimal

and robust (stress = 7.8; random stress = 31.5), with repeat

ordination yielding an identical result. The solution retained

96.4% of the original variance (axis 1–72.3%; axis 2–24.1%).

Calendar months were non-randomly grouped (Mantel randomi-

sation test, P = 0.001) and demonstrated a striking annual cycle

with little variation among years. All species included displayed

significant (P,0.05 with sequential Bonferroni correction) linear

radial correlations with the 5-year ordination (Figure 3b). Most

species peaked between January and June. Brackish/saltwater

specialists peaked earlier in the wet season than freshwater

specialists (Watson-Williams F = 15.3, d.f = 36, P,0.001). Species

that breed in transient pools or containers peaked earlier in the wet

season than those of permanent or semi-permanent waterbodies

(Watson-Williams F = 12.3, d.f. = 2,35, P,0.001).

At Palm Creek, an estimated 788,840 mosquitoes were collected,

of which 38.3% (302,895) were identified, also comprising 56

species. A two-dimensional ordination solution (Figure 4) was

optimal and robust (stress = 12.5; random stress = 32.1). The

solution retained 92.5% of the original variance (axis 1–79.2%;

axis 2–13.3%). Calendar months were non-randomly grouped

(Mantel randomisation test, P,0.001). Variation among years was

markedly greater than for the 11-sites (5 year) ordination but

summary of axis coordinates (mean 6 standard deviation)

nevertheless retrieved a clear and similar annual cycle.

Both ordinations illustrate that the composition of the mosquito

assemblage was most predictable at the end of the wet season and

least so at the end of the dry season, aligned with Axis 1, and that

the greatest annual contrasts in assemblage composition were

between these times.

Discussion

Ordination of these mosquito assemblages has depicted

strikingly predictable annual cycles. These were driven by a

succession of species peaks in abundance and predictable seasonal

variation in species richness. Notwithstanding the intensely

monsoonal climate, many species persisted as adults throughout

the year, probably by continuous breeding in refugia as for Culex

and Anopheles species [27]. Predictable cycles occurred notwith-

standing the irruptive tendencies of a few species [28,29]. We

acknowledge minimizing the impact of irruptive tendencies on our

ordinations by logarithmic transformation of abundance, but note

that fundamental changes in community compostion (e.g. rare

species becomes common or vice versa) will still strongly influence

ordination position. We believe that irruptions by a few medically-

important species have clouded perceptions of system predictabil-

ity. Our data show that major mosquito irruptions occurred with

the cessation and especially the onset of the wet season – and are

thus in themselves relatively predictable in timing – and that they

do not substantially influence overall assemblage composition.

Ordination has been recommended for the analysis of temporal

change in community structure [23]. Quantitative measures of

variation among years may be derived from locations in ordination

space, for example as area of the minimum convex polygon

(Figure 3a), as measures of variance in axis scores (Figure 4), or

with the variety of more sophisticated methods for calculating area

Figure 3. Ordination (A) and biplot (B) of mosquito samples.
Based on the abundance of 43 species at 11 sites combined, with
samples in common months (n = 5 years) linked to form convex
polygons. (B) comprises significant (Bonferroni-corrected) biplot vectors
for species (only those with r.0.7 are labelled). The length of vectors in
(b) is relative to their r value, scaled to the axes coordinates. Ae. = Aedes;
An. = Anopheles; Cq. = Coquillettidia; Cx. = Culex; Ma. = Mansonia; Ve. =
Verrallina.
doi:10.1371/journal.pone.0008296.g003

Figure 4. Ordination of 24 years of mosquito samples. Based on
the monthly abundance of 43 species at Palm Creek. Data are monthly
centroids 6 one standard deviation.
doi:10.1371/journal.pone.0008296.g004
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or volume developed for the analysis of faunal home ranges [30].

Ordinations of time series of the composition of other species

assemblages have yielded less striking and/or less repeatable

annual cycles; the best we could identify being for fish and

crustaceans monitored monthly for four years in a Florida estuary

[24]. Other interesting examples are for the fish fauna of an

estuary in Belgium [31], and for crustaceans in a Spanish estuary

[3]. In none of these cases, nor any other that we have located, was

among-year variation quantified.

It is doubtless no coincidence that the above examples are all

estuarine. The marine environment is relatively buffered against

short-term and unpredictable variation in environmental condi-

tions. Deep freshwater aquatic environments may also be so

buffered but shallow and riparian habitats, such as where most

mosquitoes breed, are highly responsive to rainfall, especially in

the extreme climate of the monsoonal tropics. The mosquitoes in

our study mostly breed in shallow (,200 mm) freshwater, with a

few species breeding in deeper water to 1 m associated with

aquatic or semi-aquatic vegetation, and some in tidally influenced

environments. It is surprising, therefore, that the Darwin mosquito

assemblage displayed such organised and repeatable temporal

structure. The predictable seasonality of the monsoon is the

overwhelming influence on assemblage composition. We interpret

the seasonal succession of species in this study as indicating fine

environmental partitioning adapted to predictable rainfall ele-

ments [1], a product of the diversity of niches available [32] and

possibly a long ecological and evolutionary history [9].

Predictable annual cycles may be anticipated in environments

where assemblages are structured directly by seasonal, tidal or

daylight rhythms. Ironically but most usefully, they may provide

sensitive indicators of changing climates [33] because they are

relatively insensitive to short-term climatic aberrations.
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