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Abstract

Managing infectious disease requires rapid and effective response to support decision mak-

ing. The decisions are complex and require understanding of the diseases, disease interven-

tion and control measures, and the disease-relevant characteristics of the local community.

Though disease modeling frameworks have been developed to address these questions, the

complexity of current models presents a significant barrier to community-level decision mak-

ers in using the outputs of the most scientifically robust methods to support pragmatic deci-

sions about implementing a public health response effort, even for endemic diseases with

which they are already familiar. Here, we describe the development of an application avail-

able on the internet, including from mobile devices, with a simple user interface, to support

on-the-ground decision-making for integrating disease control programs, given local condi-

tions and practical constraints. The model upon which the tool is built provides predictive

analysis for the effectiveness of integration of schistosomiasis and malaria control, two dis-

eases with extensive geographical and epidemiological overlap, and which result in signifi-

cant morbidity and mortality in affected regions. Working with data from countries across

sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corre-

sponding prototype tool to provide guidance on how to optimize integration of vertical disease

control programs. This method and tool demonstrate significant progress in effectively trans-

lating the best available scientific models to support practical decision making on the ground

with the potential to significantly increase the efficacy and cost-effectiveness of disease

control.

Author summary

Designing and implementing effective programs for infectious disease control requires com-

plex decision-making, informed by an understanding of the diseases, the types of disease

interventions and control measures available, and the disease-relevant characteristics of

the local community. Though disease modeling frameworks have been developed to

address these questions and support decision-making, the complexity of current models

presents a significant barrier to on-the-ground end users. The picture is further complicated

when considering approaches for integration of different disease control programs, where
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co-infection dynamics, treatment interactions, and other variables must also be taken into

account. Here, we describe the development of an application available on the internet with

a simple user interface, to support on-the-ground decision-making for integrating disease

control, given local conditions and practical constraints. The model upon which the tool is

built provides predictive analysis for the effectiveness of integration of schistosomiasis and

malaria control, two diseases with extensive geographical and epidemiological overlap. This

proof-of-concept method and tool demonstrate significant progress in effectively translating

the best available scientific models to support pragmatic decision-making on the ground,

with the potential to significantly increase the impact and cost-effectiveness of disease

control.

Introduction

The concept of integrated control of neglected tropical diseases (NTDs) as a public policy was

established more than a decade ago. The proposed policy highlighted the potential benefits of

“rapid-impact interventions”, particularly bundled combinations of drugs to be used for mass

drug administration (MDA) campaigns at school or the community level[1]. Large scale

implementation of integrated, or at least coordinated, programs began soon after: in 2006, the

United States Agency for International Development (USAID) launched an NTD Control Pro-

gram, which included an explicit focus on coordination of control interventions in its twelve

target countries[2]. Since then, a number of countries have begun to implement control pro-

grams that integrate two or more neglected tropical diseases, largely focusing on coordinated

MDA, but also occasionally incorporating other interventions[3]. While primarily focused on

integration of NTDs, from the beginning there have been calls to “piggy-back” NTD control

through integration with the “Big Three” of HIV/AIDS, tuberculosis (TB) and/or malaria

given the substantially larger resources allocated to these three major diseases and significant

existing infrastructure for implementation of control measures, including drug delivery, com-

munity outreach, and advocacy[4,5].

The integration of NTDs, either alone or with other health and disease programs, including

the Big Three, is supported by, first, the extensive geographical overlap of these diseases, result-

ing in high prevalence of co-infection. Secondly, known immunological and pathological

dynamics in co-infected individuals can lead to synergistic impacts and changes in susceptibil-

ity to other infections, including HIV and malaria. Thirdly, integrated programs can benefit

from significant financial savings generated by greater efficiency of intervention delivery, for

example through fewer and more stream-lined MDA campaigns. The past ten-plus years of

integrated control have provided a posteriori evidence of efficacy, particularly in terms of num-

bers of drug treatments delivered, national coverage rates, and, in some cases, through cost

effectiveness estimates. While there are concerns that monitoring and evaluation efforts have

not always kept pace with integration initiatives, that observed cost-savings are variable and

vulnerable to opportunity costs, and that context-specific factors may influence the execution

and impact of integrated control[6–8], cumulative evidence suggests that, at least in some

cases, integrated control measures could significantly improve the global impact of co-infec-

tion and total disease load.

The effectiveness of integrated disease control programs depends on the specific co-

endemic diseases, infection patterns, and population structure in the local community. How-

ever, those making public health decisions on the ground rarely have access to decision
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support tools that translate the outputs of the best available models into practical decisions for

implementing public health efforts in their communities. To address this gap, we have devel-

oped an evidence-based framework to support a priori design, implementation, and monitor-

ing of integrated disease control programs. This approach applies epidemiological and

immunological data with context-specific demographic information to predict whether inte-

gration would be beneficial in a particular setting. This approach is specifically designed to

facilitate the transfer of information usually restricted to academic literature into the hands of

end-users and decision-makers on the ground.

Schistosomiasis and malaria are ideal targets for testing the validity of this type of evidence-

based a priori framework for decision-making. The two diseases are co-endemic throughout

much of sub-Saharan Africa, as well as certain regions of South America, the Middle East, and

Southeast Asia, and have similar demographic impacts, with children experiencing the highest

burden of morbidity. The two diseases are known to cause significant rates of co-infection at

the individual level[9–12] and are known to have complex immunological and pathological

interactions.[11,13,14] In addition, individuals who are heavily infected with Schistosoma man-
soni may have increased malaria susceptibility[13], suggesting that integration of control pro-

grams for both diseases could yield significant additive benefits. Finally, while schistosomiasis

is characterized as an NTD, malaria is one of the well-funded Big Three, and thus efforts to

integrate these two diseases can provide insight into the opportunities for leveraging well-

resourced disease control programs to assist programs for diseases with limited funding.

Here, we present a decision-support tool, focused on schistosomiasis and malaria at the

individual and population levels, designed to support disease control programs in determining

not only whether there is a predicted benefit to integration in their setting, but also how best to

implement integration, based on the local context of existing and planned interventions.

Methods

To support local public health officials and policy makers evaluate whether an integrated con-

trol strategy for malaria and schistosomiasis would be beneficial for their community, we

adapted disease modeling approaches[15,16] for non-expert users and designed a web-based

decision support tool. The decision support tool includes parameters to test the beneficial

effects of insecticide-treated bed nets (ITNs), indoor residual insecticide spraying (IRS), and

mass drug administration of praziquantel (PZQ) to treat schistosomiasis infection. Model

parameters for disease transmission rates, access to malaria treatment, and efficacy of disease

control interventions were based on those identified in the literature for regions with high co-

infection rates of endemic schistosomiasis and malaria. The remaining model parameters were

constrained to those data that community leaders and public health practitioners can supply

about the current disease control programs and basic information about malaria transmission

in their region, including seasonality of malaria transmission and schistosomiasis prevalence.

The user configures model input parameters via a web-based graphical user interface (GUI)

and the model is run twice: once simulating integrated treatment and once simulating non-

integrated treatment. By comparing model runs for the current disease control programs with

an integrated strategy, the decision support tool provides users with a recommendation of

whether an integrated control program is beneficial based on quantitative estimates of malaria

prevalence calculated in the disease model.

Model

Modeling approach. As described in additional detail in the following sections, popula-

tion-level prevalence reported by the decision support tool is based on an underlying disease

Decision support for integration of disease control
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model that tracks schistosomiasis and malaria disease states for each individual as he/she

passes through malaria infected, schistosomiasis, and co-infected states over time (Fig 1A).

Each simulation begins with individuals entering the model either disease-free (Fig 1A, left) or

schistosomiasis-infected (Fig 1A, right), with infections assigned to individuals at random

based on the population-level prevalence specified by the user. Malaria infections are intro-

duced and the model is equilibrated with a “burn in” period of at least 730 days to approximate

the user-specified transmission level before interventions are tested. After the burn in period,

control measures directly modulate probability of malaria infection for each individual. Adapt-

ing malaria disease parameters previously published, 72% of individuals develop clinical

malaria upon infection [16] and seek treatment (Fig 1A, Malaria-clinical). Among clinical

cases, individuals with access to treatment receive artemisinin-based combination therapy

(ACT) treatment that cures and temporarily protects from malaria infection; we assume maxi-

mal treatment access for 76% of cases, based on the best available data for Uganda.[17] Asymp-

tomatic and untreated clinical malaria (persistent malaria) cases are cleared without treatment,

returning individuals to susceptible or schistosomiasis-infected states after 360 days.[15]

Central to our decision support method is comparison of predicted prevalence under the

current control program, presumed to be non-integrated, with an integration of control mea-

sures for both diseases. To compare these conditions and provide users with an overall recom-

mendation regarding the potential benefit of integrated control on malaria prevalence, two

model runs are performed under each condition (Fig 1B). The current (non-integrated) simu-

lation applies malaria and schistosomiasis control measures using the current timing of inter-

vention strategies, as defined by the user. Fig 1B (upper timeline) shows an example

community where the current distribution of malaria control measures, IRS and ITN, occurs

in May during peak malaria transmission and PZQ is administered in September. This simula-

tion predicts prevalence under the “status quo” and provides the reference to which the inte-

grated control program simulation is compared. The integrated simulation (Fig 1B, lower

timeline) models the simultaneous distribution of control measures for both schistosomiasis

and malaria and provides results for predicted disease prevalence for a hypothetical integrated

intervention program to compare with the current, non-integrated program.

The timing of control measure distribution for the integrated intervention program

depends on whether malaria transmission is seasonal or continuous throughout the year (non-

seasonal). If malaria in the community is non-seasonal, interventions are aligned at the first

intervention time specified by the user. For regions with a seasonal increase in malaria trans-

mission, as in Fig 1B, interventions are modeled as executed one month prior to the seasonal

onset. Administering PZQ prior to malaria season, as shown for the integrated control pro-

gram, is predicted to provide the most benefit by reducing malaria susceptibility for schistoso-

miasis-infected individuals prior to peak transmission months. In addition, this timing is

supported by previous studies that have demonstrated maximal benefits for IRS when spraying

is completed shortly before the onset of malaria season[18], as in the integrated approach

employed in this model.

Table 1 summarizes key time points for malaria transmission and the timing of interven-

tions. Users specify months of increased seasonal malaria transmission, if any; a five-fold

increase in malaria infection probability is implemented for each day of the selected months

(see Malaria Infections section below). The burn-in period is longer (Nburn
days plus the number of

months that have passed since malaria season began) for seasonal transmission to ensure the

model simulates control measures during a full malaria season after stabilization of baseline

transmission. Non-integrated control measures are modeled with timing specified by the user.

When defining integrated control, interventions are distributed one month before malaria

Decision support for integration of disease control
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Fig 1. Schematic framework for malaria schistosomiasis co-infection model to evaluation of integrated control programs. (A) Individuals enter the model either

disease-free (left) or infected with schistosomiasis (right). Diagram shows transition between disease states of the modeled population (arrows). Praziquantel MDA is

assumed effective in curing schistosomiasis in all individuals with access to treatment. Blue = malaria, red = schistosomiasis (schisto.), and purple = co-infection. (B)

The model performs two simulations for each user submission to the decision support tool. The current (non-integrated) simulation delivers control measures with

timing specified by the user. The Integrated simulation aligns all interventions to occur at the same time. For non-seasonal transmission, interventions are aligned to all

occur at the earliest intervention time specified by the user. For seasonal transmission, all control measures are delivered one month prior to the start of malaria season.

Malaria prevalence estimates for these two simulations are compared to evaluate the potential benefits of integration.

https://doi.org/10.1371/journal.pntd.0006328.g001
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season begins. For seasonal increases with multiple peaks in transmission, interventions are

distributed one month before the first peak in the calendar year. In all cases, the model applies

non-integrated control measures on the first day of the month selected by the user for that

intervention (IRS, ITN, or PZQ).

The model uses a stochastic, object-oriented programming approach, written in the program-

ming language Python. New disease infections (schistosomiasis and malaria), access to malaria

treatment, and access to control measures (MDA, ITN, and IRS) are each assigned stochastically

(at random) using either fixed or user-selected model parameters (e.g. for 80% ITN coverage,

each individual has an 80% probability of receiving bed net protection), as described below.

Schistosomiasis infections. Upon initiation of the model, each person has a probability

of being infected with schistosomiasis ps, where ps is calculated directly from the user-supplied

prevalence of schistosomiasis (e.g., 45% population prevalence corresponds to ps = 0.45, see

additional details in Table 2 below). The model assumes a constant schistosomiasis infection

state for each individual; no additional schistosomiasis infections are modeled. This focused

approach supports evaluation of integrated control programs specifically in the context of the

indirect benefit of MDA in reducing malaria susceptibility. Importantly, tracking of schistoso-

miasis-infected individuals is used in the model to have an 85% increase in malaria susceptibil-

ity.[13,15] Schistosomiasis is “cured” in the model following treatment with PZQ, at which

point malaria susceptibility returns to the baseline level.

Malaria infections. Malaria transmission is defined by the annual entomological infection

rate (AEIR) and adjusted for seasonal increases in transmission, the protective interventions (IRS

and ITN), and increased susceptibility to malaria infection for schistosomiasis-infected individu-

als and these factors are combined in calculating the probability of a susceptible person contract-

ing a new malaria infection (pm(t)). Changes in transmission are represented by varying AEIR,

but mosquito vectors are not explicitly modeled. Specifically, the daily probability of malaria

infection at each time step t, denoted pm(t) is calculated based on whether it is malaria season,

interventions applied, and schistosomiasis infection status. pm(t) is calculated from the estimated

number of infective bites per person per day, denoted a, which is given by the equation

a tð Þ ¼ AEIR
S
Ds

MðtÞ þ
1 � S
Do
½1 � MðtÞ�

� �

1 � fnetðtÞ½ �

� 1 � fsprayðtÞ
h i

fschisto tð Þ ð1Þ

Table 1. Key time points on the simulation timeline. The methods used to determine time points for both seasonal

and continuous malaria transmission patterns.

Time point name Seasonal Continuous

Malaria season dates Includes each day of each month selected by

user for malaria season

N/A

PZQ distribution date: With

integration

1 month before first day of the earliest

calendar month in malaria season

First day of month input by user for

earliest intervention

PZQ distribution date:

Without integration

First day of month input by user for PZQ

distribution

First day of month input by user for

PZQ distribution

ITN distribution date Same as described for PZQ distribution date above

IRS distribution date

Simulation start date First day of distribution month for earliest intervention

Simulation end date Simulation start date plus Ndays (365 days)

Burn-in period start date At least Nburn
days (730 days) before simulation start date

Burn-in period end date Simulation start date

https://doi.org/10.1371/journal.pntd.0006328.t001
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where AEIR is the annual entomological inoculation rate, in units of infective bites per person

per year (see Parameters section and Table 3 below for discussion of user-selected AEIR value); S
is the proportion of the AEIR over a single calendar year that occurs during peak malaria season;

Ds is the duration of peak malaria season, in days; Do is the duration of non-peak malaria season,

in days (i.e., the rest of the year); M(t) is 1 if t represents a time step during peak malaria season,

and 0 otherwise; fnet(t) is the percent reduction in AEIR from the use of insecticide-treated bed

nets (ITN) if distributed on or before time step t, and 0 otherwise; fspray(t) is the percent reduction

in AEIR from the use of indoor residual spraying (IRS) if distributed on or before time step t, and

0 otherwise; and fschisto(t) is the increase in AEIR from being infected with schistosomiasis, equal

to 1.85 representing an 85% increase from baseline malaria susceptibility if an individual has

schistosomiasis during time step t, and 0 otherwise. In seasonal transmission regions (specified

by the user), seasonal changes in a are represented directly in Eq 1 with S set to 0.8 for malaria

season, thus allocating AEIR as 4-fold higher during peak transmission compared to off-peak

transmission.

Table 2. User-assigned demographic breakdown and schistosomiasis parameters.

Population: Age distribution

Parameter name Description Default value Possible values

Age range: under 5 Percent of population under 5 years old 20% [20] Percentage value between 0 and 100

Age range: 5–15 Percent of population 5 to 15 years old 34% [20] Percentage value between 0 and 100

Age range: 16+ Percent of population 16 or more years old 46% [20] Percentage value between 0 and 100

Schistosomiasis: Praziquantel (PZQ) Drug Administration

Parameter name Description Default value Possible values

ps Fraction of population initially infected with schistosomiasis 45% [21–24] Percentage value between 0 and 100

Target % Coverage Target percent coverage of PZQ distribution 80% [25] 30%, 50%, 80%, 100%

Age Range Age ranges that receive PZQ 5–15 years old [19] Any selection(s) from: under 5, 5–15, 16+

Current Distribution Month Month PZQ is distributed (for non-integrated) April Any calendar month (e.g., “April”)

https://doi.org/10.1371/journal.pntd.0006328.t002

Table 3. User-assigned parameters for malaria transmission and interventions.

Malaria: Transmission Pattern and Rate

Parameter name Description Default value Possible values

Seasonality Malaria transmission pattern: “Seasonal” or

“Continuous”

Seasonal “Seasonal” or “Continuous”

Peak Transmission Month(s) Months of the year that are peak malaria

transmission season

October through

February

Any selection of calendar months including at least

1 month and not more than 11 months

Baseline infectious bites per year, AEIR

(Annual entomological inoculation

rate)

Annual entomological inoculation rate (# infective

mosquito bites per person per year)

250 20 (low), 100 (medium),

250 (high) [15,16]

Malaria: Interventions

Parameter name Description Default value Possible values

Indoor Residual Spraying (IRS) Target

% Coverage

Target percent coverage of IRS distribution 80% 0%, 30%, 50%, 80%, 100%

Indoor Residual Spraying (IRS)

Current Distribution Month

Month IRS is distributed (for non-integrated/

status quo treatment)

January Any calendar month (e.g., “January”) or N/A if not

chosen

Insecticide-treated Bed Nets (ITN)

Target % Coverage

Target percent coverage of ITN distribution 80% 0%, 30%, 50%, 80%, 100%

Insecticide-treated Bed Nets (ITN)

Current Distribution Month

Month ITN is distributed (for non-integrated) November Any calendar month (e.g., “November”) or N/A if

not chosen

https://doi.org/10.1371/journal.pntd.0006328.t003
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The daily probability of malaria infection pm(t) is then given by the equation

pmðtÞ ¼ 1 � exp½� aðtÞ� ð2Þ

Each new malaria infection is assigned to one of four malaria infection states based on

access to artemisinin-based combination therapy (ACT) treatment and the intrinsic likelihood

that malaria infection causes symptoms:[15,16]

1. treated symptomatic malaria,

2. untreated symptomatic malaria,

3. untreated patent asymptomatic malaria, and

4. untreated subpatent asymptomatic malaria

Malaria symptoms are modeled by the probability pmsymp for Dmalaria days. The model

assumes those with symptomatic malaria seek and have access to artemisinin-based combina-

tion therapy (ACT) with probability pmtreated and become immune for Dprotect days, with symp-

toms cleared after Dmalaria days. Symptomatic malaria cases without access to ACT progress

from the symptomatic phase to patent asymptomatic malaria lasting Dp
malaria days and a phase

of subpatent asymptomatic malaria illness lasting Dsp
malaria days. People with asymptomatic

malaria who do not seek treatment directly start a phase of patent and then subpatent asymp-

tomatic malaria before clearing infection. Runs of the model in the absence of any interven-

tions recapitulated aspects of previous modeling of schistosomiasis-malaria disease

interactions, including the trend for schistosomiasis to increase malaria cases more in high

malaria transmission and low ACT access settings (S1 Fig and S2 Fig). Each of these time-

dependent transitions between malaria disease states are implemented at the person-level

using timers that step with each day of the model. Malaria re-infections are handled in the

same manner as new infections.

Parameters

The model is populated with a series of fixed parameters chosen based on literature review to

reflect countries where malaria and schistosomiasis are co-endemic, we selected Uganda, and

additional user-specified parameter that represent conditions in their local community.

Where data were not available from Uganda, the best available data from other co-endemic

countries were used. For user selections, default values were also developed and the rationale

for each of these parameters is outlined below.

Design of user-specified parameters. The user assigns model parameters from the user

interface including population demographics, schistosomiasis prevalence, malaria transmis-

sion level and seasonality, and timing and coverage of schistosomiasis and malaria control

measures (Table 2). These parameters were specifically chosen to reflect those data immedi-

ately available to in-country public health practitioners and include important factors in the

design of disease control measures.

Schistosomiasis interventions often selectively target school-aged children (ages 5–15).[19]

Therefore, demographic information is used to align MDA simulation with the approach in

use on the ground. The model simulates populations with the demographic breakdown

selected by the user and applies PZQ treatment to one or more age groups (under 5, 5–15, and

16+) since local MDA campaigns may target either the entire community or focus on school-

aged children. National level demographics from our case country, Uganda, were chosen as

the default conditions for the proof of concept effort[20] and can be modified by the user to

reflect their community.

Decision support for integration of disease control
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The efficacy of PZQ MDA depends upon schistosomiasis prevalence, coverage achieved

during drug administrations, and the timing of the MDA program (whether MDA has been

completed before peak malaria transmission). The default schistosomiasis prevalence is set at

45%, based on reports of medium and high intensity infections in the heavily endemic regions

bordering Lake Victoria[21–24]; this parameter can also be customized by the user. The MDA

default coverage is set at 80%, based on targets that communities have achieved with either

school-based MDA or community-wide administration programs.[25] The MDA distribution

month is community-specific and selected by the user to reflect the timing of current MDA

programs.

Malaria seasonality and transmission rate are user-defined parameters (Table 3). Malaria

transmission rates are defined as the daily infection probability based on the as infectious bites

per year (ibpy): low (20 ibpy), medium (100 ibpy), and high (250 ibpy),[15,16] also known as

the annual entomological inoculation rate or AEIR. The peak transmission month(s) have an

increased infection probability approximated by a four-fold increase in transmission rates dur-

ing peak transmission months. That is, malaria peak seasonal transmission, S, is equal to the

proportion of the AEIR over a single calendar year that occurs within peak malaria season

where seasonal variation is assumed to be S = 0.8 based on estimates of seasonal changes in

EIR measured in Uganda[16,26] and is consistent with the differential transmission rates

between regions with seven or more months of favorable climate for malaria transmission

compared to regions with six months or fewer.[27] The baseline AEIR determines seasonal

and continuous (year-round) infection probabilities.

Users input parameters for defining the current timing and coverage for IRS and distribu-

tion of ITNs. Interventions (access to IRS and/or ITN) are assigned randomly in the model,

without respect to age, to simulate target coverage rates specified by the user as what the local

community expects it can achieve as part of a malaria control program (e.g., 80% IRS coverage

equates to 0.8 individual probability of receiving protection from IRS). Modeled interventions

are assumed to provide protection throughout the modeling period.

Default simulation size of 2,000 people (Npeople) and baseline stabilization of 730 days

(Nburn
days ) are used in all example simulations presented here (Table 4). Both the population size

and the burn in period were selected based on empirical testing. A 730 day burn in was suffi-

cient to stabilize baseline malaria prevalence. Each simulation lasts 365 days (Ndays) after the

initial stabilization to evaluate predicted disease prevalence in the first year following integra-

tion of disease control programs.

Parameters used to model the protections afforded by control measures are summarized in

Table 5. These factors are used to adjust AEIR for the protective interventions (IRS and ITN)

and increased susceptibility to malaria infection for schistosomiasis-infected individuals.

These factors are combined in calculating the probability of a susceptible person contracting a

new malaria infection (pm(t)) using Eqs 1 and 2 (see above). Malaria infection probability for

individuals is adjusted based on IRS and ITN efficacy estimates found in studies conducted in

Kenya and a meta-analysis of protection provided by malaria interventions in endemic coun-

tries.[28,29] Co-infection with schistosomiasis increases risk to malaria by 1.85.[15]

Table 4. Static model parameters for model duration and population size.

Parameter name Description Value Source

Npeople The number of people being simulated 2,000 Parametrically determined

Ndays The number of days being simulated 365

Nburn
days The minimum number of days the model is equilibrated prior to the 365 day simulation 730

https://doi.org/10.1371/journal.pntd.0006328.t004
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Malaria treatment is modeled for symptomatic cases (pmsymp) based on access to ACT treat-

ment, as determined using an estimate of ACT availability in malaria endemic countries.

[15,16] Disease parameters include the duration of symptomatic malaria Dmalaria and the dura-

tion of temporary protection from malaria infection following ACT treatment Dprotect

(Table 6). The duration of asymptomatic malaria disease states (Dp
malaria and Dsp

malaria) track

asymptomatic malaria cases and include these cases in population malaria prevalence.[15,16]

Symptomatic malaria cases receive ACT treatment 76% of the time using a maximal ACT

treatment access estimate for Uganda.[17]

User interface

A graphical user interface (GUI) provides access to the model for practitioners through a web

application (HTML5, JavaScript, and CSS3). The web application uses NodeJS, built on a

Python-shell NodeJS package, to interface with the back-end model code written in Python

and accessible from an internet-connected computer. The user interface is designed to be intu-

itive, to use plain language understandable to public health practitioners as tested with the end

user community, and to guide users through inputs used to align the model run with disease

transmission patterns and the current state and constraints of existing disease control mea-

sures for schistosomiasis and malaria. Default selections are built into the interface as a proof-

of-concept for application of the model in co-endemic countries with high rates of co-infec-

tion. The user interface also provides a results page with a set of decision-focused graphics that

apply the results of the back-end model specifically to support evaluation of the predicted ben-

efits, if any, of integration of schistosomiasis and malaria control programs and support the

decision to integrate or not.

Results

By combining literature-based parameter selection with user and decision-focused design, we

found that a web-based decision support tool is well-suited to adapt core approaches to disease

modeling, including schistosomiasis-malaria disease interactions capturing increased malaria

Table 5. Model parameters that determine malaria infection probability (pm(t)).

Parameter

name

Description Value Source

fnet(t) Percent reduction in AEIR due to use of

insecticide-treated bed nets

53% (0.53) if nets were distributed on or before

time t, and 0 otherwise

Efficacy from in-country study in Kenya[28]

fspray(t) Percent reduction in AEIR due to use of

indoor residual spraying

65% (0.65) if sprays were distributed on or before

time t, and 0 otherwise

Average of results from in-country and meta-

analysis studies[28,29]

fschisto(t) Percent increase in AEIR due to being

infected with schistosomiasis

85% (1.85) if individual has schistosomiasis at

time t, and 0 otherwise

From established model of schistosomiasis-

malaria disease interactions[15]

https://doi.org/10.1371/journal.pntd.0006328.t005

Table 6. Parameters determining symptomatic malaria cases and access to treatment.

Parameter name Description Value Source

pmsymp Probability that a person infected with malaria is symptomatic 0.72 From established malaria disease models[15,16]

pmtreated Probability that a person infected with symptomatic malaria is treated with ACT 0.76 Estimated access to ACT treatment in Uganda[30]

Dprotect Duration of malaria protection following ACT treatment 20 days From established malaria disease models[15,16]

Dmalaria Symptomatic malaria duration 5 days

Dp
malaria Patent asymptomatic malaria duration 180 days

Dsp
malaria Sub-patent asymptomatic malaria duration 180 days

https://doi.org/10.1371/journal.pntd.0006328.t006
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susceptibility for individuals infected with schistosomiasis, for use by public health practition-

ers. User inputs, made through the web-based interface, populate the model with data to

approximate conditions in the local community. Results of parallel simulations (non-inte-

grated and integrated) are summarized in decision-focused formats designed to provide the

information required for local public health practitioners and policy-makers to evaluate the

benefits of an integrated control program for schistosomiasis and malaria. The decision sup-

port tool is designed to provide the results most relevant to decision makers: prevalence is

compared between conditions in which control measures are integrated or not (the latter

being the assumed baseline condition.) This method provides communities a practical com-

parative analysis to assess the utility of integration based on local disease conditions.

Modeling integrated and non-integrated interventions

The decision support tool allows the end user to compare the prevalence rates of both diseases

in their community under non-integrated and integrated disease control programs by model-

ing the protective effects of differently timed disease control interventions (Fig 2). Simulations

(integrated and non-integrated) are run for a minimum of two years to provide a stable base-

line estimate of prevalence (-4–0 months are from the initial baseline period). In the non-inte-

grated simulation, the first intervention is delivered at time 0, in this example distribution of

PZQ MDA to all age groups with 80% population coverage. PZQ distribution is instantaneous

in the model and, in this example, immediately reduced the simulated prevalence of schistoso-

miasis (Fig 2, blue), and produced an indirect benefit by reducing malaria prevalence (Fig 2,

green). Malaria prevalence was further reduced in the non-integrated simulation by the distri-

bution of ITN and application of IRS despite the seasonal increase in malaria transmission that

occurs between the 6th and 9th month of the simulation. In the integrated simulation, malaria

control measures and PZQ MDA occur simultaneously (Fig 2, Time 0). The example region

shown here has a seasonal malaria transmission pattern; PZQ, IRS, and ITN are applied one

month prior to the start of malaria season. The integrated approach (Fig 2B) had a lower

Fig 2. Example modeling results for a very high transmission region with seasonal malaria transmission. Graphs shows prevalence of malaria (green) and

schistosomiasis (blue) at baseline (prior to time zero) and in the months following sequential, non-integrated (A) or integrated interventions (B). Arrows mark the

timing of malaria and schistosomiasis control measure distribution.

https://doi.org/10.1371/journal.pntd.0006328.g002

Decision support for integration of disease control

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006328 April 12, 2018 11 / 23

https://doi.org/10.1371/journal.pntd.0006328.g002
https://doi.org/10.1371/journal.pntd.0006328


average prevalence for the post-intervention period relative to the non-integrated approach

(Fig 2A) (43% integrated vs. 50% non-integrated) indicating that the integrated control pro-

gram was more effective in reducing malaria prevalence under these conditions, as produced

by the Python computational model (the raw outputs shown are plotted directly from the

back-end model).

Data-driven decision support for local public health officials

The complex results shown in Fig 2 provide data, but the relevant information is not imme-

diately obvious, especially for end users or decision makers with limited time or without

expertise in disease modeling. The data produced by the model can be more effectively com-

municated using a web-based decision support tool, as described here. In this tool, the end

user supplies readily available information about their community (i.e., parametric data) to

define local conditions, and results are returned as a recommendation for or against inte-

gration, with context and practical application guidance.

The benefits of integration in a region depend upon schistosomiasis prevalence, access to

PZQ MDA, and the types and coverage of malaria control measures, data on which should be

collected by those implementing public health control measures locally or regionally[31,32],

and are supplied by users of the decision support tool and applied as parameters for the model

(Fig 3). As shown in Fig 3, the decision support tool user interface guides users through a step-

by-step workflow to choose inputs. Default demographic information, drawn from national

data for Uganda,[20] was used in all simulations presented here, but the population, schistoso-

miasis, and malaria selections can each be customized to match the user’s community.

Transmission rate and seasonality have significant impacts on the efficacy of malaria inven-

tions[18,26,33] and, by extension, are expected to affect the efficacy of an integrated control

program for schistosomiasis and malaria. As with key schistosomiasis parameters, malaria sea-

sonality and transmission rate, as well as current local or regional implementation of IRS and

distribution of ITNs are user-defined inputs in the tool (Fig 3C).

The results produced by the model are presented in the decision support tool on a single

page specifically designed to focus the end user on the recommendation produced by the

model, context for that recommendation, and practical implementation guidance for either

integrated or non-integrated control programs (Fig 4A, Fig 5A). As described in additional

detail for two example regions below, model runs are summarized in graphics that support he

rapid comparison of the relative benefit of integrated and non-integrated programs.

For a notional community with high malarial transmission and a six-month malaria season,

the results presented by the decision support tool suggest integration of schistosomiasis and

malaria disease control programs based on a reduction of malaria prevalence by 5% compared

to the current strategy (PZQ MDA distributed early in malaria season with IRS and ITN inter-

ventions mid-season) (see Fig 4A–4C). Initial schistosomiasis prevalence was modeled at of

45% with subsequent reduction by school-based PZQ MDA of children aged 5–15, either dur-

ing malaria season for the non-integrated approach (Fig 4B) or prior to malaria season in the

integrated approach (Fig 4C). This treatment indirectly reduced seasonal malaria transmission

and yielded a corresponding reduction in peak and average malaria prevalence of 5% (44%

malaria prevalence without integration vs. 39% with integration across the year-long simula-

tion). This degree of reduction meets the 5% threshold for applying a recommendation of

integrated treatment in the decision support tool. Using a specific threshold value for recom-

mending integrated interventions, and providing this information to the user, the tool provides

clear guidance for decision makers. The results page explains that “Integrated interventions are

recommended if malaria prevalence is reduced by 5% or more” (Fig 4A, Fig 5A). Increasing the
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model run duration produced similar results with respect to the predicted benefits of integra-

tion across different regions, including for the example regions from Figs 4 and 5 (3-year simu-

lation: 41% malaria prevalence without integration vs. 38% with integration for the region with

integration recommended; 32% malaria prevalence without integration vs. 31% for the region

where integration not recommended). Importantly, future testing is planned to evaluate the

proof of concept decision support tool with community-level public health decision makers,

including evaluating the selection of 5% malaria prevalence reduction as the cutoff for

Fig 3. Design of a user selection page for population breakdown and disease control programs. (A) Demographics

from Uganda at the national level were chosen as the default conditions for the proof of concept effort and can be

modified by the user to reflect their community. (B) Users select the target treatment coverage for praziquantel MDA,

select one or more age groups from the dropdown menu, and select a single month when MDA interventions are

completed. (C) Malaria transmission pattern is specified as seasonal or continuous (year-round) and peak

transmission months are selected for seasonal transmission (top). Malaria transmission rate is set as high, medium, or

low and users are provided with the equivalent rate of infectious bites per year (middle). Users also specify the timing

and target coverage for existing malaria control programs (bottom).

https://doi.org/10.1371/journal.pntd.0006328.g003

Fig 4. Example of decision-focused summary and modeling results. (A) Results page summary for a region where an integrated approach is recommended. Results

page summarizes estimated difference in the prevalence between intervention strategies in tabular and graphical formats. (B-C) Model results for malaria prevalence

(green) and schistosomiasis prevalence (blue) used as the basis for the comparison in (A) by averaging the prevalence across the terminal year of each model run.

https://doi.org/10.1371/journal.pntd.0006328.g004
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recommending integration of control measures and the use of a first-year window to evaluate

prevalence (see Discussion).

Integration of schistosomiasis and malaria disease control programs does not provide large

malaria prevalence reductions for all regions; the decision support tool recommends retaining

a default non-integrated control program in cases where minimal reductions in malaria preva-

lence are predicted. For example, as shown in Fig 5A–5C, results in a low malaria transmission

region with a continuous (year-round) transmission pattern suggest that, when schistosomia-

sis prevalence and MDA for school-aged children was modeled the same as for a high, seasonal

transmission region, integrating disease control programs to align MDA, IRS application, and

ITN distribution (Fig 5C) provided minimal benefit for peak malaria prevalence compared to

delivering the interventions sequentially (Fig 5B). Integration also provided only a small bene-

fit for average annual malaria prevalence compared with the current approach (39% malaria

prevalence for non-integrated vs. 37% for integrated). As shown in this case, for conditions

under which the community is recommended to preserve the current approach, the tool

Fig 5. Example of decision-focused summary and modeling results. (A) Results page summary for a region where a non-integrated approach is recommended.

Results page summarizes estimated difference in the prevalence between intervention strategies in tabular and graphical formats. (B-C) Model results for malaria

prevalence (green) and schistosomiasis prevalence (blue) used as the basis for the comparison in (A) by averaging the prevalence across the terminal year of each model

run.

https://doi.org/10.1371/journal.pntd.0006328.g005
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provides a summary of the estimated prevalence, as it does for the integrated method, to pro-

vide context for the result and corresponding decision (Fig 5A).

To use the tool, decision makers are required to input detailed information about the mod-

eled disease and current control method implementation in their community. Using this infor-

mation, the decision support results section also includes an implementation strategy for

control methods under either integrated or non-integrated conditions, as recommended based

on the modeling results (Fig 6). The distribution strategy outlines a timeline that summarizes

the application time for each intervention with respect to the current distribution strategy and,

if applicable, malaria season. The recommended distribution timeline for the high, seasonal

transmission region considered in Fig 4 aligns PZQ MDA, IRS, and ITN to occur in February

to precede the malaria season. As shown by comparison to the current intervention timeline,

this requires moving PZQ MDA two months earlier in the year and IRS and ITN interventions

four months earlier. For the second region, where integration was not recommended, the non-

integrated distribution timeline shows the current strategy defined by the user in the inputs.

Summarizing the execution timing for each disease control measure, and providing context

for how the recommended strategy compares to the current approach, directly supports public

health decision makers to act on the decision support tool results, communicate the results to

stakeholders, and plan for implementing integration.

Discussion

Our model and decision-support tool demonstrates the utility of a user-friendly yet evidence-

based approach to disease integration, allowing decision-makers access to the best available

scientific evidence with which to design interventions tailored to their particular setting. For

example, timing the delivery of malaria control measures to coincide with PZQ MDA affords

the opportunity to combine control programs with limited resources to better-resourced pro-

grams and maximizes the impact of both programs on disease prevalence. However, the out-

comes of our decision-support tool also describe conditions under which integration may not

have significant epidemiological benefits; given the significant investments of human and

financial capital required to integrate disease control programs, our work highlights the

importance of assessing the specific benefits of integration prior to making decisions regarding

near or long-term programmatic investments.

The people who make the practical decisions about how to implement public health inter-

ventions in their communities, such as integrating control programs, have a broad and chal-

lenging task, particularly in communities where disease is endemic and funds are limited. The

organizations involved in helping support or fund disease control programs may not coordi-

nate closely and are often focused on one or two diseases, frequently determined by funding

sources or restrictions as opposed to on-the-ground conditions. To improve the ability of both

groups to apply the best available modeling and academic analysis in implementing public

health interventions despite limited time, funding, and, potentially, disease-specific expertise,

we describe here a generalizable method to adapt established computational disease models to

support and inform practical decisions about implementing public health control measures in

the communities most directly affected.

By summarizing complex disease model outputs as a straightforward benefit comparison,

in language and terminology familiar to disease control officers, our prototype tool provides

the effective translation from academic research to support evidence-based decision making at

national, regional, and local scales. A web-based tool provides an interface for non-experts to

evaluate potential intervention strategies, as compared to currently implemented disease con-

trol programs, based on their own local information about disease prevalence and
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Fig 6. Example distribution timeline from the results page. Summary table and timeline of the current (non-integrated) and recommended distribution times for

control measures. (A) This example corresponds to a region were integration of control programs is predicted to reduce malaria prevalence compared to the current

distribution strategy. (B) Summary table and timeline for a region where integration is not recommended based on modeling results. Distribution is matched to the

current intervention strategy provided by the user.

https://doi.org/10.1371/journal.pntd.0006328.g006
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transmission patterns. Placing the best available predictive data in the hands of in-country

public health practitioners enhances their ability to make difficult decisions about public

health investments in resource-constrained environments and communicate these results to

others.

The proof-of-principle decision support tool, as described here, evaluates the potential of

an integrated schistosomiasis and malaria disease control program to reduce malaria preva-

lence for a specific community to directly support local decisions about integrating control

programs for the two diseases and is, therefore, specifically targeted to communities in which

schistosomiasis and malaria are co-endemic. Like many co-endemic diseases, the interaction

between schistosomiasis and malaria has complicated epidemiological and intra-host disease

interactions that directly influence the complexity of control strategies. The focus of this effort

was to test the adaptation of a complex computational disease model in to a tool useful for

local and regional decision-making. The tool incorporates approaches to schistosomiasis and

malaria disease modeling established in the literature[16] for testing disease control interven-

tions. In addition, we incorporated a more recently-developed approach to modeling schisto-

somiasis-malaria disease interactions whereby for schistosomiasis-infected individuals have

increased susceptibility for malaria,[15] though our proof of concept method includes simplifi-

cations from previously-published epidemiological models, including a static representation of

schistosomiasis disease prevalence rather than a full adaptation of a dynamic model of schisto-

somiasis transmission. Future work to expand upon this proof-of-concept decision support

tool will include user and field testing to target any expansions of the model to the parameters

identified as most sensitive to local conditions and critical to decisions in the field. By building

a targeted decision support tool that is readily understood by public health practitioners and

focused on practical decision making on the ground, we have a strong basis for future refine-

ment of the approach for control of schistosomiasis and malaria or other co-endemic diseases.

Future model development to incorporate additional vector and epidemiological dynamics,

and particularly schistosomiasis re-infection, will further refine the representation of disease

transmission in endemic settings. This can further include additional population-level dynam-

ics, such as the potential for praziquantel MDA to reduce transmission and protect even those

who were not directly treated.[34] Indeed, advances continue in development of research

models for schistosomiasis, malaria, and co-infection disease dynamics as well as approaches

to model prevention and treatment interventions. Recent work demonstrates, for example,

that controlling schistosomiasis infections can contribute to population-level control of

malaria independent of any direct increase in malaria susceptibility from schistosomiasis

infection within individual hosts.[35] Using the method described here for translating the

results of such research into practical applications provides a powerful tool to apply the most

up-to-date research methods are applied directly to the challenges faced by those tasked with

implementing disease control measures on-the ground.

As with all modeling, low data availability can limit the quality of parameter values used in

assessing the benefits of integrated disease programs. However, the flexible decision support

platform described here is designed to incorporate more refined data as it becomes available,

including at the local level. For example, while intervention programs may specifically pro-

mote access to ITNs for the most vulnerable populations, such as pregnant women and young

children, it is much more difficult to determine the utilization of these interventions–for exam-

ple, whether the children are actually sleeping under the net. The academic literature cites sim-

ilar uncertainties related to drug availability and uptake of appropriate first line antimalarial

medication. We anticipate that further research, and particularly in-country data validation

and testing of the decision support tool, will provide additional information on the true extent

of age- and population-specific usage of ITNs and other interventions. As additional
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information on these parameters is gathered, revised, age-specific values for access to control

measures and treatment can be readily incorporated into the modeling framework using the

same user-supplied demographic information as is already in place for the schistosomiasis

MDA intervention. The flexibility of this decision support framework provides the ability to

continuously update the parameters and ensure the best available data, including empirical

data from the users themselves, is incorporated to support decision-making.

Particularly when communicating the result of complex analysis to non-expert users, it is

important to limit quantitative information, while focusing on that information specifically

relevant to the decision; providing the results in plain language and limiting technical termi-

nology; and focusing on the practical result of the guidance provided[36–38]. These principles

were specifically considered and applied to the results presented in the user interface. Future

efforts will focus on expanding user testing to confirm that the methods applied were effective

and both the results and technical content were sufficiently described for use by the intended

end user.

We performed initial validation of the value of the tool to end-users by soliciting feedback

from partners in schistosomiasis and malaria endemic countries. Responses from partners

from Mali, Uganda, and Yemen, were strongly positive, confirming the utility of this type of

simple yet powerful tool, driven by data, to provide recommendations a priori during deci-

sion-making. The integration of disease programs is a major upheaval in many communities

and requires significant capital in terms of human, financial, and other resources, so being

able to ascertain the expected benefits–if any–is an important step forward. The feedback also

identified opportunities to expand the model to incorporate both the additional schistosomia-

sis parameters as described above, but also resource management in the implementation of

control interventions. Specifically, our partners noted that the alignment of resource allocation

would be an important factor to consider when deciding whether to integrate across different

diseases; indeed, distribution and logistical issues can be a major constraint to intervention

delivery, particularly when decisions are made nationally but require implementation at the

local level. To address these realities, a module that examines cost-effectiveness of interven-

tions in the context of resource allocation and distribution will be an important addition for

expansion of the decision support tool. Future work will include expanding the tool to include

such analysis to predict logistical or distribution bottlenecks during implementation, and the

results used for advocacy to the national government or donors for more effective resource

allocation.

We present results of an approach to apply academic disease modeling research to practical

public health implementation efforts through development of a user-friendly decision support

tool. This evidence-based approach to integrated of control programs has implications beyond

NTDs and even the Big Three. Conceptually, this approach could be used for integration of

any diseases or health interventions–for example, to examine opportunities for aligning water,

sanitation and hygiene (WASH) interventions with those for NTDs or diarrheal diseases, or

evaluating whether maternal and child health programs could be leveraged for other aspects of

disease control. By emphasizing consideration of horizontal public health programs, potential

constraints from vertical programs can be avoided and support interventions that contribute

to a more resilient and effective overall health system. By combining variables and outcomes

for the target programs at the outset, this approach might also be applied to overcoming some

of the challenges associated with a lack of shared indicators for evaluation or cohesive overall

strategy that has been observed in other attempts to integrate across sectors[39]. Finally, in this

era of increasingly constrained resources for global health, our approach provides an opportu-

nity to link epidemiological evidence with intervention costs, to optimize delivery of health

services and effectiveness of control programming.
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Supporting information

S1 Fig. Schistosomiasis-malaria disease interaction increases malaria cases in a transmis-

sion-dependent manner. Number of symptomatic malaria cases attributed to the modeled

increase in malaria susceptibility for schistosomiasis-infected individuals. Model results were

compared with and without an 85% increase in malaria susceptibility to determine the effects

of schistosomiasis on the number of symptomatic malaria episodes. All disease control mea-

sures were excluded, ACT coverage was set to 60%, and AEIR was varied from 10–250 ibpy.

(TIF)

S2 Fig. Schistosomiasis-malaria disease interaction has decreased effects as ACT access

increases. Number of symptomatic malaria cases attributed to the modeled increase in malaria

susceptibility for schistosomiasis-infected individuals. Model results were compared with and

without an 85% increase in malaria susceptibility to determine the effects of schistosomiasis on

the number of symptomatic malaria episodes. All disease control measures were excluded,

AEIR was fixed at 100 ibpy, and ACT coverage was varied from 20–80%.

(TIF)
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