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Supplementary information: Methods
Model Structure:

We developed a mathematical model of the interplay between HIV and female genital schistosomiasis (FGS). We used data from a cross-sectional study in rural Zimbabwe1,2 to determine the posterior distributions of model parameters through a Bayesian analysis.  Based on these parameter estimates, we quantified the potential cost-effectiveness of mass administration of praziquantel as an HIV preventive intervention.

Model Formulation:

To model the joint dynamics of HIV and FGS, we first developed a model for Schistosoma haematobium dynamics. We considered an age-structured model where the population is subdivided into two age-groups: child- and adult-group. The child-group is composed of individuals younger than 15 years old, and the adult-group is composed of individuals aged 15 years old and above. These two age-groups differ in their risk for schistosomiasis infection and their schistosomiasis prevalence. The population dynamics is modeled using a compartmental aging system of differential equations: 
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where 
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are, respectively, the total child and adult populations. The per capita birth rate is
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represents the transition (aging) rate, and
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represent the child and adult mortality rates, respectively. Mortality from S. haematobium is negligible.3 We modeled schistosomiasis dynamics using the following model:  
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where 
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  is the duration of schistosomiasis infection, 
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 is the transmission rate to children,  
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 is the transmission rate to adults. 
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 is the total population size. As S. haematobium is endemic in Zimbabwe, we parameterized the schistosomiasis transmission rate by running the model to equilibrium and using least-squares approach to fit the equilibrium prevalence of S. haematobium predicted by the model to epidemiological studies of rural Zimbabwean (58% for school-age children and 25% for adults).4-7
 We integrated our calibrated S. haematobium transmission model with HIV transmission to generate a co-infection model the HIV–FGS dynamics with the adult population. We assumed that women enter the model either infected with FGS, or uninfected. From ages 15 to 49, women can acquire FGS and/or HIV with different forces of infection. As FGS is a persistent manifestation of S. haematobium in endemic areas,8,9 we assume that there is no natural recovery from FGS among adult women, as supported from clinical data.10 Following Hallett et al,11 we developed a model for heterosexual spread of HIV, stratifying both gender and sexual activity.
The model is defined by a set of ordinary differential equations. The state variables are given by 
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is gender (1 = female, 2 = male), 
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is the sexual activity group (1 = high risk, 2 = low risk) defined according to rate of sexual partner change, 
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is the HIV infection status (1 = susceptible, 2 = infected), and 
[image: image25.wmf]P

is the FGS infection status (1 = non-infected, 2 = infected). For men 
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is always equal to 1. 
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We demote by
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 the FGS prevalence among girls age 15.
[image: image32.wmf]C

S

G

C

P

k

=

, where 
[image: image33.wmf]S

C

denotes the prevalence of S. haematobium among girls age15 and 
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is the proportion of those for whom FGS has manifested by age 15. We assumed adult women, infected with S. haematobium, who did not develop FGS during their childhood may acquire FGS in adulthood at a rate
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denotes the prevalence of S. haematobium among adult women and 
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is the rate at which women without FGS would acquire FGS as a result of S. haematobium infection. S. haematobium prevalences were derived from the S. haematobium dynamic model: Eqs (2.1)–(2.8). The mean duration of sexual activity is given by 
[image: image39.wmf]1

-

m

, 
[image: image40.wmf]l

k

,

f

is the fraction of men and women, respectively, becoming sexually active in each sexual activity group. The force of infection for individuals in each gender and sexual activity group is given by 
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The force of infection is calculated on the basis of the rate of partnership change, HIV prevalence among their sexual partners, and the number of sex acts in each partnership. 


[image: image42.wmf]å

=

·

·

·

-

-

=

2

1

'

,

'

,

'

,

2

'

,

'

'

'

,

,

,

,

)

)

)

1

(

1

(

(

l

l

k

l

k

n

P

k

l

l

k

l

k

P

l

k

X

X

C

L

b

r

l




(4.1)


[image: image43.wmf])

'

,

max(

l

l

L

=

, where 
[image: image44.wmf]L

denotes whether a partnership is high-risklow-risk (the prime denotes that the index relates to those of the opposite gender). The number of sex acts in a partnership is denoted by 
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. The HIV transmission rate per sexual act for individuals of gender 
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. We set HIV transmission rate from male-to-female to be equal to twice the transmission rate from female-to-male, 
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 , in the absence of FGS.12,26 In the presence of FGS, we set
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 is the enhancement of HIV transmission rate per sexual act due to FGS. We also assume the HIV transmission rate per sexual act do not vary with risk activity group, 
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Here, 
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. We assumed that men and women form partnerships such that a fraction, 
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, of their partnership are with members of the same activity group. The remainder is randomly distributed among those of opposite gender, according to the number of partnerships available. We denote by 
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the total number of sexual partnerships dependent on gender 
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is the average rate of partner change for gender 
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is the relative partner change for those in high risk group (
[image: image73.wmf]1

,

k

v

) to those in the low risk group (
[image: image74.wmf]1

2

,

=

k

v

).

In the case that there is a discrepancy between men in risk group 
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is the extent to which the pattern of partnership formation is governed by the parameters estimated from men’s reported sexual behavior (see Garnett and Anderson13 for details).

To allow for behavioral response to the HIV epidemic, we assumed that the mean partner change rate varies with the number of HIV deaths per unit time: 
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 is the initial contact rate,
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 is the rate at which partner change declines, 
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 is the number of HIV/AIDS related deaths per year, and
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is the total population size. 
Model Fitting:

In a cross-sectional study, Kjetland et al identified the prevalences of HIV and FGS, as well as the odds ratio of having HIV with or without FGS (Table A1).1 We developed a likelihood function by assuming normal distributions for HIV and FGS prevalence and lognormal distribution for the odds ratio (Table A1). The choice of the distribution was informed by empirical data from the cross-section study.1 Given that no prior information is available on the level of increase risk of HIV infection per sexual act for FGS infected women (
[image: image88.wmf]G
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), we used an objective prior (uniform distribution) and a realistic range of values (0–20) to describe the prior distribution of
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c

. For all other parameters of the HIV-FGS model, prior distributions were determined from the literature (Table A2). 
To mimic the Zimbabwean clinical studies, for each iteration of parameters, we ran the models for 20 years from the initial conditions, simulating the start of the HIV epidemic in approximately 1980 until 1999 when Kjetland et al studies were completed.1,2 We ran five separately initialized Markov Chain Monte Carlo (MCMC) simulations for 300,000 iterations each using the Metropolis-Hastings method. Convergence was assessed using the Brooks-Gelman-Rubin diagnostic criterion.14  
Interventions:

We modeled two potential scenarios for the effect of mass praziquantel administration on reducing HIV transmission. We assumed that treatment is annually administered to school-age children (5 to 14 years old). In the first scenario, we assumed that women who have received treatment during their childhood have a reduced FGS prevalence relative to those who did not receive treatment. We assumed treatment would reduce FGS prevalence among 15 years old girls by 
[image: image90.wmf]ep

(30%–70%), in the treated population.8 In the second scenario, we assumed that for women who received treatment during their childhood, treatment will mitigate their risk of HIV transmission by 
[image: image91.wmf]er

(30%–70%). The second scenario extends the first by considering a situation in which mass treatment does not necessarily reduce FGS prevalence among treated women, but rather reduces the manifestations of FGS regarded as exacerbating  risk of HIV acquisition. 
From the time that intervention is initiated, the model is run for the duration of the intervention either with or without mass praziquantel administration. The cost of each intervention is found by multiplying the discounted price of treatment by the number of treated individuals.  The costs were discounted at a 3% annual rate as recommended by the Panel on Cost-Effectiveness in Health and Medicine of the US Public Health Service and the WHO.15
Sensitivity Analysis

To identify the contribution of each of the estimated input parameters to the variability of the outcome measures (number of HIV cases averted, and averted medical care costs) of our model, we calculated the partial rank correlation coefficients (PRCCs).16 PRCC quantifies the degree of monotonicity between a specific input parameter and an outcome measure. In order to conduct the sensitivity analysis, we used a Latin Hypercube procedure to draw 10,000 sample values for the input parameters of our model.17
Table A1: Kjetland data – Confidence Interval (CI), and Distribution approximation

	Statistic
	Values
	Modeled Distribution

	Prevalence of HIV
	28% (CI: 24% - 32%)
	Mean 0.28, SE 0.021 (Normal)

	Prevalence of FGS
	46% (CI: 42% - 50%)
	Mean 0.46, SE 0.021 (Normal)

	Odds Ratio
	2.1 (CI: 1.2 – 3.5)
	Mean 2.1,SE 0.352 (Lognormal)


Table A2: Parameter definitions of Scistosomiasis Dynamic Model 
	
	
	
	

	Parameter
	Definition
	Value
	Ref
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	Per capita birth rate
	0.034 yr-1
	[27]
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	  Child mortality rate
	0.02 yr-1
	[18]
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	Adult mortality rate  
	0.02 yr-1
	[18]
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	  Aging rate from youth to adulthood
	1/10 yr-1
	---
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	Children transmission rate
	0.38 
	estimated*
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	  Adult transmission rate
	0.04 
	estimated*


*Parameters were estimated suing least-squares to fit the S. haematobium dynamic model to Zimbabwean prevalence data. 
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Supplementary table 
Table S1: Base line estimate and distributions of selected model variables
	Variable
	Base value
	Distribution 
	Ref

	Cost per praziquantel tablet (600 mg tablet)
	US$0.08
	NA
	[19]

	Cost of delivery of praziquantel per individuals
	US$0.21
	Min 0.06, Max 2.23 (Uniform)
	[20,21]

	ART coverage (proportion  HIV patients receiving antiretroviral therapy)¥
	0.34
	Mean 0.34, SD 0.02 (Normal)
	[22]

	Zimbabwe non-HIV/AIDS health expenditure (cost per person per annum)
	US$26
	Mean 26, SD 4.8 (Gamma)
	[23,24]

	Cost lifetime ART (ARV first line, second line, ARV monitoring)
	US$3000
	NA
	[25]

	Other lifetime cost of HIV treatment (prophylaxis and treatment of opportunistic infections, diagnostic and routine testing, palliative care)
	US$695
	NA
	[25]


SD: standard deviation; ¥ ART = Antiretroviral Therapy
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