Modelling the Large-scale Yellow Fever Outbreak in Luanda, Angola, and the Impact of Vaccination

Shi Zhao1, Lewi Stone2,3,*, Daozhou Gao4 & Daihai He1,*

1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
2 School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, 3000, Australia
3 Biomathematics Unit, Department of Zoology, Tel Aviv University, Ramat Aviv, Israel
4 Department of Mathematics, Shanghai Normal University, Shanghai, China

* Corresponding: D.H. daihai.he@polyu.edu.hk & L.S. lewistone100@gmail.com

S4 Estimating the Confidence Interval of $R_0(t)$

Figs. S4 and S5 show the 95% confidence interval (CI) for the estimated R_0, obtained by calculating the 95% CI of $m(t)$, which is obtained from calculating the profile maximum log likelihood of the model as a function of value of each node of $m(t)$. The width of the CI became very wide in the last 2/7 (i.e., 28.57%) of the study period because both case numbers and the number of deaths became relatively small and noisy.

Fig S4. The Confidence Interval (C.I.) estimation plot of R_0 under scenario 1.
Fig S5. The Confidence Interval (C.I.) estimation plot of R_0 under scenario 2.