
Fitting the HIV Epidemic in Zambia: A Two-Sex Micro-
Simulation Model
Pauline M. Leclerc1, Alan P. Matthews2, Michel L. Garenne1,3*
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Abstract

Background: In describing and understanding how the HIV epidemic spreads in African countries, previous studies have not
taken into account the detailed periods at risk. This study is based on a micro-simulation model (individual-based) of the
spread of the HIV epidemic in the population of Zambia, where women tend to marry early and where divorces are not
frequent. The main target of the model was to fit the HIV seroprevalence profiles by age and sex observed at the
Demographic and Health Survey conducted in 2001.

Methods and Findings: A two-sex micro-simulation model of HIV transmission was developed. Particular attention was paid
to precise age-specific estimates of exposure to risk through the modelling of the formation and dissolution of relationships:
marriage (stable union), casual partnership, and commercial sex. HIV transmission was exclusively heterosexual for adults or
vertical (mother-to-child) for children. Three stages of HIV infection were taken into account. All parameters were derived
from empirical population-based data. Results show that basic parameters could not explain the dynamics of the HIV
epidemic in Zambia. In order to fit the age and sex patterns, several assumptions were made: differential susceptibility of
young women to HIV infection, differential susceptibility or larger number of encounters for male clients of commercial sex
workers, and higher transmission rate. The model allowed to quantify the role of each type of relationship in HIV
transmission, the proportion of infections occurring at each stage of disease progression, and the net reproduction rate of
the epidemic (R0 = 1.95).

Conclusions: The simulation model reproduced the dynamics of the HIV epidemic in Zambia, and fitted the age and sex
pattern of HIV seroprevalence in 2001. The same model could be used to measure the effect of changing behaviour in the
future.
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Introduction

The dynamics of HIV epidemics in Africa remain poorly

understood, and virtually no mathematical model has been able to

reproduce them accurately. By the year 2000, after some 20 years

of transmission of the virus, some countries had high or very high

levels of HIV seroprevalence, while others remained with low or

very low levels [1]. For a long time the evidence showing the

differences between countries remained weak and based on biased

and erratic data on HIV seroprevalence among pregnant women.

With the development of HIV testing in the Demographic and

Health Surveys [2] (DHS) and other large-scale seroprevalence

surveys conducted on representative samples of adult populations,

major differences in seroprevalence emerged clearly, ranging for

instance from 0.7% (Senegal, 2005) to 25.9% (Swaziland, 2006).

Despite these large differences in levels, some features seem to

be common to the African epidemics: similar age profiles for

adults, and similar differences between men and women.

Typically, the HIV seroprevalence is very low before sexual

debut, which occurs around age 11 years on the average, rises

quickly with age, up to a peak in the 30’s, then declines less rapidly

with age, the last age available being usually 49 years for women

and 59 years for men in DHS surveys. For women the rise of

seroprevalence by age is sharper than for men, the peak is around

32 years (range among 21 countries: 27–36), the maximum

seroprevalence is about 25% higher than for men (range 0% to

72%), and the decline with age somewhat faster. For men, the rise

is slower; the peak is around age 37 (range 34–41), the maximum

lower or equal, and the right tail longer than for women. As a

result, the lifetime risk of infection is quite similar for both sexes,

and women tend to be infected earlier.

The gap between the age at peak infection of men and women is

similar whatever the level of seroprevalence, with an average of 6

years for the surveys available (range 3 to 9). These common

features of African epidemics are due to the same dominant mode

of HIV transmission for adults: unprotected heterosexual contact

[1,3]. This mode of infection implies a priori that equivalent

numbers of men and women will be infected in the long run,
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because of repeated exposure, the age gap being explained by the

age differences between sexual partners, within and outside

marriage, and by special features of sexual behaviour, in particular

commercial sex work.

One way to better understand the common features of the HIV

epidemics in Africa is to build a mathematical model able to

reproduce the patterns of infection, in particular the age and sex

patterns found in demographic surveys. We showed in an earlier

paper [4] that this was not possible by using compartmental

models, primarily because of the constraints imposed on changing

sexual partners. We propose here a more complex two-sex micro-

simulation model, based on detailed age and sex specific individual

behaviours. The main target of this model is to fit the detailed age

and sex profiles of HIV seroprevalence, and therefore the age gaps

between men and women. Our model differs from previous

models, which rarely use detailed information by age and sex, nor

realistic values of key parameters such as sexual debut, marriage,

divorce or commercial sex. Many other models published in the

literature are compartmental models and have different targets,

such as to account for an overall level of seroprevalence, to

account for the effect of various sexual networks, to evaluate the

effect of age difference between partners, or to model the

population impact of interventions, such as changing number of

partners, improving management of other STIs or mass

circumcision [5–14]. Some of the previous models are closer to

our approach. The work by Anderson and colleagues [9,10]

provided detailed age and sex patterns, but tended to ignore

marriage, and made very strong simplifications on sexual debut.

One of the closest to our model is probably STD-SIM, a micro-

simulation model which is population-based, details sexual

behaviour, and allows for co-infection with other sexually

transmitted diseases [15]. The main differences between our

model and STD-SIM are the more detailed parameterisation of

the risk periods, in particular sexual debut, marriage, and divorces,

and the mode of partnership formation. On the other hand we

ignored the dynamics of co-infection with other STI’s, and our

aim was focused only on one country. Also very close is the recent

micro-simulation model developed at the University of Pau,

France, which attempts to fit the HIV situation in Cameroon [16].

The main difference with this new model is the emphasis on

commercial sex and the lack of precise reference to marriage.

However, the Kamla & Artzouni model is more sophisticated in

the transmission module, because it includes detailed dynamics of

the viral load during infection, and relates transmission to viral

load.

Our model is applied to the case of Zambia. There were several

reasons for choosing this country. The HIV/AIDS epidemic was

early, large, and well documented: the HIV prevalence increased

steadily since 1980, reaching nearly 15% in 2001 [17]. Zambia

was one of the first countries to conduct a detailed DHS in 2001

[17], which included age and sex profiles of HIV prevalence, as

well as most of the variables needed to build the model. Zambia

has also a wealth of detailed and reliable demographic and

epidemiologic data, which can be used for the modelling exercise.

Materials and Methods

Micro-simulation model
The model is a stochastic discrete-event process with a time-step

driven approach, typical of a Markovian process. The model is

structured as three main modules. The ‘‘demographic module’’

includes simple renewal processes: births, ageing and deaths; its

time step is the month. The ‘‘marital module’’ includes the

marriage market (entry and exit from marriage) and the other

types of relationships (within marriage, outside of marriage and

commercial sex); its time step is the week. Sexual behaviour is

modelled within each type of relationship, and its time step is also

the week. The ‘‘epidemiological module’’ includes HIV/AIDS

infections, either by heterosexual transmission among couples or

by vertical transmission from an HIV-positive mother to her

newborn child; its time-step is one week for adult transmission, and

associated with sexual behaviour, whereas the time-step is one

month for vertical transmission, and associated with births.

Disease progression after primo-infection is included in this

module, up to death. The simulations start from a baseline in

1980, when a seed of HIV is introduced, and run for 25 years, the

main target being to fit the situation in 2001. The model is written

in C++, and the code is available from the authors on request. The

essential equations of the model are presented in Appendix S1.

Demographic module
The demographic module determines the population structure,

by age and sex, with a one month time-step for evolution in time.

The baseline population is a stable population generated to fit the

Zambian population in 1980, with baseline values of age-specific

fertility and mortality rates derived from empirical data (DHS

surveys). The associated stable population was computed from

Lotka’s equations and fertility and mortality rates. Fertility and

mortality rates for the non-infected population are assumed to

remain constant over time. The corresponding total fertility rate

(TFR) was 6.12 children per woman, life expectancy was 47.8

years for males and 50.5 years for females (see Appendix S2,

Figure S1, S2). The corresponding intrinsic growth rate was 0.029,

which is close to the empirical growth rate estimated for Zambia

between the 1980 and 2000 censuses (0.028). More details are

available in Leclerc, 2009 [18].

Marital and sexual behaviour module
Three types of relationship were considered, during which HIV

heterosexual transmission could occur: marriages (stable unions),

casual partnerships (short-term relationships within or outside

marriage), and commercial sex. One of the main characteristics of

our model is the detailed process of the marital market. At each

point in time, each person has a strictly defined status, and during

their life course people enter and leave unions, casual partnerships,

or commercial sex. There are several possible statuses, with

transitions between them (Figure 1): ‘‘Virgin’’ (V) represents

people who never had sex; ‘‘Single’’ (S) represents never married

people who are sexually experienced; ‘‘Couple’’ (C) represents

never married people who are in a casual partnership; ‘‘Union’’

(U) represents people who are married (whether first marriage or

remarriage); ‘‘Widowed’’ (W) represents previously-married peo-

ple who are now widowed; ‘‘divorced’’ (D) represents previously-

married people who are now divorced; the two ‘‘in partnership’’

groups (PW and PD) represent people who are in a casual

partnership and who have been respectively widowed or divorced.

Some married men and married women may have casual

partnerships, up to three concomitant partners. Some unmarried

men and women may also have up to three partners at the same

time. Polygyny is also allowed, with up to three wives per husband.

All transitions are random, and controlled by a set of age and

sex specific parameters. Individuals enter adolescence as ‘‘Virgin’’

and experience sexual debut, either by first marriage or by couple

formation. Transition to first sexual experience follows a

parametric model, called the Picrate model [19], fitted with

DHS data. The Picrate model is a 3-parameter mathematical

function, based on recruitment rates which increase from 0 to a

maximum, following a cumulative Weibull function. This
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parameterization allows one to compute transition rates by week or

month. Transitions to first marriage are given by a Picrate model

[19], also fitted on DHS data. These functions are displayed in

Appendix S2, Figure S3. Casual partnerships end by break-up, at a

constant rate. Marriages end by divorce at a constant rate, or by

mortality of the partner. Remarriage also occurs at a constant rate,

and break as do first marriages. In addition to this main scheme, two

types of multiple partnerships were added: polygamy for men, and

concomitant marital and extra-marital relationships for both sexes.

Partner selection is achieved through a complex algorithm,

designed for fitting both male and female distributions at the same

time. In brief, individuals choose partners from the opposite sex in

the group of people susceptible to the corresponding status

(marriage, casual partnership or commercial sex) depending on an

age preference matrix for each type of relation. These preferences

are initially given by a bivariate gamma distribution fitted on Zambia

DHS-2001 data, specific to the type of relationship, and then fine-

tuned by a marital market algorithm in order to balance supply and

demand of both sexes. The function is displayed in Appendix S2,

Figure S4, S5, S6, S7. Furthermore, the relationship formation rates

for previously-married are attenuated at later ages, since empirical

data show that the frequency of partnership formation declines with

age. For the same reason, the mean number of acts of sexual

intercourse was attenuated at older ages of the male partner.

The frequency of intercourse was set at one or two contacts per

week per relationship, in order to produce 100 contacts a year for a

continuous relationship. This number was independent of the

number of concomitant relationships. This assumption reflects the

fact that persons who are more sexually mobile (more partners) also

tend to have more sex acts per year. The overall number is consistent

with the values found in Zambia: 48 contacts per year while taking

into account the periods without relationship, and consistent with

values found elsewhere, as in the French population [20] and with

values used in other models [7,21]. At each time-step and for each

type of relationship, the number of sexual contacts is calculated and

applied to the ongoing relationship.

In addition to marriages and casual partnerships, the module

allows for commercial sex. Female commercial sex workers are

recruited between age 15 and 49, and retire at 50. Women enter

the CSW market randomly, selected from the unmarried female

15–49 age group in order to represent, at each point of time, 1%

of the unmarried female population aged 15–49 [22]. For males,

being a potential CSW client is determined at birth, and some

30% of males are assumed to become clients during their life. This

number was derived from an analysis of the 2001 DHS survey

[21]. Men who are in this group contact CSW’s randomly after

their first sexual encounter, and the frequency of contacts depends

on their marital status [22]. For more details on this module, see

Leclerc et al., 2008 [18].

All the transition rates, constant or age-specific, were calculated

beforehand from the 2001 Zambia DHS and are summarised in

Table 1.

Epidemiological module
Heterosexual transmission of HIV occurs in one of the three

types of exposure status (marriage, casual partnership or

commercial sex). In the case of sero-discordant couples (one

partner HIV-positive and the other partner HIV-negative), HIV

transmission occurs randomly at each sexual encounter with a

given probability. Contamination is therefore simulated by

computing the probability of infection given the number of sexual

contacts during the at-risk period, that is the duration of the

relationship. The basic male to female transmission per act is

allowed to change with the stage of the infection of the index case,

with age for women, and for the various simulations (see below).

After infection, a person moves through three HIV stages before

dying of AIDS: the ‘‘primary infection’’ which lasts 6 months on

average, the ‘‘latent period’’ which lasts several years on average,

and the final stage ‘‘clinical AIDS’’ which lasts two years on

average. Each transition to the next stage, including death, is

random, and follows a Weibull distribution defined by the

associated median waiting time. Since life expectancy with AIDS

Figure 1. Transition scheme of marital statuses (both sexes).
doi:10.1371/journal.pone.0005439.g001
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decreases with age, the ‘‘latent period’’ is considered to be

variable, from more than ten years for people infected at young

ages, to about 3 years for people infected after age 50 [23].

All these parameters were derived from the published literature.

The duration of primary infection and the stage-specific

transmission probabilities were derived from the Rakai study

[24]. The age-specific male to female transmission was derived

from the Masaka study [25].

Vertical transmission was treated separately. Infected mothers

could transmit HIV to children at a constant rate (30%). HIV-

infected women had reduced fertility, by a constant ratio (30%).

Survival of the HIV-positive new-born children was calculated

independently, and was fitted with a double Weibull distribution,

to match the two forms of the disease: rapid-evolution and slower-

evolution [26], following the recommendations made by UNAIDS

to model child mortality of infected children [27].

Assumptions about heterosexual transmission of HIV
As will be seen below, the basic parameters described above did

not permit the fitting of the empirical data. Therefore, in order to

fit the age patterns of prevalence observed in Zambia in 2001, we

developed various assumptions concerning the heterosexual

transmission of HIV, and in particular: differential susceptibility

of young women, and healthy carriage.

Differential susceptibility of young women is based on an

observation made in the Masaka study [25]. In sero-discordant

couples, the transmission from males to females was higher for

women below age 25 than for women above age 25. We built on

this observation to test the impact of differential susceptibility by

age with our model. The pattern of differential susceptibility by

age is presented below.

The second assumption, called ‘‘healthy carriage’’, was a

speculative hypothesis made earlier in order to reconcile the

incompatibilities between male and female age profiles of HIV

seroprevalence. This hypothesis, developed by MG [28], builds

upon the complex mode of infection of the HIV virus, from

epithelial cells to blood cells, both processes being highly

probabilistic. It assumes that, after exposure to an infected

woman, a man could host for a few days the HIV virus in his

epithelial cells without being fully infected, therefore remaining

seronegative. If such a man had intercourse with a second woman,

not infected with HIV, within a short period of time (about one

Table 1. Main parameters used in the model: values and sources.

Parameters Value Source

Demographic parameters Males Females

Total fertility rate (age specific fertility rates) 6.12 DHS Zambia 2001 [17]

Sex ratio at birth 1.00 DHS Zambia 1992, 1996, 2001 [17,66,67]

Life expectancy (age specific death rates) 47.8 years 50.5 years Model life table fitted on DHS data

Marital parameters

Median age at first sex 17 years 16 years DHS Zambia 2001 [17]

Median age at first marriage 22 years 17 years DHS Zambia 2001 [17]

Couple formation rate 1.10 DHS Zambia 2001 [17]

Partnership formation rate 1.35 DHS Zambia 2001 [17]

Break-up rate 2.00 DHS Zambia 2001 [17]

Divorce rate 0.015 DHS Zambia 2001 [17]

Remarriage rate 0.254

Proportion of men with two wives 0.15 DHS Zambia 2001 [17]

Proportion of men with three wives 0.03 DHS Zambia 2001 [17]

Extramarital relation rate 0.19 DHS Zambia 2001 [17]

Sexual parameters

Mean number of intercourses by year 100 [7,20,21]

Proportion of CSW’s (clients for men) 0.30 0.01 DHS Zambia 2001 [17,22]

Mean number of visits to CSW per year (unmarried) 4.33* DHS Zambia 2001 [17,22]

Mean number of visits to CSW per year (married) 3.03* DHS Zambia 2001 [17,22]

HIV/AIDS parameters

MTCT transmission 0.30 Dabis et al. [68]

Fertility reduction 0.30 Hunter et al. [69]

Baseline transmission probability per act 0.0007* Wawer et al. [24]

Factor HIV stage 1 11.71 Wawer et al. [24]

Factor HIV stage 2 (ref) 1.0

Factor HIV stage 3 5.0 Wawer et al. [24]

Mean duration of stage 1 0.5 year Mindel et al. [70]

Mean duration of stage 3 2 years Mindel et al. [70]

*Theses parameters are allowed to change during simulations.
doi:10.1371/journal.pone.0005439.t001
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week), he could theoretically transmit the virus to the second

woman. This could occur typically in case of concomitant

relationships, especially in the case of commercial sex.

Simulation process
Before starting the simulations, the demographic and marital

modules were run several years before the introduction of HIV/

AIDS in the population. Then, in 1980, the assumed date of the

first HIV cases in Zambia, the virus is introduced in the

population, by infecting 1% of the 15–49 age group. The

dynamics of the epidemic are then simulated year by year, until

2001. The population characteristics and the infections are

monitored over time and stored after each year, so that all details

can be retrieved at any point in time.

Several parameters were allowed to change in order to fit the

prevalence in 2001. (1) probability of transmission per sex-act; (2)

differential susceptibility of women; (3) number of visits to

commercial sex workers for unmarried and married men or

higher transmission for clients of sex workers; (4) healthy carriage.

The simulations explored the realistic combinations of these

parameters in their ability to fit the observed patterns in 2001.

Above all, we used the flexibility of the HIV transmission

probability to fit the level of prevalence in the population, the

other parameters being used for fitting the age and sex profiles.

For precise fitting of the overall level of seroprevalence, we used

Brent’s method and the Golden Section search procedure.

Because results of our simulations depended on a large number

of parameters, we had to set limits on the values to be taken by

varying parameters, called ‘‘realistic values’’. The heterosexual

probability per sex-act in stage 2 was allowed to vary between

0.0007 (value from the Rakai study) and 0.0050; the annual

number of visits to commercial sex workers was allowed to vary

between 3 and 12; healthy carriage was assumed to vary from 0 to

1, that is the probability to become HIV healthy carrier during

one week by contact with an HIV-positive female partner.

Different scenarios for differential susceptibility were tested,

allowing the female risk of acquiring HIV to be multiplied by a

factor between 1 and 5 depending on the age-group.

The empirical age and sex seroprevalence patterns derived from

the 2001 DHS survey were affected by random fluctuations. The

profiles were therefore fitted with a polynomial on the logit of the

seroprevalence: female HIV prevalence peaked at age 31, with

25.7% of infected women, and male prevalence peaked at age 36

with 20.6% of infected men, that is a ratio of female maximal

prevalence to male maximal prevalence of 1.25, all values quite

typical of African HIV epidemics. These were the main criteria

that we used to test the reliability of our simulations, in addition to

plotting the corresponding figures.

Finally, most of the events occurring during simulations being

stochastic, we used a large sample size (675,000 persons at

baseline, or about 12% of the total population) in order to reduce

variability in the results of simulations. This variability remained

small, especially with this large population size and given the high

prevalence levels seen in Zambia.

Results

Table 1 gives the baseline parameters used in our simulations.

With these values, and without adding any of the alternative

hypotheses, no epidemic could be generated: the HIV prevalence

decreased soon after the introduction of the virus in the

population, leading to extinction.

Changing the transmission probability allowed an epidemic, but

the final age and sex profiles were far from those expected. With a

transmission probability equal to 0.004379, overall prevalence rates

at age 15–49 were close to what was expected : 16.5% and 12.8% for

female and male groups respectively (as compared with 16.6% and

12.0% respectively in the DHS) but peaks were reached at ages 28

for female and 32 for males, much earlier than expected (31 and 36

years respectively). Moreover, assuming the same value of

transmission for males and females, the peak prevalence ratio (F/

M) was 1.13, lower than the value in the DHS (1.25).

Simulation H0
After exploring a wide range of parameters, we found a

combination giving a good fit to the age and sex patterns of

prevalence in 2001. This simulation is labelled ‘‘H0’’ in this paper,

and defined as follows:

– a baseline (stage 2) transmission probability from woman to

man of 0.002479;

– a differential susceptibility for young women equal to 1 for

women aged more than 40 years, 1.5 times higher for woman

aged between 30 and 40 years, and 2.5 times higher for woman

aged less than 30 years;

– a four-times higher annual number of visits to commercial sex

workers for eligible married men (12 visits), or a four-times

higher transmission rate in case of contact with a CSW.

The age patterns of prevalence in 2001, simulated and

observed, are displayed in Figure 2. The fit is of good quality,

even though it was difficult to obtain: the peak prevalence (25.8%)

for women occurs at age 31, and the peak prevalence for men

(20.5%) occurs at age 35. The peak prevalence ratio (F/M) equals

1.26, and the overall prevalence rates are 17.5% for women aged

15–49 and 11.5% for men aged 15–49 (as compared with 16.6%

and 12.0% respectively in the DHS). More important, the age

patterns obtained by the simulations were close to those found in

the DHS survey. The hypotheses underlying this simulation

remained within the range of acceptable values. The transmission

probability was 2.5 times that found in discordant couples in

Uganda, a value usually considered too low because of a selection

bias (couples who have a lower transmission rate are more likely to

be discordant). The pattern of differential susceptibility was close

to that found in Masaka. However, the annual number of visits to

CSW’s may seem unrealistic, since it is four times higher than that

found in surveys, and therefore assumes a large understatement,

but the same results could be obtained with four-times higher

transmission rates, which is consistent with the likely presence of

co-infection with STI’s.

The model allowed us to disentangle the modalities of the

transmission, in particular the type of relationship, the age at

infection and the stage of the disease at time of infection. For men,

a large proportion of infections resulted from contacts with female

sex workers (47.2%), followed by contacts during casual partner-

ships (30.3%), and contacts within marriage (22.5%). For married

men, 58.9% of infections resulted from contacts with commercial

sex workers, whereas this proportion was only 28.6% for

unmarried men. For women, and because they marry early, a

majority of infections occurred within marriage (62.5%), followed

by casual partnerships (34.9%), commercial sex accounting for a

tiny proportion (2.6%), because CSW’s account for only 1% of the

population. It should be noted however that after 21 years some

90% of CSW’s were infected. Moreover, 66.4% of women infected

within short-term relationships were infected before their first

marriage, which accounts for 22.2% of infections. For men, 75.1%

of male infections within short-term relationships occurred before

their first marriage, and account for 20.7% of infections.

Fitting Zambia HIV Epidemic
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The difference in age at infection stems from the age

differences of partners by type of relationship involved. For

infections occurring within marriage, the mean age at infection

for men was 36.7 years (IQR = 27 to 45), and for women 27.9

years (IQR = 20 to 33). In contrast, for infections occurring

during casual partnerships, ages were younger and the age

difference was smaller: 28.1 years for men (IQR = 20 to 33), and

26.6 years for women (IQR = 17 to 33). For commercial sex, the

mean age at infection was 33.3 (IQR = 24 to 41) for men, and

26.4 for women. (IQR = 18 to 35). It is therefore primarily the

difference in age at marriage that explains the overall age

difference at infection.

With respect to the stage of infection, a majority of male

infections occurred with a partner in stage 2 (Table 2). Indeed, a

majority of infections occurred with a CSW, which explains the

large number of infections in stage 2, since CSW’s are infected in

large numbers and at an early age and therefore are in stage 2 for

a large part of their professional lives. In contrast, women get

infected mainly by partners in stage 1, because of the high risk

associated with this stage during stable relationships. For short-

term relationships, female infections occur more often with

partners in stage 2, because of the longer duration of this stage.

Changing pattern of transmission over time. The

proportion of male infections from a CSW varies with the

duration since the onset of the epidemic. Before 1985, male

infections due to commercial sex account for 73.1% of the total,

whereas after 2000 they account for only 36.4%. As many clients

of commercial sex workers are married, female infections

Figure 2. Age patterns of HIV prevalence in 2001 in Zambia, observed (from DHS data) and simulated (from simulation H0) (women
in red and men in blue).
doi:10.1371/journal.pone.0005439.g002

Table 2. Proportion of infections occurring at each stage of the disease in the partner, by type of relationship, and mean age at
infection, by sex and type of relationship (H0).

Women Men

Marriages Casual partnerships CSW Total Marriages Casual partnerships CSW Total

Proportions by stage

Stage 1 36.9% 10.8% 1.2% 48.9% 3.1% 9.0% 16.1% 28.2%

Stage 2 19.0% 18.1% 0.7% 37.8% 15.9% 16.7% 21.0% 53.6%

Stage 3 6.6% 6.0% 0.7% 13.3% 3.5% 4.6% 10.1% 18.2%

Total 62.5% 34.9% 2.6% 100% 22.5% 30.3% 47.2% 100%

Mean age at infection by stage

Stage 1 29.1 23.0 28.7 27.7 35.2 22.8 33.9 30.5

Stage 2 23.0 23.8 25.0 23.4 34.3 27.4 33.1 31.7

Stage 3 35.1 41.2 23.9 37.2 48.8 40.8 32.9 38.0

Total 27.9 26.6 26.4 27.4 36.7 28.1 33.3 32.5

doi:10.1371/journal.pone.0005439.t002
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occurring within marriage also decrease, from 70.0% of female

infections before 1985 to 60.3% of female infections after 2000.

Net reproduction rate (R0). The net reproduction rate (R0)

of the epidemic was calculated by computing the secondary attack

rate by year since infection and multiplying by the survivorship of

the index cases by year. Results give estimates of R0 equal to 1.95

(2.28 for female to male infections, and 1.61 for male to female

infections), which was close to the empirical R0, defined as the

ratios of simulated new infections from 1985 and 2005 to the

infections that occurred from 1980 to 1984 (27,650 men and

17,607 women infected from 12,311 women and 11,585 men, or

R0 = 1.89). This value matches quite well what is known of the

dynamics of the HIV infection in Zambia over the period, that is

an increase from a low value (about 1%) in 1980 to a high 15%

HIV seroprevalence in 2001.

Other simulations: impact of changing parameters
In this part, we investigate the effect of changing critical

parameters around H0: heterosexual transmission probability,

differential susceptibility, number of visits to CSW’s, and by

introducing healthy carriage. Table 3 summarises the various

assumptions made with their main results.

Removing differential susceptibility (H1). Removing the

differential susceptibility of young women induces lower

prevalence for both sexes, and higher mean age at infection,

especially for women (mean = 29.8 versus 27.4 in the previous

simulation). More female infections occur within marriage than

previously (71.0% versus 62.5%), and fewer infections occur

during short-term relationships (25.1% versus 34.9%). For men,

more infections occur while visiting a CSW (59.3% versus 47.2%).

Concerning ages at infection, the main difference is observed

within casual partnerships. Female mean age at infection within

casual partnerships is now 30.7 years (versus 26.6 under H0),

because they occur more often after the breaking of the first

marriage. In order to fit the levels of prevalence after removing the

differential susceptibility for women (H19), a higher transmission

probability by sex-act of 0.003194 is needed (29% higher than

H0). With such a transmission probability, female maximal

prevalence equals 25.8%, close to what we expected, but male

maximal prevalence now equals 21.9% with the result that the

ratio of female to male maximal prevalence becomes 1.18

(Table 3), which is lower than what is found in the DHS.

Removing differential susceptibility has therefore major

shortcomings for the quality of the fit, because too many

infections occurred within the male group.

Changing the number of visits to CSW for married men

(H2). In this simulation, the mean number of visits to CSW for

married men is changed back to its original value (3.03 visits a

year). This implies that fewer male infections occur through client-

CSW relationships (34.5% versus 47.2% previously) and, as a

result, that fewer female infections occur within marriage (54.4%

versus 62.5%). Then, because sexual activity for the high risk

group of married men clients of CSWs is reduced, fewer infections

occur at older ages for men as well as for women. As a result, the

mean ages at infection are younger than previously (31.5 years for

men, 26.8 years for women), primarily because late infections no

longer occur (Table 3). Peaks of prevalence are reached 2 or 3

years before those obtained under H0 (28 years for women and 33

years for men). The main difference in terms of stage of the disease

is observed for married women: the proportion occurring in stage

1 falls to 42.2%, whereas the proportion of infections in stage 2

increases to 43.9%. In order to fit the correct levels of prevalence

(H29), the transmission probability by sex-act should be 0.003279

(32% higher than H0). Under this new assumption, HIV

prevalence peaks at 27 for women and 32 for men, and the age

patterns no longer fit the DHS data.

Assumption of healthy carriage (H3). The assumption of

healthy carriage was added this way: all men are susceptible to be

a healthy carrier and, for each contact with an HIV-positive

partner, they have a probability of 30% to carry the virus during

one week without getting infected. After that, if they have contact

with other HIV-negative women, during this same week, they

could transmit the virus to them with the same transmission

probabilities as if they were really infected. The choice of 30% is

the result of several simulations and will be explained below.

Adding the healthy carriage hypothesis to H0 implies higher

prevalence rates for both sexes with a maximum prevalence equal

to 41.9% for female and 33.8% for male (Table 3). The overall

prevalence for men and women aged 15–49 were respectively

18.7% and 28.7% in 2001. As women become more susceptible

because of healthy carriage, age at maximum prevalence is

younger than under H0 (29 years old versus 31). This is the result

of a lower mean age at infection for females (26.0 years). As

previously, a majority of female infections occur within marriage

Table 3. Assumptions made to test the impact of key parameters and their results on key indicators after simulations.

Hypothesis for simulations Key indicators from simulations

(Changes from H0) Age at peak
Prevalence at peak
(%)

Maximal prevalence
ratio F:M

15–49 years-old
prevalence (%)

Women Men Women Men Women Men

DHS Survey values 31 36 25.7 20.6 1.25 16.6 12.0

H0 Realistic simulation 31 35 25.8 20.5 1.26 17.5 11.5

H1 No differential susceptibility 34 35 18.8 15.6 1.21 11.6 8.4

H19 H1+Pt = 0.003194 32 34 25.8 21.9 1.18 16.7 12.1

H2 Mean number of visits to CSW for married men = 3.03 28 33 13.8 10.4 1.33 9.4 6.3

H29 H2+Pt = 0.003279 27 32 26.1 21.9 1.19 17.9 12.6

H3 Healthy carriage 29 34 41.9 33.8 1.24 28.7 18.7

H39 H4+Pt = 0.002459 with no differential susceptibility 33 35 25.9 21.3 1.22 16.5 11.4

Note: Hn9 are made to fit the overall seroprevalence with other parameters equal to Hn.
Pt = probability of HIV transmission per sex-act.
doi:10.1371/journal.pone.0005439.t003
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(63.1%), then within short-term relationships (32.4%) and a small

proportion within the commercial sex market (1.6%). Overall,

28.1% of female infections are due to healthy carriage, especially

within marriage (35.4%), then within short-term relationships

(16.1%). Few female infections attributable to healthy carriage

occur within commercial sex (5.6%). For men, the main difference

is that they are now as infected in stage 1 (41.9%) as in stage 2 of

the disease (45.9%). The proportion of male infections occurring

within marriage is twice that under H0 (43.4% versus 22.5%

under H0). In summary, men visit commercial sex workers and

become healthy carriers; returning home they infect their wives,

but get infected soon after that because of the very infective stage 1

of their wives. In order to fit the correct levels of prevalence for

both sexes (H39), we had to remove differential susceptibility.

Indeed, it was impossible to fit levels of prevalence for both sexes

by combining differential susceptibility and healthy carriage.

Under this assumption, we need a transmission probability by sex-

act of 0.002459, which is similar to the one used under H0.

Prevalence rates peak at ages 33 and 35, and the age patterns no

longer fit the DHS data.

Discussion

To our knowledge, no other model has tried to fit the HIV

seroprevalence age patterns for both sexes simultaneously, while

taking into account the detailed periods at risk and fitting precisely

entry into sexual life, entry into first marriage, and marriage

dissolutions as well as re-marriage. To give a simple example, most

models assume that all adults enter their sexual life (or first

marriage) at exactly age 15, whereas in our model men and

women may enter sexual life at any age between 10 and 30, as they

do in real life. This is obviously very important to enable proper

fitting of the age and sex pattern of infection.

Our simulation exercise aimed at being as realistic as possible,

and used as much as possible empirical and detailed age-specific

values of the main parameters controlling couple formation and

transmission of the virus. Above all, it shows the very heavy

constraints for fitting properly the observed data on seroprevalence

by age and sex. Changing one parameter has an impact on the

whole transmission process, and when it affects directly one sex, it

also affects as a consequence the other sex, changing therefore the

dynamics of the epidemic and the age and sex profiles. Our

reference simulation (H0) was obtained after more than one

hundred simulation trials, all the others leading to inconsistent

patterns. Even if H0 could be criticised, it has the main advantage

of reproducing the pattern observed in the Zambian population

and therefore providing a plausible scenario.

Among the main constraints found in the simulation was the age

at peak infection for males. It was almost impossible to reach

values greater than 35 or 36 years for men while keeping the main

parameters within a range of realistic values. This point definitely

deserves further research, but this observation seems to match

observations in empirical data throughout Africa.

A nice feature of this model is that it disentangles the

transmission process. The way the disease is transmitted appears

complex, because it involves differently the various types of union

formation, and the various stages of transmission. The role of each

factor evolves over time, and is sensitive to changing any of the

parameters. This is probably why we received conflicting evidence

from field surveys conducted over the past 20 years in many

African countries. For example, some authors found a correlation

between the number of CSWs and HIV prevalence levels across

African countries [29], whereas the 4-city study concluded that sex

work could not explain the differential spread of HIV among the

four cities [30], even though authors acknowledged that it could

have played a major role at the onset of the epidemic.

Despite its nice explanatory power, our model has a number of

limitations, firstly the values of its parameters. The heterosexual

transmission probability is one of the parameters most open to

criticism. The Rakai study gives a baseline value of 0.0007 per act

[24] (prevalent cases group, stage 2), and an overall transmission

parameter of 0.0011 [31] (prevalent and incident cases together),

which is about half the values selected for H0. However, our value

does not seem too unrealistic, and compares with that selected by

other authors [32–36].

Differential susceptibility of men and women remains a matter

of controversy. Some studies found that women are twice as

susceptible as men [25,32], whereas other studies found no

significant difference of transmission between the two sexes

[31,37,38]. Note that in some studies the differences between

male to female and female to male transmission is hampered by

male circumcision. It is striking to note that in Europe as in

Uganda, where male circumcision is rare, transmission is the same

either way. This is why we chose the same value of transmission

for males and females for older ages, since circumcision is rare in

Zambia. Differential susceptibility data were derived from a study

in Uganda. Fortunately, the situation in Zambia is quite similar to

the situation in Southern Uganda, with little circumcision, same

religion (Christian), and roughly the same level of economic

development.

Our assumption of a differential susceptibility by age among

women was necessary to fit the observed patterns. It has however

an impact on the overall susceptibility of women. Assuming that

women have intercourse between age 16 years (median age at first

sex) and age 50 years (end of reproductive life), with an average

frequency of 80 sex acts per year, and assuming a differential

susceptibility as assumed in H0, a simple calculation gives an

increased risk for all women of 1.74, which matches other

observations in the literature, and the assumptions made in other

modelling projects [39,40].

Differential susceptibility induces more infection at young ages

for females and results in a ratio of maximal prevalence (female/

male) close to that observed in DHS surveys (1.25) [17]. The

assumption of differential susceptibility is supported by studies

which found that age might be an important co-factor of HIV

infection for women [41], which might be a biological effect.

Indeed, the vaginal epithelium of adolescent and young women is

thinner than at older ages. In animal models, age was found as a

factor of thickness and integrity of the vaginal epithelium [42].

Removing differential susceptibility and adjusting transmission

probability leads to a ratio of 1.18. So, discrepancies in gender

prevalence are in part explained by the sexual network, but not

sufficiently to explain all the differences. To reach such prevalence

differences between the two sexes, women have to be more

susceptible than men.

Our mean number of partners was derived from DHS data,

after a detailed analysis by age and sex. It is somewhat lower than

the number used in other models, but we feel that it is realistic for

the Zambian situation.

The mean number of sex acts by year for a steady relationship

was set to 100 which is a little higher but remained consistent with

the values used in other models [7,21]. We also included a decline

of this mean with age, corresponding to a lower sexual activity for

older age-groups [43]. Considering a lower number of annual sex

acts would simply imply higher transmission per act in our model,

but will not change very much the age and sex patterns.

In our simulations, a large proportion of female infections occur

within marriage, because of extra-marital relationships of men,
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including commercial sex. This conclusion is supported by

epidemiological [44–47] and serological [48] studies. Lurie et al.

[44] found that in 71.4% of discordant couples the male was the

infected partner and that he was infected mostly outside his regular

relationships. Another study concluded that men were four times

more likely than women to introduce HIV infection in

concordant-negative couples [45]. Moreover, Glynn et al. [49]

estimated that at least 25% of the infections in recently married

men were acquired from outside the marriage, by extra-marital

partnerships. This is mainly explained by gender differences in

sexual behaviour, as men more frequently engage in extra-marital

relationships, including commercial sex.

Age at first marriage has been shown to be an important factor

of HIV prevalence at country level, also demonstrated with its

correlate, the prevalence of premarital fertility [50,51]. Late

marriage for women implies long periods of premarital sexual

activity during which the rate of partner change can be high,

which facilitates the spread of the virus. The case of Zambia is

interesting and peculiar because this country has a high level of

HIV prevalence despite low median age at first marriage. As a

result, most infections occur after first marriage, a situation

different from other countries in Southern Africa, where infections

mainly occur in the premarital period.

Because the stage of primo-infection is very infectious, women

with an infected husband tend to become infected soon after their

spouse. In simulation H0, 59.3% of female infections occurring

through marriage occur during this 6-month period of primo-

infection.

Commercial sex was shown to play a major role in the spread of

HIV in the first years of the epidemic in Africa [52–55]. In

generalized epidemics, however, this role seems less important.

The 4-city study conducted in the late 1990’s concluded that

commercial sex could not explain differential prevalence within

the sites [30]. We showed from five case studies in the early 2000s

that the role of female sex workers seems limited, and accounts for

only 1.3 to 9.4% of infections in the general population, although

Zambia was not included in this sample [56]. To a certain extent,

results of our simulation H0 reflect this fact. At the onset of the

epidemic, the proportion of male infections occurring during

contact with CSW’s is high (73.1% before 1985), then it decreases

to reach 36.4% after year 2000. Moreover, using our first

estimation of commercial sex, and after adjustment of the

transmission probability (H29), some 39.8% of male infections

are due to commercial sex before 1985, whereas this proportion

falls to 21.8% after year 2000. As a matter of fact, the proportion

of female infections within marriage decreases from 54.8% before

1985 to 50.2% after 2000. It still remains high compared to our

estimate, but reflects, to a certain extent, the fact that the epidemic

in Zambia is now generalised to the whole population and not

restricted to some high-risk groups.

Our model had several other limits, beyond the values of its

parameters. Firstly, heterogeneity in sexual behaviour is repre-

sented only by behaviour associated with marital status, and by

random effects. There is evidence of more complex heterogeneity,

and in particular by more complex ‘‘assortative mixing’’, that is a

preference from both sexes to form sexual partnerships with

persons with similar behaviours (either with low or with high

number of partners). This is only partly taken into account in our

model. Also, we did not take into account preferences for CSW’s,

that is the fact that some men tend to have relations preferentially

with the same person for a long period of time. We also assumed

independence between many parameters, such as divorce rates

and sexual behaviour, which may differ from real life situations.

Some of the parameters were taken as constant, when in reality

they are dependent on some other factors. We took a weekly step

for the epidemiological module, which implies some constraints in

terms of sexual contacts and concomitant partnerships.

We also ignored deliberately other factors of HIV transmission,

such as herpes or other STIs, which would require much more

complex modelling, and has already been treated elsewhere [8,57].

The average effect of STI’s can be considered to be somehow

included in the average transmission rate, and in the excess risk for

intercourse with a CSW.

We also ignored the spatial dimension of disease spread, in

particular the role of migration, and the differential behaviour in

urban and rural areas. These other factors need a separate

treatment, and indeed other types of models. The role of the

mines, as they attract young unmarried adults and favour

commercial sex, is also of concern for Zambia.

We also ignored other routes of transmission, in particular

iatrogenic transmission (blood transfusion, unsafe injections or

medical practices), sometimes considered to be important [58]. We

acknowledge that they may exist, but we thought that they were

unlikely to explain the age and sex patterns of HIV infections

which was our main target [59].

Our study is primarily heuristic, and aims at explaining a

common feature of African epidemics: the age and sex patterns of

seroprevalence in the adult population. It may also have some

policy implications. By better understanding the likely routes of

transmission, one might better target prevention policies. Of

course, our findings are country and period specific, and cannot be

easily extrapolated to other situations, unless more simulations are

run with different parameters. However, they reveal at least two

major target groups: sex workers and their clients, and newly

married women. If the first group has been the target of many

interventions [60–63], the second group has largely been ignored

as a potentially high risk group [64]. Prevention programs among

this group are needed, and this conclusion is supported by

epidemiological studies [45].

Our model can also be used for measuring the effect of changing

behaviour. After fitting the 2001 situation, one could extrapolate

the trends to the next 5 or 10 years. This exercise shows that in

2006, one expects a rising epidemic, with 19.4% of infected

women aged 15–49, and 12.4% of men in the same age group;

corresponding figures for 2011 are: 20.7% for women and 13.1%

for men, with maximal prevalence of 30% for females and 24% for

males. On the contrary, seroprevalence seems to have been

levelling off and even going down in Zambia over the past years,

according to sentinel sites [65]. This tends to indicate that

prevention efforts have been successful, and that the course of the

epidemic has been curbed by changing behaviour, whether by

reducing the number of partners or by using condoms.

Much remains to be explored to better understand the dynamics

of HIV epidemics in Africa, and their wide diversity. In particular,

may such micro-simulation models help explain the differences in

prevalence levels and in age and sex patterns seen over the

continent? This remains to be seen by applying the model to other

situations.
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