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Abstract

Lymphoblastoid cell lines (LCL) are being actively and extensively used to examine the expression of specific genes and
genome-wide expression profiles, including allele specific expression assays. However, it has recently been shown that
approximately 10% of human genes exhibit random patterns of monoallelic expression within single clones of LCLs.
Consequently allelic imbalance studies could be significantly compromised if bulk populations of donor cells are clonal, or
near clonal. Here, using X chromosome inactivation as a readout, we confirm and quantify widespread near monoclonality
in two independent sets of cell lines. Consequently, we recommend where possible the use of bulk, non cell line, ex vivo
cells for allele specific expression assays.
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Introduction

Lymphoblastoid cell lines (LCL), which have been immortalised

by infection with Epstein Barr Virus (EBV), are being actively and

extensively used to examine the expression of specific genes and

genome-wide expression profiles [1,2,3,4]. Researchers are linking

and associating single nucleotide polymorphisms (SNPs) with

inherited, expression quantitative trait loci (eQTL) using tens to

hundreds of LCLs. A complementary approach is the analysis of

allelic imbalance of gene expression owing to unequal transcription

(or splicing) from the two alleles or haplotypes using RNA samples

from individuals who are heterozygous at the eQTL SNP. Allelic

imbalance approaches have the advantage of assessing expression

within an individual rather than across subjects thereby avoiding

several sources of error and variation. However, it has recently been

shown that approximately 10% of human genes exhibit random

patterns of monoallelic expression within single clones of LCLs [5].

Consequently, in a clonal or near clonal LCL, gene expression

measurements may not be representative of the in vivo cell population

and allelic imbalance studies could be significantly compromised.

Nevertheless, although it is published [6] that some widely used

LCLs are pauciclonal or even monoclonal, it is still not fully

appreciated that bulk LCL cultures can be highly restricted in the

number of constituent clones, as evidenced by the exclusive use of

cell lines in most recent studies [1,2,3,4]. Here, using X

chromosome inactivation (XCI) as a measure of the degree of

clonality, we confirm and quantify widespread near monoclonality

in two independent sets of 466 and 708 cell lines. Our results

suggest that the loss of diversity occurs in the early stages of the

LCL preparation and, therefore, affects equally freshly prepared,

as well as established cell lines such as the HapMap LCLs [6].

Results

We measured XCI using a standard assay in all our samples [7]

and observed large differences between cell lines (T1D and British

1958 Birth Cohort [8]) and controls (healthy Turkish women) for

which DNA was isolated directly from peripheral blood (Figure 1).

This high skew in XCI is associated with clonality in LCLs: when a

LCL reaches near clonality, the skew in XCI tends to increase

until reaching 100% [9]. We used these differences between both

sets of healthy samples (British 1958 Birth Cohort cell lines and

Turkish controls) to quantify the reduction in diversity in the

transformed cell lines.

Our statistical model assumes two potential outcomes for a cell

line transformation. In the first case, with probability 1-f, the

transformed cell line accurately reflects the level of skewing from

the initial cell population. In the second case, with probability f,

the transformation process subsamples n cells from the initial pool

and the final population consists of an equal mixture of the

descendants of these n cells. Note that we do not assume that the

final cell line is formed from only the descendants of n cells, but

that the combination of the initial LCL transformation with the

variation in growth rate among cell lineages leads to a bias in

measurement equivalent to a bottleneck of n cells which then grow

equally. We present this estimate as an informative summary
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statistic of the effect of near clonality on the expression

measurement. We assume that the number n is distributed as a

Poisson random variable with mean m and we are interested in the

joint estimation of both parameters f and m.

We first computed the profile log-likelihood for the parameter f

denoting the fraction of cell lines that underwent a bottleneck (see

Figure 2, Data S1 and Code S1). We found that the maximum

likelihood estimate for f varies with the accuracy of the XCI assay,

this estimate going down when the average error increases (see

Figure 2). The precision of the XCI assay is not known exactly but

the average error is expected to lie within 0.03–0.05 [10].

Assuming a XCI assay average error of 0.05, we estimated that

pauciclonality affects 60% of the LCLs. When the XCI assay error

varied between 0.03 and 0.05, the average number of clones in

pauciclonal LCLs was estimated between 4 and 5.

However, while previous estimates suggest that an average error

of 0.1 for the XCI is an overestimation, this scenario appeared to fit

the data better (2DlogL = 6.6, p = 0.01 compared to the best scenario

assuming an average measurement error of 0.05). Moreover,

assuming an average measurement error of 0.1, we cannot reject

the assumption that the bottleneck always involves a single clone. It

indicates that a likely scenario is a situation where the XCI in most

LCLs reflect the XCI in whole blood but approximately 22% of the

LCLs do not grow properly and become monoclonal.

These estimates rely on the assumption that the pattern of XCI is

similar between the British population and the Turkish control

samples. Indeed, the pattern of XCI is relatively constant across

populations (see [10,11,12,13,14,15] and Table 1) and ethnic

differences are unlikely to explain the strong differences we observe.

Using information about the cell line preparation for the T1D

samples, we examined what variables explained the variability in

XCI. Volume of blood drawn, date of bleed, age of blood at

first freeze (before transformation) and number of re-growths

(defined as successive cell line growths from a frozen sample)

showed no significant correlation with XCI (P.0.05). However,

the time required for first growth (defined as the time from

transformation until the culture volume reaches 100 ml) is

positively correlated with skewed XCI (correlation coefficient

r = 0.19, P = 761026). Figure 3 shows how extreme XCI

(.90%) correlates with this covariate. These data suggest that

loss of diversity occurs during or shortly after transformation: in

the case of slow initial growth, stochastic variability would have

an increased effect because of the small number of EBV infected

cells. It is likely that subsequent events, including re-growths,

have a limited impact because of a higher cell count when they

occur. We also note that even cell lines with the shortest time

for first growth (less than 22 days) are still significantly more

skewed than our control samples (DNA obtained from whole

blood), indicating that a robust early growth does not guarantee

absence of clonality.

We then investigated whether our statistical model could

explain the pattern of XCI observed in the data. We simulated

data using our best fitting parameters and compared the results

with XCI in both sets of cell lines (Figure 4). This comparison

provided mixed results. While our model properly explained the

excess of samples with extreme skewing (95–100% XCI) observed

in cell line samples, we could not explain the excess of cell lines

samples with XCI between 50 and 55%. A potential explanation is

that subtle differences occurred in the XCI assay. Because the XCI

assay is primarily designed to identify highly skewed individuals, it

is plausible that it is not robust to small experimental differences

when trying to distinguish XCI in the 50–70% range.
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Figure 1. Distribution of XCI in the British 1958 Birth Cohort samples, JDRF/WT T1D cases collection (both with DNA extracted from
transformed cells lines) and the control Turkish population (DNA extracted from peripheral blood).
doi:10.1371/journal.pone.0002966.g001
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Figure 2. Likelihood curve for the fraction of cells f that underwent a bottleneck. We considered three values for the standard error in the
measurement of the skew in X inactivation (standard deviation of 0.03, 0.05 and 0.1). The horizontal line indicates the 95% confidence interval.
doi:10.1371/journal.pone.0002966.g002

Table 1. Levels of X chromosome inactivation skewing in different groups of healthy and diseased individuals.

Population gtotal ginformative .90% 80–89% 50–79% Source of DNA

T1D cases-Great Britain

T1D-#40days transformation{ 367 66 (18) 39 (10.4) 262 (71.6) Cell line

T1D-.40days transformation{ 180 70 (38.9) 16 (8.9) 94 (52.2) Cell line

T1D-all{ 708 547 136 (24.8) 55 (10.1) 356 (65.1) Cell line

Healthy controls

Great Britain

British 1958 Birth Cohort{ 466 311 65 (20.9) 32 (10.3) 214 (68.8) Cell line

Turkey

Adult [11] 160 124 3 (2.41) 7 (5.6) 114 (91.9) Peripheral blood

Children{ 92 72 2 (2.8) 6 (8.3) 64 (88.9) Peripheral blood

Newborn{ 91 52 2 (3.8) 2 (3.8) 48 (92.3) Peripheral blood

North America

Adult/Mix-US [10] - 415 22 (5.3) 59 (14.2) 334 (80.5) Peripheral blood

Adult/Unknown-US [14] 114 100 1 (1.0) 7 (7.0) 92 (92.0) Peripheral blood

Newborn-USA [10] - 590 4 (0.7) 29 (4.9) 557 (94.4) Peripheral blood

Adult/Unknown-Canada [12] 109 97 8 (8.2) 15 (15.0) 74 (76.3) Peripheral blood

Other

Adult/Caucasian-Italy [13] - 164 10 (6.1) 22 (13.4) 132 (80.5) Peripheral blood

Adult/Caucasian-Denmark [15] - 96 1 (1.0) 10 (10.0) 85 (89.0) Peripheral blood

Adult/Caucasian-Tunisia{ 97 46 4 (8.7) 5 (10.9) 37 (80.4) Peripheral blood

The first number represents the number of samples in each of the three categories (XCI.90%; between 80–89% and 50–79%). The number in parenthesis is the
percentage this category represents.
{Unpublished.
doi:10.1371/journal.pone.0002966.t001
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Figure 3. Confidence intervals for the probability of XCI.90% as a function of the time required for first growth (ie. between
transformation and until the culture volume reaches 100 ml).
doi:10.1371/journal.pone.0002966.g003
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Figure 4. Simulation study comparing the XCI between our best fitting scenario and both sets of cell line (1958 British Birth Cohort
and T1D samples).
doi:10.1371/journal.pone.0002966.g004
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Discussion

Based on our XCI assay, we estimate that pauciclonality affects

approximately 20% of the LCLs in our study. While XCI is a

useful readout for pauciclonality, additional readouts, such as the

number of tandem repeat sequences in the EBV genome [16] or

the structure of the rearranged immunoglobulin heavy chain gene

[17], might be useful in the future to confirm our estimates.

These results, combined with evidence of widespread random

monoallelic expression [5], indicate that expression data from

LCLs are not well suited to detect correlations between SNPs and

gene expression. When for a given gene the expression is affected

by methylation patterns or other epigenetic meiotically stable

factors [5], the expression measurement in LCLs will not be

representative of the in vivo cell population. Strong allelic

imbalance can result from the random inactivation of the same

allele in the small number of clones that constitute the LCL,

resulting in increased false positive and false negative rates.

Consequently, we expect that the fraction of human genes affected

by monoallelic expression [5] will be highly differentially expressed

in the approximately 20% of monoclonal LCLs. In fact, any gene

expression measurement that is variable across cells in vivo can be

significantly altered by the random subsampling of a small number

of clones in a LCL. This additional measurement noise will affect

the power of genome-wide association studies, or, indeed, specific

gene studies to detect association between SNPs and expression

traits in LCLs. Consequently, we recommend, where possible, to

either screen the LCLs for monoclonality or use bulk, non cell line,

ex vivo cells when measuring gene expression [18], and in particular

when focusing on allele-specific expression [1].

Methods

Dataset
The data consisted of two sets of LCLs: 466 samples from

healthy women (British 1958 Birth Cohort, see [8]) and 708

samples from type 1 diabetic women (Juvenile Diabetes Research

Foundation/Wellcome Trust British T1D case collection), with all

samples originating from England, Scotland and Wales. In

addition, the control set consisted of 343 samples from Turkish

healthy women for which DNA was isolated from peripheral

blood. For the T1D cell lines, additional information describing

the cell line preparation was available (see Protocol S1).

X inactivation and clonality in LCL
X inactivation is a process by which, early in the female

mammals’ development, epigenetic modifications randomly inac-

tivate one of the two copies of the X chromosome to guarantee a

comparable gene dosage between male and females. Consequent-

ly, a female is a mosaic of two cell types in which either the

maternal or the paternal chromosome is inactivated. The

proportion of the most common of these two cell populations,

expressed as a percentage between 50% and 100%, is called the

level of skewing in XCI. We measured XCI using a standard

assay [7].

Mathematical model for XCI in cell lines
In the presence of a bottleneck, we modelled the skew in the cell

line samples (denoted by the random variable Y*) as follows:

Y �*Binomial p~X ,nð Þ

where n,Poisson(m) is the bottleneck size (we assume a Poisson

random variable with mean m that we want to estimate) and X is a

random variable describing the skew in the population estimated

from the Turkish control samples (using peripheral blood and not

cell lines). We also investigated a version of this scenario where the

bottleneck always involves a single clone. The XCI variable Y,

measured between 0.5 and 1, is obtained by adding an error term e:

ŶY~Y �ze

Y~max ŶY ,1{ŶY
� �

e is a truncated Gaussian random variable with mean 0 and standard

deviation s= 0.03,0.05,0.1. The truncation ensures that ŶM{0,1}.

Likelihood estimation
The fraction of LCLs undergoing a bottleneck is denoted by f

and the number of cells n in the bottleneck is Poisson(m). Parameters

are estimated using a maximum likelihood approach, maximizing

the likelihood over a two dimensional grid of values for (f,m). We

summarized the XCI data using ten uniformly spaced bins Bið Þ10
1 .

The distribution of the measured XCI, denoted by Y, is therefore

multinomial with parameters (p1,…,p10) where pi = P(YMBi).

For given values of the parameters (f,m) the probabilities pi are

estimated as follows:

pi~ 1{fð ÞP X[Bið Þzf
X

j

P n~j mjð ÞP Y[Bi n~jjð Þ

where X designates the XCI randomly sampled from the control

Turkish population.

P(YMBi|n = j) is the probability that the measured skew Y is

located in the bin Bi conditionally on a bottleneck of size j:

P Y[Bi n~jjð Þ~
Xj

k~0

P Binomial p~X ,jð Þ~k½ �P k=jze[Bi½ �

Supporting Information

Data S1 XCI data for the three datasets studied in this paper

Found at: doi:10.1371/journal.pone.0002966.s001 (0.01 MB XLS)

Code S1 R code (Sweave generated) used to generate figures and

compute the loglikelihood profile.

Found at: doi:10.1371/journal.pone.0002966.s002 (0.11 MB PDF)

Protocol S1 Protocol for cell line transformation.

Found at: doi:10.1371/journal.pone.0002966.s003 (0.07 MB PDF)
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