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Abstract

Background: Transcriptional co-repressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate the
expression of a variety of genes and are involved in numerous developmental processes in both invertebrate and vertebrate
species. More specifically, Gro/TLE1 participates in mechanisms that inhibit/delay the differentiation of cerebral cortex
neural progenitor cells into neurons during mammalian forebrain development. The anti-neurogenic function of Gro/TLE1
depends on the formation of protein complexes with specific DNA-binding transcription factors that engage Gro/TLE1
through WRP(W/Y) sequences. Interaction with those transcription partners results in Gro/TLE1 recruitment to selected DNA
sites and causes increased Gro/TLE1 phosphorylation. The physiological significance of the latter event, termed ‘‘cofactor-
activated phosphorylation,’’ had not been determined. Therefore, this study aimed at clarifying the role of cofactor-
activated phosphorylation in the anti-neurogenic function of Gro/TLE1.

Methods and Principal Findings: A combination of site-directed mutagenesis, mass spectrometry, biochemistry, primary
cell culture, and immunocytochemical assays was utilized to characterize point mutations of Ser-286, a residue that is
phosphorylated in vivo and is located within the serine/proline-rich (SP) domain of Gro/TLE1. Mutation of Ser-286 to alanine
or glutamic acid does not perturb the interaction of Gro/TLE1 with DNA-binding partners, including the basic helix-loop-
helix transcription factor Hes1, a prototypical anti-neurogenic WRP(W/Y) motif protein. Ser-286 mutations do not prevent
the recruitment of Gro/TLE1 to DNA, but they impair cofactor-activated phosphorylation and weaken the interaction of Gro/
TLE1 with chromatin. These effects are correlated with an impairment of the anti-neurogenic activity of Gro/TLE1. Similar
results were obtained when mutations of Ser-289 and Ser-298, which are also located within the SP domain of Gro/TLE1,
were analyzed.

Conclusion: Based on the positive correlation between Gro/TLE1 cofactor-activated phosphorylation and ability to inhibit
cortical neuron differentiation, we propose that hyperphosphorylation induced by cofactor binding plays a positive role in
the regulation of Gro/TLE1 anti-neurogenic activity.
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Introduction

Groucho/transducin-like Enhancer of split (Gro/TLE) proteins

are non-DNA binding transcriptional co-repressors that are

recruited to gene regulatory sequences via interaction with a

number of DNA-binding proteins. Together with specific partners,

Gro/TLE family members mediate the gene regulatory functions

of a variety of signalling pathways, including Notch, Wnt/

Wingless, Transforming Growth Factor-b superfamily, and

Epidermal Growth Factor receptor signal transduction mecha-

nisms. As a result, invertebrate and vertebrate Gro/TLE proteins

regulate a variety of developmental mechanisms and play

important roles in integrating different signalling cascades [1–4].

A number of previous investigations have shown that Gro/TLE

proteins are expressed in proliferating neural progenitor cells where

they promote maintenance of the undifferentiated state by

inhibiting/delaying neuronal differentiation [1,2]. In Drosophila

melanogaster, gro loss-of-function mutations cause the differentiation of

supernumerary central and peripheral neurons [5–7]. This

phenotype results from the disruption of the Notch-mediated lateral

inhibition mechanism that normally restricts the number of

neuroblasts within clusters of initially equipotential presumptive

neural progenitor cells [8,9]. Committed neuroblasts activate the

Notch signalling pathway in adjacent cells, causing the transcrip-

tional induction of genes encoding basic helix loop helix (bHLH)

proteins of the Hairy/Enhancer of split (Hes) family. Hes proteins

are DNA-binding factors that recruit Gro to repress the expression,

as well as biochemical function, of pro-neuronal proteins encoded

by the achaete-scute complex or atonal genes [8–11].

Similar mechanisms occur during mammalian neurogenesis.

Gro/TLE proteins are expressed in proliferating neural

progenitor cells in the developing murine central nervous system
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[12–15] and form complexes with mammalian Hes proteins

[16,17]. Transgenic mice with deregulated Gro/TLE1 expres-

sion exhibit an inhibition/delay of forebrain neuronal differen-

tiation during embryonic development [18]. Moreover, forced

Gro/TLE1 expression in undifferentiated cerebral cortex

(cortical) neural progenitor cell cultures causes decreased

neuronal differentiation and increased numbers of proliferating

neural progenitors [19,20].

The molecular mechanisms underlying the anti-neurogenic

function of Gro/TLE1 in the developing mammalian forebrain

are starting to be characterized. Previous work has shown that the

ability of Gro/TLE1 to inhibit cortical neuron differentiation from

undifferentiated stem/progenitor cells requires the capacity to

interact with a particular group of transcription factors that bind to

the Gro/TLE C-terminal WD40 repeat (WD) domain. These

essential anti-neurogenic cofactors share the feature of recruiting

Gro/TLE through short tetrapeptides typified by the sequence

WRP(W/Y) [20]. Members of the WRP(W/Y) motif protein

family include, but are not limited to, factors like Hes1, Hes3, and

Hes5, which play essential roles in neural stem/progenitor cell

maintenance and inhibition of neuronal differentiation [21–25].

The interaction of Gro/TLE1 with Hes1, as well as other

transcription factors harbouring WRP(W/Y) motifs, has at least

two consequences. It results in Gro/TLE1 recruitment to specific

DNA sites [17,19,26] and induces Gro/TLE1 hyperphosphoryla-

tion [19,27]. The latter effect, termed ‘‘cofactor-activated

phosphorylation’’ [27], was also observed with other Gro/TLE

family members [28]. The mechanisms underlying cofactor-

activated phosphorylation of Gro/TLE proteins, as well as the

biological role of this process, were not defined. Previous work has

shown that cofactor-activated phosphorylation of Gro/TLE1 is

blocked by deletion of the serine/proline-rich (SP) domain [19].

This domain contains many serine and threonine residues, several

of which could be the substrate of phosphorylation. A role for the

SP domain in Gro/TLE phosphorylation is in agreement with

studies in Drosophila showing that Gro is phosphorylated within the

SP domain at Ser-285 (equivalent to Ser-286 of Gro/TLE1) and

Ser-297 (orthologous to Ser-298 of Gro/TLE1) [29]. However,

the possible involvement of those SP domain serine residues in

Gro/TLE cofactor-activated phosphorylation as well as the role of

the latter modification in Gro/TLE activity remain to be defined.

Here we describe studies aimed at determining whether the SP

domain of Gro/TLE1 is important for cofactor-activated

phosphorylation and whether or not the latter has a positive or

negative effect on Gro/TLE1 anti-neurogenic activity. Our results

show that Ser-286 within the SP domain of Gro/TLE1 is

phosphorylated in vivo. Mutation of Ser-286 into alanine or

glutamic acid does not impair Gro/TLE1 ability to interact with

anti-neurogenic WRP(W/Y) proteins like Hes1 and become

recruited to DNA. However, these mutations abolish Gro/TLE1

cofactor-activated phosphorylation, weaken the association of

Gro/TLE1 with chromatin, and block its anti-neurogenic activity.

Similar effects were observed after mutation of SP domain Ser-289

and Ser-298. Taken together, these findings implicate Ser-286,

Ser-289, and Ser-298 in the process of cofactor-activated

phosphorylation. They suggest further that this post-translational

modification plays a positive role in regulating the ability of Gro/

TLE1 to inhibit neuronal differentiation.

Methods

Site Directed Mutagenesis and DNA Plasmids
DNAs encoding mutated forms of Gro/TLE1 harbouring the

mutations S286A, S286E, S289A, S289E, S298A, and S298E

were generated by site directed mutagenesis using the Quick

Change II site directed mutagenesis kit (Stratagene, La Jolla, CA),

using the pCMV2-FLAG-Gro/TLE1 plasmid [19] as substrate. The

following oligonucleotide primers were used for mutagenesis

(mutations are underlined): S286A-F [59- CTAAAGAAG-

GATGCTTCTAGCGCTCCAGCTTCCACGGCCTCCTC],

S289A-F [59 -CTAGCAGTCCAGCTGCCACGGCCTCCTC],

S298A-F [59-CCTCGGCAAGTTCCACTGCCTTGAAATC-

CAAAGAAATGAGC], S286E-F [59-AGGATGCTTCTAGC-

GAACCAGCTTCCACGGCCTC], S289E-F [59- CTTCTAG-

CAGTCCAGCTGAAACGGCCTCCTCGGCAAG] and S298

E-F [59-CCTCGGCAAGTTCCACTGAATTGAAATCCAAA-

GAAATGAGC]. pcDNA3-GAL4dbd-Gro/TLE1 plasmids used for

transcription assays were obtained by PCR amplification of the

entire coding sequence of each mutant using the appropriate

pCMV2-FLAG-Gro/TLE1 plasmids as templates. This was followed

by subcloning into the EcoRV site of pcDNA3-GAL4dbd plasmid,

which encodes the DNA-binding domain of GAL4 (GAL4dbd).

Vectors pCMV2-FLAG-Hes1, pRc/CMV-Hes1, pCMV2-HA-Hes1,

pCMV2-FLAG-Gro/TLE1, pCMV2-FLAG-Runx1, pCMV2-HA-En-

grailed1 (En1), pEGFP, p5xGAL4UAS-SV40promoter-luciferase, p6N-

by Ù-actinpromoter-luciferase, pFOX-Ngn3promoter-luciferase, and pRSV-

b-galactosidase were described [16,17,19,20].

Mass Spectrometry
Human embryonic kidney (HEK) 293 cells were transfected

with pCMV2-FLAG-Gro/TLE1 using the SuperFect reagent (Qia-

gen, Missisauga, ON, Canada) as described [17,19]. FLAG-Gro/

TLE1 was immunoprecipitated using an anti-FLAG antibody

(Sigma, St. Louis, MI), followed by SDS-polyacrylamide gel

electrophoresis and staining with Coumassie Blue. Resolved Gro/

TLE1 bands were excised (1-mm cubes) and subjected to liquid

chromatography-tandem mass spectrometry (LC-MS/MS) analy-

sis at the McGill University/Genome Quebec Innovation Centre.

Individual gel bands were washed twice with water, destained with

50% methanol in 100 mM ammonium bicarbonate, and then

dehydrated with 75 ml acetonitrile. Samples were treated with

50 ml of 10 mM DTT for 30 minutes (60uC) followed by

incubation with 50 ml of 55 mM iodoacetamide for 20 minutes

(20uC). After washing and dehydration in ammonium bicarbonate

and acetonitrile respectively, gel pieces were digested for 4.5 hours

with 6 ng/ml of trypsin (Promega, Madison, WI) in 100 mM

ammonium bicarbonate (pH 8.0). Peptides were extracted with

30 ml formic acid solution (1% formic acid in 2% acetonitrile) for

30 minutes. Peptides were extracted twice more with 12 ml formic

acid solution and 12 ml acetonitrile for 30 min for a final volume of

60 ml.

The resulting peptides (20 ml) were loaded onto Zorbax 300SB-

C18 560.3 mm desalting columns (Agilent, Mississauga, Ontario)

and washed for 5 min at 15 ml/min with 3% acetonitile: 0.1%

formic acid. Peptide separation was performed on a New

Objectives Biobasic C18 1060.075 mm Integrafrit analytical

column (New Objectives, Woburn, MA). Gradient elution was

from 10% acetonitrile: 0.1% formic acid to 95% acetonitrile: 0.1%

formic acid in 30 min using an Agilent 1100 Nanoflow system.

The chromatographic effluent was introduced at a flow rate of

200 nL/min.

MS was performed using a QTRAP 4000 instrument from

Sciex-Applied Biosystems (Foster City, CA). The QTRAP 4000

system was operated in positive ion mode and spectra acquired in

a data-dependent manner, with the top three most intense ions in

the MS survey scan selected for MS/MS by collision-induced

dissociation. Precursor ions selected two times were excluded for

90 seconds. Survey scan used was enhanced MS scan from 375 to
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1600 m/z at 4000 amu/sec using Dynamic Fill time. Collision

energy was determined using a rolling collision energy equation.

MS/MS data were acquired for three scans from 70 to 1700 m/z

with 20 ms trap fill time and Q0 trapping activated.

Peak lists were generated with mascot distiller 2.1 and searched

against the IPI human database (67770 sequences) from

September 2007. Mascot 2.1 search parameters used were

trypsin with a single miscleavage, carboxyamidomethylation of

cysteines as fixed modification, oxydation of methionines and

phosphorylation of serine, threonine and tyrosine as variable

modifications, 1.5 Da precursor and 0.8 MS/MS fragment

tolerances.

Co-Immunoprecipitation Assays and Phosphatase
Treatment

HEK293 cells were co-transfected with 1.0 mg of pCMV2-FLAG-

Gro/TLE1 (WT, S286A, S286E, S289A, S289E, S298A, S298E) and

1.0 mg of either pCMV2-FLAG-HES1 or pCMV2-HA-En1. Cell

lysates were prepared and co-immunoprecipitations using either

anti-HA (Covance, Berkeley, CA) or anti-Gro/TLE1 [19]

antibodies were performed as described [19,20,30]. This step

was followed by Western blotting analysis using anti-FLAG

(1:10,000) or anti-HA (1:5,000) antibodies. Incubation of cell

extracts with calf intestinal phosphatase was as described

previously [31].

Transient Transfection/Transcription Assays
HEK293 cells were transfected using the SuperFect reagent. In

all cases, the total amount of transfected DNA was adjusted at

3.0 mg per well using pcDNA3. In studies using a GAL4 responsive

promoter, assays were performed with 1.5 mg/transfection of

reporter construct p5xGAL4UAS-SV40promoter-luciferase in the

presence or absence of plasmids pcDNA3-GAL4dbd or pcDNA3-

GAL4dbd-Gro/TLE1 (wild-type or mutated sequences) (1.0 mg/

transfection). Assays using the Hes1-regulated reporter vectors

p6N-b-actinpromoter-luciferase [17] and pFOX-Ngn3promoter-luciferase

[32,33] (2.0 mg/transfection), were performed with pCMV2-

FLAG-Hes1 (0.050 mg/transfection) in the absence or presence

of pCMV2-FLAG-Gro/TLE1 (wild-type or mutated sequences)

(0.1 mg/transfection). In each case, 0.25 mg/transfection of b-

galactosidase expression plasmid, pRSV-bgal, was used to normal-

ize for transfection efficiency. Twenty-four hours after transfec-

tion, cells were subjected to determination of luciferase activity as

described [17,19,32]. Results were expressed as mean values

6S.D. Expression of GAL4dbd-Gro/TLE1 fusion proteins was

detected using an anti-GAL4dbd antibody (1:500; Santa Cruz

Biotechnology). Expression of FLAG epitope-tagged proteins was

detected with an anti-FLAG antibody.

Preparation of Subcellular Fractions
Postnuclear supernatants and chromatin-enriched fractions

were obtained as described previously [27,31]. Subcellular

fractions were analyzed by Western blotting using anti-FLAG,

anti-Gro/TLE (‘pan-TLE’) [19,27,31], anti-p65 (1:3,000; Santa

Cruz Biotechnology, Santa Cruz, CA), and anti-histone deacety-

lase 1 (HDAC1) (1:1,000; Santa Cruz Biotechnology) antibodies.

Experiments using the protein kinase CK2 inhibitor, chrysin

(Sigma) were performed as described [27].

Chromatin Immunoprecipitation
Chromatin immunoprecipitation experiments were performed

as described in Supplemental Methods S1.

Cortical Neural Progenitor Cell Cultures
Animal studies followed the guidelines of the Canadian

Council of Animal Care and were approved by the Montreal

Neurological Institute Animal Care Committee. Primary cultures

of neural progenitor cells from embryonic day (E) 12–14 mouse

dorsal telencephalic cortices were obtained and cultured exactly

as described [19,20,33]. Cells were transfected after 48 hours in

vitro as described [19,20] using plasmids encoding either

enhanced green fluorescent protein (GFP) alone (0.2 mg/well),

or both GFP (0.2 mg/well) and Gro/TLE1 [pCMV2-FLAG-Gro/

TLE1 (WT, S286A, S289A, S298A, S286E, S289E, or S298E)]

(0.8 mg/well). Three days after transfection, cells were analyzed

by immunocytochemistry using antibodies against the prolifer-

ating cell marker Ki67 (1:200; BD Pharmigen), the neural

progenitor cell marker nestin (1:400; Millipore), the neuronal cell

marker type III b-tubulin (1:300; Promega, Madison, WI), and

the neuronal cell marker neuron specific nuclear protein (NeuN)

(1:100; Millipore). Cells were counterstained with Hoechst 33258

(Sigma) before examination by fluorescence microscopy

[19,20,33]. Grayscale images were digitally assigned to the

appropriate red or green channel using Northern Eclipse

software (Empix, Missisauga, ON, Canada). Three to six random

fields of each condition (per experiment) were used for

quantitation of the percent of GFP-positive cells co-expressing

specific markers [32–36]. Results were expressed as the mean

values6the standard deviation. At least six separate experiments

were conducted in each case and statistical analysis was

performed using the Student’s t-Test.

Results

Phosphorylation of the N-Terminal Portion of the
Gro/TLE1 SP Domain In Vivo

Gro/TLE1 is a basally phosphorylated transcription factor

that undergoes increased phosphorylation upon interaction with

a variety of DNA-binding proteins. This hyperphosphorylation

event, termed cofactor-activated phosphorylation [19,27], is

blocked by deletion of amino acids 285–335 [19]. Those residues

are part of the N-terminal portion of the Gro/TLE1 SP domain

(Fig. 1A) and define a region with a high density of possible

phosphorylation sites, several of which are evolutionarily

conserved from flies to humans (Fig. 1B). To determine whether

amino acids 285–335 define a phosphorylation domain, we

expressed FLAG epitope-tagged Gro/TLE1 in HEK293 cells.

Immunoprecipitated Gro/TLE1 was digested with trypsin and

subjected to LC-MS/MS mass spectrometry. Among those

tryptic peptides that were amenable to analysis, searching against

the IPI database led to the identification of a tryptic phospho-

peptide (282DASSpSPASTASSASSTSLK300) that was derived

from the SP domain of Gro/TLE1 and contained a phosphor-

ylated serine at position 286 (Fig. 1C). Ser-286 of Gro/TLE1 is

evolutionarily conserved (Fig. 1B) and corresponds to Drosophila

Gro Ser-285, a residue that was identified as a site of

phosphorylation by two-dimensional phosphopeptide analysis

[29]. We detected phosphorylation of Ser-286 of Gro/TLE1

even without co-transfection of Gro/TLE-binding proteins such

as Hes1 (data not shown). This situation suggests that phosphor-

ylation of Ser-286 is not dependent on cofactor binding, although

it should be emphasized that HEK293 cells endogenously express

a number of Gro/TLE-binding proteins, including Hes1 [36].

Our analysis failed to detect peptides phosphorylated at Ser-289

and/or Ser-298, which were hypothesized to be sites of

phosphorylation based on the analysis of Drosophila Gro [29]. It

is possible that hyperphosphorylated peptides were too hydro-
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philic to be retained on reversed-phase columns. Together, these

observations show that the SP domain of Gro/TLE1 is

phosphorylated at position 286.

Characterization of Point Mutations of Serine Residues in
the SP Domain of Gro/TLE1

Based on the mass spectrometric analysis of Gro/TLE1, we

selected Ser-286 as an in vitro mutagenesis target. Moreover, because

of previous studies in Drosophila suggesting that Gro is phosphor-

ylated at Ser-287 (analogous to Gro/TLE1 Ser-289) and Ser-297

(orthologous to Gro/TLE1 Ser-298) [29] (Fig. 1B), we selected Ser-

289 and Ser-298 in the SP domain of Gro/TLE1 as additional

mutagenesis targets. Each serine residue was replaced by either

alanine or glutamic acid (these mutations will be hereafter

collectively termed ‘‘SP domain mutations’’). All mutated proteins

displayed normal electrophoretic mobility on denaturing polyacryl-

amide gels, with some occasional variation in expression levels

(Fig. 2A). Moreover, they all translocated to the nucleus like wild

type Gro/TLE1 (Fig. 2B). More importantly, the mutated proteins

retained the ability to repress transcription from a basally active

promoter when expressed as fusion proteins with the GAL4 DNA-

binding domain (Fig. 2C and D). Together, these results show that

mutation of Ser-286, Ser-289, and Ser-298 does not detectably

perturb the folding and biochemical activity of Gro/TLE1.

Figure 1. Phosphorylation of Gro/TLE1 SP domain. (A) Schematic representation of the Gro/TLE1 domain structure characterized by glutamine-
rich (Q), glycine/proline-rich (GP), protein kinase CK2/cell cycle-dependent kinase 2/nuclear localization sequence (CcN), serine/proline-rich (SP), and
WD40 repeat (WD) domains. (B) Sequence comparison of the N-terminal portion of the SP domain of human, mouse, zebrafish, and Xenopus Gro/
TLE1, as well as Drosophila Gro. The location of Ser-286, Ser-289, and Ser-298 within the SP domain of Gro/TLE1 is indicated (top), as is the location of
Ser-285, Ser-287, and Ser-298 of Drosophila Gro (bottom). Identical and conserved residues are highlighted in black or grey, respectively. (C) Tandem
mass spectrum of the indicated phosphopetide from human Gro/TLE1; a sufficient number of Yn ions (C-terminus-derived fragment ions) were
detected to assign the phosphorylation site to Ser-286.
doi:10.1371/journal.pone.0008107.g001
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Figure 2. Characterization of Gro/TLE1 SP domain mutations. (A) Wild type (WT) or mutated forms of FLAG epitope-tagged Gro/TLE1 were
expressed in HEK293 cells, followed by cell lysis and fractionation on a 10% SDS polyacrylamide gel and Western blotting (WB) analysis using an anti-
FLAG antibody. (B) Wild type or mutated Gro/TLE1 proteins were expressed in HEK293 cells followed by immunofluorescence analysis using an anti-
FLAG antibody. (C) HEK293 cells were transfected with a p5xGAL4UAS-SV40promoter-luciferase reporter construct (1.5 mg/transfection) in the absence
(bars 1 and 2) or presence of wild type (bar 3) or mutated (bars 4–9) forms of GAL4dbd-Gro/TLE1 (1 mg/transfection). Luciferase activity in the absence
of effector plasmids was considered 100% and values in the presence of effector plasmids were expressed as the mean6the standard deviation of at
least four separate experiments performed in duplicate; (***, P,0.0001). (D) Western blotting analysis of GAL4dbd-Gro/TLE1 proteins used in the
transcription assays using an anti-GAL4dbd antibody; GAL4dbd-Gro/TLE1 proteins migrate as a doublet, as shown previously (20).
doi:10.1371/journal.pone.0008107.g002

Groucho/TLE1 Phosphorylation

PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8107



SP Domain Mutations Do Not Perturb the Ability of Gro/
TLE1 to Interact with WRPW or Eh1 Repressor Peptides

Gro/TLE proteins interact with a variety of transcription

factors that harbour sequences belonging to the WRP(W/Y) or

Engrailed homology 1 (Eh1) repressor peptide families [1]. Both

WRP(W/Y) and Eh1 peptides bind to the C-terminal WD domain

of Gro/TLE [20,37]. This situation suggested that mutation of

residues 286, 289, or 298 should not affect binding of Gro/TLE1

to cofactors containing those repressor peptides. To examine this

possibility, co-immunoprecipitation assays were performed using

Hes1 as a prototypical example of WRP(W/Y) motif proteins.

Interaction with WRP(W/Y) motif proteins was shown to be

essential to the anti-neurogenic function of Gro/TLE1 [20]. En1

was used in similar assays as a typical example of Eh1 motif-

bearing proteins. These experiments showed that all Gro/TLE1

SP domain mutations retained the ability to bind to Hes1 and En1

in co-immunoprecipitation assays (Fig. 3A and B).

To further test if the SP domain mutations would interfere with

the ability of Gro/TLE1 to functionally interact with Hes1,

transient transfection/transcription experiments were performed

next to determine whether the mutated proteins were still

competent to repress transcription together with Hes1. These

experiments were performed recognizing that transient transfec-

tion/transcription assays are useful to monitor the ability of

different transcription factors to regulate transcription together,

but are of limited usefulness to study the regulation of endogenous

genes because it is unlikely that transfected reporter plasmids

acquire true chromatin-like structures. HEK293 cells were

transfected with two separate reporter constructs containing the

luciferase gene under the control of either a basally active b-actin

promoter linked to six tandem Hes1-binding sites (N-box) (Fig. 4A)

or a 3.0 kb fragment of the neurogenin3 promoter containing

multiple N-box sequences (Fig. 4B). Hes1 was shown to repress

transcription from both of those promoters in a WRPW motif-

dependent manner [17,32]. We designed experimental conditions

where little or no transcriptional repression was observed when

Hes1 was expressed alone. Co-expression of wild-type Gro/TLE1

resulted in a significant increase in transcriptional repression in the

presence of Hes1 (Fig. 4A, cf. bars 1–3 and 11–13; 4B, cf. bars 1–

3). Gro/TLE1 had no effect on reporter gene transcription when

expressed in the absence of Hes1 (Fig. 4A, bars 7 and 17; 4B, bar

10). Similar to wild type Gro/TLE1, each SP domain mutant

tested in our assays was competent to promote Hes1-mediated

repression (Fig. 4A and B). Taken together, these results show that

the SP domain mutations do not disrupt the binding of Gro/TLE1

to Hes1.

Figure 3. Effect of SP domain mutations on Gro/TLE1 interaction with Hes1 and Engrailed1. FLAG epitope-tagged wild type (WT) or
mutated Gro/TLE1 proteins were co-expressed in HEK293 cells with FLAG-Hes1 (A) or HA epitope-tagged En1 (B), as indicated. Each cell lysate (INPUT)
was subjected to immunoprecipitation (IP) with either anti-Gro/TLE1 (A) or anti-HA (B) antibodies. Immunoprecipitates, together with 1/10 of each
input lysate, were fractionated on a 10% SDS polyacrylamide gel, followed by Western blotting (WB) with the indicated antibodies.
doi:10.1371/journal.pone.0008107.g003
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SP Domain Mutations Perturb Cofactor-Activated
Phosphorylation of Gro/TLE1

We next examined the effect of individual SP domain mutations

on the ability of Gro/TLE1 to undergo cofactor-activated

phosphorylation induced by proteins containing WRP(W/Y)

repressor peptides (Fig. 5A). Mutation of Ser-286 and Ser-289,

to either alanine or glutamic acid, blocked Gro/TLE1 hyperpho-

sphorylation induced by Hes1 (harbouring a WRPW peptide) or

Runx1 (WRPY peptide) (Fig. 5B and C, cf. lanes 2–4, 6 and 7).

The effect of mutating Ser-298 was more complex. The S298A

mutation did not abolish cofactor-activated phosphorylation, but

the change in Gro/TLE1 electrophoretic mobility was consistently

less pronounced than in the case of wild type Gro/TLE1 (Fig. 5B

and C, cf. lanes 2 and 5). The S298E mutation did not perturb

cofactor-activated phosphorylation, which was readily observed in

the presence of both Hes1 and Runx1 (Fig. 5B and C, lane 8).

Figure 4. Effect of SP domain mutations on Gro/TLE1 transcriptional co-repressor activity in transiently transfected cells. HEK293
cells were transfected with reporter constructs containing the luciferase gene under the control of either the b-actin promoter linked to six tandem N-
boxes (A) or a ,3.0 kb fragment of the neurogenin3 promoter, which contains multiple N-boxes (B). Reporter plasmids were transfected alone (bar 1;
luciferase activity considered 100%) or in combination with the following expression plasmids: pCMV2-FLAG-Hes1 (50 ng/transfection), pCMV2-FLAG-
Gro/TLE1 (WT, S286A, S289A, S298A, S286E, S289E, or S298E) (100 ng/transfection), as indicated. Luciferase activities were expressed as the
mean6the standard deviation of at least four separate experiments performed in duplicate; (*, P,0.01; **, P,0.001). Western blotting analysis of Gro/
TLE1 and Hes1 proteins tested in the transcription assays, using an anti-FLAG antibody, is shown under each graph.
doi:10.1371/journal.pone.0008107.g004
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Gro/TLE1(S298E) migrated like wild type Gro/TLE1 on low

percentage SDS-polycrylamide gels when expressed in the absence

of cofactor, showing no signs of constitutive hyperphosphorylation

(Fig. 5D). The same results were obtained when other Gro/TLE1-

binding proteins were tested (data not shown). Together, these

findings show that both Ser-286 and Ser-289 are necessary for

cofactor-activated phosphorylation of Gro/TLE1. Replacing these

residues with glutamic acid is not sufficient to replace the lack of a

serine residue. In contrast, a serine-glutamic acid substitution at

position 298 does not affect cofactor-activated phosphorylation,

suggesting that Ser-298 is not phosphorylated during that process

but needs to be phosphorylated for cofactor-activated phosphor-

ylation to occur.

SP Domain Mutations Weaken the Binding, but Not the
Recruitment, of Gro/TLE1 to Chromatin

Gro/TLE proteins can translocate to the nucleus but have no

intrinsic DNA-binding ability. They become recruited to chroma-

tin by interacting with specific cofactors, such as Hes1. Previous

studies have suggested that cofactor-activated phosphorylation

promotes the association of Gro/TLE proteins with chromatin.

More specifically, hyperphosphorylated Gro/TLEs are preferen-

tially recovered in chromatin-enriched nuclear fractions after

subcellular fractionation experiments, whereas underphosphory-

lated forms are found mostly in postnuclear supernatant fractions

[27,31,38]. Moreover, cofactor-activated phosphorylation of Gro/

TLE is dependent on a previous constitutive phosphorylation

event mediated by protein kinase CK2 [27]. Pharmacological

inhibition of protein kinase CK2 has two effects: it impairs the

ability of Gro/TLE to undergo cofactor-activated phosphorylation

and causes a weakened interaction of Gro/TLE with chromatin,

as shown by comparing the ‘retention’ of Gro/TLE in chromatin-

enriched nuclear fractions obtained after subcellular fractionation

in the absence or presence of protein kinase CK2 inhibitors

(Fig. 6A) [27].

Based on these observations, we examined whether the SP

domain mutations that block cofactor-activated phosphorylation

would weaken the strength of the interaction of Gro/TLE1 with

chromatin. Subcellular fractionation assays were performed to

compare the nuclear retention of wild type or mutated Gro/TLE1

proteins in the absence or presence of Hes1. All Gro/TLE1 proteins

tested were poorly retained in the chromatin-enriched nuclear

fraction in the absence of Hes1, resulting in the recovery of

considerable amounts of proteins in the post-nuclear supernatant

(Fig. 6Ba, cf. lanes 1 and 2, 5 and 6, 9 and 10, 13 and 14). The co-

expression of Hes1 led to both cofactor-activated phosphorylation of

Gro/TLE1 and the retention of hyperphosphorylated Gro/TLE1

in the chromatin fraction, indicative of a tighter association with

chromatin components (Fig. 6Ba, cf. lanes 3 and 4). In contrast,

significant amounts of the S286E mutant, which did not undergo

cofactor-activated phosphorylation, were recovered in the post-

nuclear supernatant even in the presence of Hes1 (Fig. 6Ba, cf. lanes

7 and 8). Similar results were obtained when mutation S286A was

tested (Figure S1a). Mutations S289A, S289E, and S298A also

resulted in decreased nuclear retention of Gro/TLE1 (Fig. 6Ba and

Figure S1a). These differences were specific because we observed no

detectable changes in the subcellular localization of co-transfected

Hes1 or endogenous proteins like histone deacetylase 1 or the NF-

kB subunit p65 (Fig. 6B, b and c; Figure S1). In contrast, mutant

S298E, which was competent to undergo cofactor-activated

phosphorylation, was mostly retained in the chromatin fraction

like wild type Gro/TLE1 (Fig. 6Ba, cf. lanes 15 and 16).

To exclude the possibility that the observed differences might be

due to perturbations of the recruitment of Gro/TLE1 to DNA, we

performed chromatin immunoprecipitation assays. These experi-

ments involve a covalent cross-linking step that ‘immobilizes’ on

chromatin the entire complex of Gro/TLE1 and its DNA-binding

partners and other cofactors. As a consequence, the association of

Gro/TLE1 with DNA depends only in part on the affinity of Gro/

TLE1 for chromatin but mostly on the cross-linking of the entire

transcription complex, including the DNA-binding factors to which

Gro/TLE1 is bound. We found that wild type and SP domain

mutated Gro/TLE1 proteins were all able to become localized in

vivo to the promoter of the Ascl1/Mash1 (Ascl1) gene, a previously

Figure 5. Effect of SP domain mutations on cofactor-activated
phosphorylation of Gro/TLE1. (A) Equivalent amounts of protein
extracts from cells transfected with the indicated proteins were
incubated in the absence (lanes 1 and 2) or presence (lanes 3 and 4)
of calf intestinal phosphatase (CIP), followed by fractionation on a 6%
SDS polyacrylamide gel and Western blotting (WB) analysis with an anti-
FLAG antibody. Phosphatase treatment abolished the slower Gro/TLE1
species induced by Runx1 expression. (B and C) HEK293 cells were co-
transfected with FLAG epitope-tagged wild type or mutated Gro/TLE1
proteins in the absence or presence of either FLAG-Hes1 (B) or FLAG-
Runx1 (C), followed by fractionation on a 6% SDS polyacrylamide gel
and Western blotting with an anti-FLAG antibody. The slower Gro/TLE1
band visible when Hes1 or Runx1 were co-expressed (lanes 2 and 8; two
asterisks) was either reduced (lane 5; one asterisk) or absent in the case
of all SP domain mutations (lanes 3–7), except for S298E (lane 8). (D)
Western blotting analysis with an anti-FLAG antibody of the indicated
proteins expressed in HEK293 cells and fractionated on a 5% SDS
polyacrylamide gel.
doi:10.1371/journal.pone.0008107.g005
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characterized [26] bona fide target of Hes1: Gro/TLE complexes

(Figure S2). This finding is in agreement with the demonstration

that Gro/TLE1 folding and ability to form complexes with Hes1

are not affected by these mutations. Taken together, these results

provide evidence that mutations that impair cofactor-activated

phosphorylation do not prevent the recruitment of Gro/TLE1 to

physiologically relevant promoters, but weaken the strength of Gro/

TLE1 interaction with chromatin components.

Cofactor-Activated Phosphorylation Is Required for
Gro/TLE1 Anti-Neurogenic Activity

Gro/TLE1 inhibits the differentiation of cortical neurons from

undifferentiated progenitors [19,20]. This function requires

complex formation with proteins containing the WRP(W/Y)

motif but is not dependent on interactions with Eh1 motif-bearing

transcription factors [20]. The characterization of SP domain

mutations that do not affect interaction with WRP(W/Y) proteins

but block cofactor-activated phosphorylation of Gro/TLE1

provided a means of assessing the role of the latter mechanism

in Gro/TLE1 anti-neurogenic activity.

Primary cultures of neural progenitor cells were established

from E12–E13 mouse embryonic dorsal telencephalon [19,20,33].

These cortical progenitor cell cultures have been used extensively

to investigate extrinsic and intrinsic regulators of cortical neuron

differentiation [34,35,39,40]. Wild type or mutated forms of Gro/

TLE1 were expressed in cortical progenitor cells, together with

enhanced GFP to visualize the transfected cells. Three days after

transfection, immunofluorescence analysis was performed to

determine the numbers of GFP-positive cells co-expressing

markers of either proliferating undifferentiated neural progenitors

or post-mitotic neurons (Fig. 7A). Under those conditions, less than

10% of the transfected cells normally corresponded to astrocytes at

the time of analysis, and the number of cells undergoing

programmed cell death was below 5% [20]. As previously shown

[19,20], exogenous expression of wild type Gro/TLE1 caused an

increase in the number of cells co-expressing GFP and the mitotic

neural progenitor markers nestin and Ki67, compared to control

conditions (Fig. 7B and D, cf. bars 1 and 2). In parallel, wild type

Gro/TLE1 caused a reduction in the number of GFP-positive cells

exhibiting a neuronal morphology and expressing neuronal cell

markers like type III b-tubulin and NeuN (Fig. 7C and E, cf. bars 1

and 2). Comparison of wild type and mutated forms of Gro/TLE1

showed that all those SP domain mutations that blocked cofactor-

activated phosphorylation and weakened the strength of the

association of Gro/TLE1 with chromatin also impaired the anti-

neurogenic effect of Gro/TLE1 (Fig. 7B–E, cf. bars 2–7). In

contrast, the S298E mutation, which had no effect on either

cofactor-activated phosphorylation or affinity for chromatin, did

not perturb the ability of Gro/TLE1 to inhibit neuronal

differentiation (Fig. 7B–E, cf. bars 2 and 8). Taken together, these

findings demonstrate a requirement of specific serine residues for

Gro/TLE1 anti-neurogenic activity. Moreover, they provide

evidence that phosphorylation changes induced by cofactor

Figure 6. Effect of SP domain mutations on the association of Gro/TLE1 with chromatin. (A) Pharmacological inhibition of protein kinase
CK2. A subcellular fractionation procedure was performed to obtain postnuclear supernatants (PNS) and chromatin-enriched nuclear extracts (NE)
from cells transfected with an Hes1-expression plasmid to promote the cofactor activated hyperphosphorylation of endogenous Gro/TLE proteins.
Equivalent amounts of fractions were subjected to SDS-polyacrylamide gel electrophoresis (6% gel), followed by sequential Western blotting (WB)
with anti-Gro/TLE (‘panTLE’) (a) and anti-HDAC1 (b) antibodies. Treatment with chrysin resulted in reduced nuclear retention of endogenous Gro/TLE,
but not HDAC1, proteins. It also caused a decrease of the more slowly migrating, hyperphosphorylated Gro/TLE form(s), as previously reported (27).
(B) Analysis of the chromatin association of Gro/TLE1 by subcellular fractionation. Postnuclear supernatant and chromatin-enriched nuclear extracts
from cells transfected with the indicated combinations of FLAG-tagged proteins were subjected to SDS-polyacrylamide gel electrophoresis, followed
by sequential Western blotting with anti-FLAG (a and c) and anti-HDAC1 (b) antibodies, as indicated. Both the hyperphosphorylation (readily
detactable on 6% gels) and increased chromatin association of wild type Gro/TLE1 induced by Hes1 were impaired by the SP mutations S286E and
S289E (cf. lanes 3 and 4 to lanes 7 and 8, 11 and 12), but not by the S298E mutation (cf. lanes 3 and 4 to lanes 15 and 16). No changes were observed
in the strength of the nuclear association of Hes1 and HDAC1 (panels b and c). Hes1 was consistently expressed at slightly lower levels when co-
expressed with the S286E mutant. Shown is a representative example of three separate experiments.
doi:10.1371/journal.pone.0008107.g006
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Figure 7. Effect of SP domain mutations on Gro/TLE1 ability to inhibit cortical neuron differentiation. (A) Primary cultures of E13.0
mouse embryonic cortical progenitor cells were transfected with plasmids encoding either GFP alone (Control; top row) or a combination of GFP and
wild type Gro/TLE1 (Gro/TLE1; bottom row). After fixation, cells were subjected to double-labeling analysis of the expression of GFP (green) and either
Ki67, nestin, NeuN, or type III b-tubulin (bIIItubulin) (red), as indicated. Arrowheads point to examples of double-labeled cells. (B–E) Quantitation of
the percentage of GFP-positive cells that co-expressed nestin (B), type III b-tubulin (C), Ki67 (D), or NeuN (E) in the absence or presence of wild type or
mutated forms of Gro/TLE1. The anti-neurogenic activity of Gro/TLE1 was impaired by the SP mutations S286A, S289A, and S298A. Results are shown
as the mean6the standard deviation (.500 cells were counted in each case; n$5; **, P,0.001 using the Student’s t test).
doi:10.1371/journal.pone.0008107.g007
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binding are essential to the ability of Gro/TLE1 to inhibit

neuronal differentiation.

Discussion

In this paper, we sought to determine whether the change in

phosphorylation induced by transcriptional cofactor binding plays

a positive or negative role in the ability of Gro/TLE1 to inhibit/

delay the transition of cortical progenitor cells into neurons. Using

specific point mutations in the SP domain of Gro/TLE1, we were

able to uncouple cofactor interaction from cofactor-activated

phosphorylation. Our studies showed that Gro/TLE1 anti-

neurogenic function is disrupted by mutations that do not perturb

interactions with DNA-binding partners but prevent cofactor-

activated phosphorylation. This finding points to an essential role

for cofactor-activated phosphorylation in Gro/TLE1 anti-neuro-

genic function.

Role of SP Domain Ser-286 in Cofactor-Activated
Phosphorylation

Through a combination of mass spectrometry and mutation

analysis, we obtained evidence that Ser-286 of Gro/TLE1

(SS286SPASTASS) is phosphorylated in vivo. This result is in

agreement with in vitro studies in Drosophila showing the Ser-285 of

Gro (position equivalent to Ser-286 of Gro/TLE1) is phosphor-

ylated [29]. The identity of the kinase that might phosphorylate

Ser-285/286 of Gro/TLE proteins remains to be determined.

Computer-assisted prediction of possible phosphorylation sites

(http://scansite.mit.edu) suggests glycogen synthase kinase 3

(GSK-3) as a possible kinase for Gro/TLE1 Ser-286. GSK-3 is

normally constitutively active in cells [41]. This property would

make GSK-3 a possible candidate for phosphorylation of target

residues that are not always available but become exposed in

regulated manners, as is likely the case for Gro/TLE residues that

are phosphorylated in response to cofactor binding. GSK-3 has a

loose substrate specificity, S/T-X-X-X-pS/pT, where a proline is

often found near the phosphorylated site (highlighted in bold face

type). Prior phosphorylation at adjacent residues is often, but not

always, a requirement [41]. Across Gro/TLE family members,

the sequence surrounding Ser-285/286 has a high density of

phosphorylatable residues that could contribute to the susceptibil-

ity of Ser-285/286 to GSK-3-mediated phosphorylation. Our

observation that Ser-289 of Gro/TLE1 is also required for

cofactor-activated phosphorylation is consistent with that possibil-

ity, although we have not yet obtained evidence that Ser-289 is

phosphorylated in vivo.

Regardless of the precise identity of the kinase involved in the

phosphorylation of Ser-286, our present results demonstrate an

important role for this residue in Gro/TLE1 cofactor-activated

phosphorylation. Mutation of Ser-286 to either alanine or

glutamic acid does not disrupt the ability of Gro/TLE1 to

translocate to the nucleus and form functional transcription

complexes with DNA-binding proteins, including Hes1. However,

mutation of Ser-286 prevents cofactor-activated phosphorylation

of Gro/TLE1. One interpretation of these results is that Ser-286 is

not critical to the folding and protein-protein interaction ability of

Gro/TLE1 but is a target of cofactor-activated phosphorylation.

Alternatively, this residue might be phosphorylated independent of

cofactor binding, with this phosphorylation needed for subsequent

phosphorylation induced by cofactor interaction. We detected Ser-

286 phosphorylation in HEK293 cells through mass spectrometric

analysis of exogenous Gro/TLE1 without the need for co-

transfection of DNA-binding partners such as Hes1. Although

this finding might suggest that phosphorylation of Ser-286 is

constitutive, it should be noted that HEK293 cells endogenously

express Gro/TLE-binding proteins [36]. Thus, cofactor-activated

phosphorylation might have occurred to a certain degree due to

the presence of endogenous Gro/TLE-binding transcription

factors. Taken together, our present studies provide evidence that

Ser-286 is phosphorylated in vivo and is required for Gro/TLE1

phosphorylation in response to cofactor binding.

Contribution of SP Domain Ser-289 and Ser-298 to
Cofactor-Activated Phosphorylation

Our studies also identified Ser-289 and Ser-298 of Gro/TLE1

as residues important for cofactor-activated phosphorylation.

Although evidence that these residues are phosphorylated in vivo

is lacking, previous studies have shown that Drosophila Gro Ser-

297, orthologous to Ser-298 of Gro/TLE1, is phosphorylated in

vivo [29]. Moreover, evidence exists suggesting the phosphorylation

of Gro Ser-287, which is analogous to Ser-289 of Gro/TLE1 [29].

We found that mutations of Ser-289 and Ser-298 have no

deleterious effects on the folding, nuclear localization, and protein-

protein interaction ability of Gro/TLE1. However, replacement of

Ser-289 with either alanine or glutamic acid completely blocks

Gro/TLE1 hyperphosphorylation induced by cofactor binding, as

is the case with Ser-286 mutations. This finding suggests that Ser-

289 might also be a target of cofactor-activated phosphorylation, if

this residue were indeed phosphorylated in vivo. Alternatively, Ser-

289 might be needed indirectly for cofactor-activated phosphor-

ylation to occur, possibly at Ser-286.

Somewhat different results were obtained when the role of Ser-

298 was examined. We observed that the S298A mutation causes a

reduced, but still detectable, change in Gro/TLE1 phosphoryla-

tion in response to cofactor binding. In contrast, the S298E

mutation does not perturb this process to a detectable extent.

Taken together, these findings suggest that Ser-298 might be

phosphorylated, but not as a direct target of cofactor-activated

phosphorylation. Instead, phosphorylation of Ser-298 might be a

contributing, but not essential, event to the latter. Optimal

cofactor-activated phosphorylation might be achieved when Ser-

298 is phosphorylated, a situation that could be mimicked by a

serine-to-glutamic acid substitution. Alternatively, Ser-298 phos-

phorylation might be a parallel, additive event that could occur in

response to cofactor binding but also independent of the latter. We

found no evidence that the S298E mutant migrated more slowly

than wild type Gro/TLE1 in the absence of exogenous cofactor.

This situation suggests that this mutation does not cause a

constitutive hyperphosphorylation, suggesting that phosphoryla-

tion of Ser-298 is not alone sufficient to activate a process like

cofactor-activated phosphorylation.

Studies in Drosophila suggested that Gro Ser-297 is phosphor-

ylated by Drosophila homeodomain interacting protein kinase 2

(DHIPK2), a nuclear Ser/Thr kinase that phosphorylates a variety

of transcriptional regulators [42]. However, it remains to be

determined whether or not HIPK2 phosphorylates Ser-297/298 of

insect and vertebrate Gro/TLE proteins. This ambiguity derives

from the fact that studies suggesting DHIPK2-mediated phos-

phorylation of Ser-297 of Gro were based on the use of a multiple

point mutant in which Ser-297 was mutated together with Ser-

194, Ser-196, Ser-285, and Ser-287 [29]. Moreover, Ser-297/298

is not followed by a proline residue, as is the case with most

characterized HIPK2 substrates. This feature is consistent with the

fact that the HIPK2 kinase domain is a p38MAPK-like domain

[42]. In summary, the analysis of mutations of Ser-289 and Ser-

298 show that these residues are also important for the ability of

Gro/TLE1 to undergo cofactor-activated phosphorylation, al-
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though it remains to be determined whether or not they represent

sites of in vivo phosphorylation.

Impairment of Gro/TLE1 Cofactor-Activated
Phosphorylation Is Correlated with a Weakened Ability to
Associate with Chromatin

In addition to presenting evidence that Ser-286 is phosphory-

lated in vivo, our studies also showed that the mutations S286A and

S286E do not perturb the nuclear translocation, interaction with

DNA-binding proteins, and recruitment of Gro/TLE1 to

chromatin. However, these mutations both impair cofactor

activated phosphorylation and weaken the strength of Gro/

TLE1 association with chromatin. It is worth mentioning that the

findings that mutations of Ser-286 do not detectably alter the

localization of Gro/TLE1 to chromatin but weaken the strength of

its association with the latter are only apparently contradictory.

The covalent cross-linking step that is part of the chromatin

immunoprecipitation protocol used to determine association with

specific promoters links the entire complex of Gro/TLE1 and its

DNA-binding partners (e.g., Hes1) to chromatin. As a result, the

association of the Gro/TLE1: Hes1 complex with DNA depends

on the cross-linking to chromatin of the entire complex, including

DNA-bound Hes1 and other components of the complex, and not

just on the affinity of Gro/TLE1 for chromatin. This is not the

case in subcellular fractionation assays that are performed in the

absence of any cross-linking agent and thus can reveal changes in

affinity for chromatin.

The finding that Ser-286 mutations weaken the chromatin

association of Gro/TLE1 is consistent with the demonstration that

pharmacological inhibition of protein kinase CK2-mediated

phosphorylation, which occurs constitutively and is required for

cofactor-activated phosphorylation, also weakens the association of

Gro/TLE1 with subnuclear structures like chromatin and,

possibly, the nuclear matrix (this study and [19,27,43]). Taken

together, these observations suggest that Gro/TLE1 proteins

carrying SP domain mutations that perturb cofactor-activated

phosphorylation can become recruited to DNA but associate more

weakly that wild type Gro/TLE1 with chromatin components.

Cofactor-Activated Phosphorylation Is Required for
Gro/TLE1 Anti-Neurogenic Activity

Prior to this study, the physiological significance of Gro/TLE

phosphorylation in response to cofactor binding was not defined.

A negative regulatory role for SP domain phosphorylation was

suggested by the previous demonstration that phosphorylation of

Drosophila Gro by DHIPK2 inhibits Gro-mediated transcriptional

repression [29]. However, the mutant form of Gro used in those

studies contained, in addition to mutations of Ser-285, Ser-287,

and Ser-297, other serine-to-alanine substitutions at positions 194

and 196. The latter residues are part of a separate domain of Gro/

TLE termed the protein kinase CK2/cell cycle-dependent kinase/

nuclear localization sequence domain [44]. This domain was

shown to also undergo phosphorylation [1,19]. Additional

evidence suggesting that phosphorylation of sites within the SP

domain acts to down-regulate Gro/TLE function comes from

separate studies showing that receptor tyrosine kinase-dependent

MAPK pathways phosphorylate the Gro SP domain. This

phosphorylation was mapped to Thr-308 (equivalent to Thr-312

in Gro/TLE1) and was shown to inhibit Gro-mediated transcrip-

tional repression in vivo [45].

We were able to assess the role of cofactor-activated

phosphorylation by taking advantage of the demonstration that

the SP domain mutations characterized in this study block this

hyperphosphorylation event but do not perturb the ability of Gro/

TLE1 to functionally interact with DNA-binding proteins and

become recruited to DNA. We found that all those mutations that

disrupt or reduce cofactor activated phosphorylation, such as

S286A/E, S289A/E, and S298A, also inhibit the anti-neurogenic

activity of Gro/TLE1. In contrast, the S298E mutant, which

undergoes an apparently normal cofactor-activated phosphoryla-

tion, has an intact anti-neurogenic ability. These results provide

evidence that the change in Gro/TLE1 phosphorylation associ-

ated with cofactor binding is a positive mechanism that is required

for the ability of Gro/TLE1 to inhibit neuronal differentiation.

Taken together, the present findings suggest that cofactor-

activated phosphorylation is required for the anti-neurogenic

activity of Gro/TLE1, and possibly for some of its other functions,

by bringing changes in Gro/TLE1 phosphorylation that are

correlated with the establishment of functional ‘repressosomes’

where Gro/TLE1 is in a complex with the appropriate

transcription repression partners and forms stable interactions

with transcriptionally relevant chromatin structures. In turn, this

would result in optimal Gro/TLE-mediated transcription repres-

sion activity, possibly via chromatin remodelling mechanisms. This

model might explain why disruption of cofactor-activated

phosphorylation impairs the anti-neurogenic activity of Gro/

TLE1, which involves regulation of endogenous promoter/

enhancer elements, but does not detectably perturb Gro/TLE1-

mediated transcriptional repression of exogenous reporter genes,

which are unlikely to acquire a true chromatin-like structure in

transfected cells. In the context of transiently transfected cells,

Gro/TLE1 may be able to repress transcription via inhibition of

the RNA polymerase complex, independent of its ability to modify

chromatin structure. This partial activity might not be sufficient in

the context of differentiating neural progenitor cells, where a

combination of transcription repression activities, including

chromatin remodeling mechanisms, is likely to underlie the in vivo

functions of Gro/TLE1 [1].

The present, and previous [29,45], findings suggest further that

Gro/TLE activity may be controlled by antagonistic post-

translational modifications that either promote (cofactor-activated

phosphorylation) or inhibit (HIPK2 and/or MAPK-mediated

phosphorylation) its function. It is possible that Gro/TLE proteins

are activated by cofactor binding and the ensuing changes in

phosphorylation, and that their activity persists until regulated

phosphorylation mediated by HIPK2 and/or MAPK acts as a

switch to stop Gro/TLE-mediated functions. This negative effect

could be caused by weakening the interaction of Gro/TLE with

chromatin and/or their transcriptional partners, or by changes in

Gro/TLE stability and/or sub-nuclear distribution, ultimately

resulting in weakened/blocked transcriptional repression. Future

investigations will be aimed at testing these and other possibilities.

Supporting Information

Figure S1 Analysis of the chromatin association of Gro/TLE1 by

subcellular fractionation. Postnuclear supernatant and chromatin-

enriched nuclear extracts from cells transfected with the indicated

combinations of FLAG-tagged proteins were subjected to SDS-

polyacrylamide gel electrophoresis (10% gel), followed by sequential

Western blotting with antibodies against the FLAG epitope (a and c)

or the p65 subunit of the NF-kB complex (b), as indicated. The

nuclear association of Gro/TLE1 was weakened by the SP

mutations S286A, S289A, and S298A. No changes were observed

in the strength of the nuclear association of Hes1 and p65 (panels b

and c). More slowly migrating forms (ie, hyperphosphorylated) of

Gro/TLE1 were not resolved on a 10% SDS-polyacrylamide gel. A
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non-specific band is present in panel a, lane 2. Shown is a

representative example of three separate experiments.

Found at: doi:10.1371/journal.pone.0008107.s001 (0.15 MB

PDF)

Figure S2 Chromatin immunoprecipitation experiments. AtT20

cells were transfected with Hes1 bearing no epitope tag and the

indicated FLAG epitope-tagged Gro/TLE1 proteins, followed by

chromatin immunoprecipitation assays using anti-FLAG (A–C) or

control anti-GST (A) or anti-HA (B and C) antibodies, as shown.

PCR amplification of each input chromatin (IN) and immuno-

precipitated material using oligonucleotide primers flanking two

canonical Hes1-binding sites located in the promoter region of

mouse Ascl1 yielded a 238 bp product only when the anti-FLAG

antibody was used. Gro/TLE1 was specifically recruited to the

Ascl1 promoter and no significant differences in the ability of wild

type and SP domain mutated Gro/TLE1 proteins to become

recruited to the Ascl1 promoter in vivo was detected, with some

occasional variability observed across several experiments. (A and

B) Lanes 5, 9, and 13 were empty. (C) Gro/TLE1 was not

transfected in lanes 5–7. In all panels, lane 1 was loaded with

molecular weight markers.

Found at: doi:10.1371/journal.pone.0008107.s002 (0.23 MB

PDF)

Supplemental Methods S1

Found at: doi:10.1371/journal.pone.0008107.s003 (0.06 MB

PDF)
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