Relevance scoring scheme and predictive power

As stated in the main text, prioritizations based on the G'_{rk} network model presented the best performance for the tested cases. On the other hand prioritizations considering G' resulted in much poorer performances, especially for the *T. cruzi* case, for which almost random classification performance was reported. Interestingly, the origin of the performance discrepancies between both network-based approaches happened to be related to a strong correlation that existed between G'-prioritization scores and the *strength* s_i, a connectivity topological feature, of V_p nodes defined as:

$$s_i = \sum_{j \in N(i)} w_{ij}$$ \[0\]

where $N(i)$ is the set of neighbors of node-i and w_{ij} is the weight of the edge between node i and j.

Left panels in the Figure (see below) display the Spearman correlation level observed between a node’s *strength* and the corresponding prioritization scores for the top $L\%$ best ranked proteins according to G'_{rk} (black triangles) and G' (red diamonds) network models. Panels (A) and (C) correspond to the *M. musculus* and *T. cruzi* cases respectively. A consistent high correlation level can be recognized between the first $L\%$ G'-prioritization scores and the node *strength* signal for a wide range of L values. Moreover slightly higher correlation levels are found when the very top ranked proteins are considered (i.e. $L \to 0$). Noticeably, these results suggest that the G' prioritization is *a priori* independent of any given seed set, as it is strongly influenced by topological features. Proteins annotated to promiscuous functional affiliation nodes (nodes with high degree) and/or affiliation nodes with high proportion of drug target annotated proteins (i.e. nodes connected through high relevance score in their E_{DP} edges) are expected *a priori* to appear as top-ranked candidates under this prioritization scheme.

A completely different scenario was observed for G'_{rk} prioritizations. In particular, for the top 1% scoring proteins (i.e. $L=0.01$, which corresponds to 134 proteins) only a minimal correlation of $\rho \sim 0.2$ was observed for between *strength* and prioritization score for the analyzed organisms.

Panels (B) and (D) in the Figure display boxplots associated to the strength distribution of non-target and target proteins for the top 10% ranked proteins according to the G' network model corresponding to *M. musculus* and *T. cruzi* respectively. It can be seen that these target proteins do not display high strength levels as a general rule, what could explain the low AUC-01 values displayed by this network model.
Figure: Spearman Rank Correlation Strength. Spearman correlation level observed between node strengths and the corresponding prioritization scores for the top $L\%$ best ranked proteins according to G'_{rk} (black triangles) and G'_r (red diamonds) network models are shown on left panels. Panels (A) and (C) correspond to the M. musculus and T. cruzi cases respectively. Panels (B) and (D) display boxplots associated to the strength distribution of non-target and target proteins for the top 10% ranked proteins according to the G'_r network model for M. musculus and T. cruzi respectively.
Spearman correlation level observed between node’s strengths and the corresponding prioritization scores for the top $L\%$ best ranked proteins according to G'_{rk} (black triangles) and G' (red diamonds) network models. Panels (A) and (C) correspond to the $M.\ musculus$ and $T.\ cruzi$ cases respectively. Panels (B) and (D) in Supplementary Fig. 5 display boxplots associated to the strength distribution of non-target and target proteins for the top 10% ranked proteins according to the G' network model corresponding to $M.\ musculus$ and $T.\ cruzi$ respectively.