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Abstract
Hansen’s disease (HD), or leprosy, is still considered a public health risk in much of Brazil.

Understanding the dynamics of the infection at a regional level can aid in identification of tar-

gets to improve control. A compartmental continuous-time model for leprosy dynamics was

designed based on understanding of the biology of the infection. The transmission coeffi-

cients for the model and the rate of detection were fit for each region using Approximate

Bayesian Computation applied to paucibacillary and multibacillary incidence data over the

period of 2000 to 2010, and model fit was validated on incidence data from 2011 to 2012.

Regional variation was noted in detection rate, with cases in the Midwest estimated to be

infectious for 10 years prior to detection compared to 5 years for most other regions. Poste-

rior predictions for the model estimated that elimination of leprosy as a public health risk

would require, on average, 44–45 years in the three regions with the highest prevalence.

The model is easily adaptable to other settings, and can be studied to determine the efficacy

of improved case finding on leprosy control.

Author Summary

Control of Hansen’s disease, or leprosy, requires understanding how quickly the infection
moves through the population and how long it takes to detect the disease. These rates vary
regionally, resulting in differences in the number of people detected with disease each year.
We have estimated the risk of infection and the rate of detection for this disease in each of
the 5 regions of Brazil. This allowed us to predict the long-term impact of Brazil’s current
leprosy control program, which found that some regions of Brazil will require 44–45 years to
eliminate leprosy as a public health risk, primarily due to the long delay in detection of cases.

Introduction
Hansen’s disease (HD, or leprosy) is a chronic progressive disease caused in Brazil by infection
withMycobacterium leprae. Transmission is most likely through nasal droplets [1], and is
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associated with socioeconomic status [2]. While leprosy is curable through chemotherapy [3],
detection is often delayed [1], leading to more serious sequelae (including disfigurement and
disability). The World Health Organization (WHO) has set a goal for elimination of leprosy as
a public health problem, defined as a prevalence of<1/10,000 [4]. Several countries, including
Brazil, have failed to meet that goal [5].

The Brazilian leprosy control program has been successful in decreasing the incidence of
leprosy, but the prevalence remains high in 2 regions [5]. Movement towards elimination
seems to have stagnated in these regions, possibly due to a downgrading of the importance of
case finding [6]. Treatment of leprosy has been decentralized, so regional differences in case
detection, and disease progression are to be expected [7]. Infection hotspots have also been
noted in Brazil [8], leading to regional and sub-regional differences in transmission rates [5].
These may be related to socioeconomic factors, as a systematic review has found that socioeco-
nomic inequalities associated with leprosy were large [9]. Prediction models must take these
regional differences into account in order to accurately represent these differences and identify
possible control points.

A number of models of leprosy have been proposed [10–21], and 6 of the base models from
these studies were recently fitted to regional data from Brazil [22]. However, only one model
takes into account much of the recent research on leprosy susceptibility [10,18], and it is an
agent-based model that relies on specific population structures; the results of this model are
quite useful on a regional level [23,24], but have not been applied to national-level results. The
goal of this research is to produce a compartmental model that represents current understand-
ing of leprosy susceptibility and pathogenesis, but that is also easily adaptable to different pop-
ulations. Unknown parameters for this model will be fitted to regional incidence data from
Brazil and analyzed to determine differences in control efficacy and their effect on the elimina-
tion target and long-term control.

Methods
All human data was anonymized at the source before usage [25]. As these data were publicly
available and fully anonymized, no institutional review board approval was required.

A deterministic compartment model of leprosy (Fig 1) was designed to take into account
current understanding of the disease. Briefly, individuals are divided into 3 categories: resistant
(R, with probability qS = 1-ps), susceptible to paucibacillary infection (SP, with probability
ps�pp), and susceptible to multibacillary infection (SM, with probability ps�qp where qP = 1-pp).
Resistance, qs, is meant to convey both genetic resistance and socioeconomic protective factors
[13,18]. Resistance to multibacillary infection, pp, is meant to convey genetic resistance [18];
this value is higher than the observed proportion of new cases that are PB (0.8 vs. 0.54), but the
discrepancy is explained by the high rate of self-cure among PB cases (αPN). Resistant individu-
als (R) enter and leave the population without infection. Individuals with susceptibility to lep-
rosy but genetic resistance to MB disease enter the paucibacillary (PB) track as susceptible (SP).
They may be exposed (EP) at rate λ and eventually develop symptomatic PB disease (NP) at
rate γP. Paucibacillary disease either self-heals at rate αPN or is detected and leads to treatment
(TP) at rate φP, either of which results in recovery (RP) at rate αPT. Recovered individuals may
relapse to refractory disease (AP) at rate σP, from which they can be detected and return to
treatment at rate φP. Individuals with a genetic susceptibility to MB disease enter the popula-
tion as susceptible (SM) and may become exposed (EM) at rate λ. Exposed individuals develop
multibacillary disease (NM) at rate γM and are diagnosed and entered into treatment (TM) at
rate φM. Treated individuals recover or leave treatment (RM) at rate αM and may relapse to
refractory disease (AM) at rate σM, from which they may be detected and return to treatment at
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rate φM. Multibacillary individuals are subject to a death rate that is proportionately higher
than the general population, at νM for untreated individuals and νMT for treated individuals.

The force of infection, λ, is calculated as

l ¼ bPðNP þ y1TP þ APÞ þ bMðNM þ y2TM þ AMÞ
N

ð1Þ

for the density-dependent model, where N is the total population size, βP is the contribution of
PB individuals to the force of infection, βM is the contribution of MB individuals to the force of
infection, θ1 and θ2 are the proportional decreases in infectiousness due to treatment of PB and
MB individuals, respectively. Total population size (N) is calculated as the sum of all the com-
partments, and varies over time as births and deaths occur. For the sake of simplification, it
is assumed that treated individuals are quickly rendered non-infectious [3] and therefore that
θ1 = θ2 = 0. Thus, the force of infection becomes

l ¼ bPðNP þ APÞ þ bMðNM þ AMÞ
N

ð2Þ

in the density-dependent model. Good estimates were available in the literature for most sys-
tem parameters (see Table 1). However, estimates were unavailable for the transmission coeffi-
cients (βP and βM) and the true case detection rates (φP and φM), as these are likely to vary by
locality and can be difficult to measure directly. These parameters were therefore estimated
using the Sequential Monte Carlo approximate Bayesian Computation (SMC ABC) algorithm
[26,27] applied to Brazilian incidence data, as described previously [22]. Briefly, the annual
incidence of PB leprosy, incPBobsðyÞ, and the annual incidence of MB leprosy,incMB

obs ðyÞ, were
obtained for each of the 5 regions of Brazil between 2000 and 2012 [28]. For each region, an
initial parameter set (n = 100,000) was sampled from the prior distributions of the estimated
parameters (a uniform distribution with a non-informative range, Table 1), and in subsequent

Fig 1. A compartment model of Hansen’s disease.

doi:10.1371/journal.pntd.0004925.g001
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SMC particles (rounds), parameter sets were sampled from the immediately previous particle
with a perturbation kernel. Each parameter set was used to simulate the incidence values
between 2000 and 2010 (allowing 2011–2012 to be used for unconstrained validation), where
incidence was assumed to be new individuals entering the treated category (TP or TM) from the
untreated category (NP or NM). A distance function was calculated using the equation

d ¼
X2010

y¼2000

ðincPBobsðyÞ � incPBpredðyÞÞ2 þ ðincMB
obs ðyÞ � incMB

predðyÞÞ2 ð3Þ

where incPBpredðyÞ was assumed to be equal to φPNP(y), or the number of new PB cases entering

treatment in year y, and incMB
predðyÞ was assumed to be equal to φMNM(y), or the number of new

MB cases entering treatment in year y. It was assumed that recurrent infections (from AP or
AM) were not included in the observed incidence. A parameter set was accepted if d<τ, where τ
was set equal to the 75th percentile of d in the previous particle. In each particle, the algorithm
was repeated until 100,000 parameter sets were accepted; 10 particles were produced, with the
10th particle used to form the posterior distribution. The perturbation kernel was set to be a

Table 1. Starting parameter values and ranges for a compartmental model of Hansen’s Disease.
Regional values are set based on the demographics of the area providing observed data for fitting. Fitted val-
ues (unfitted assumption in parentheses) are estimated using Approximate Bayesian Computation.

Symbol Description Value

Λ Rate at which individuals enter the population (year-1) [28] Regional

μ Mortality rate (year-1) [28] Regional

βP Effective contact rate for PB (year-1) [29] Fitted (0.3, range 1e-5:5)

bf
P

Effective contact rate for PB in a frequency-dependent model
(year-1)

Fitted (7.5e-9, range 1.25e-
13:6.25e-8)

βM Effective contact rate for MB (year-1) [29] Fitted (0.15, range 1e-5:5)

bf
M

Effective contact rate for MB in a frequency-dependent model
(year-1)

Fitted (3.75e-9, range 1.25e-
13:6.25e-8)

φM Case finding rate for MB (year-1) [11] Fitted (0.5, range 0.2–4)

φP Case finding rate for PB (year-1) [11] Fitted (0.5, range 0.2–4)

ps Probability that an individual is susceptible to infection [11] 0.1

γM Rate of progression to MB (year-1) [11] 0.1

γP Rate of progression to PB (year-1) [11] 0.28

pp Probability that an individual is susceptible to PB infection only
[11]

0.8

θ1 Reduction factor of β for treated over untreated PB [30] 0

θ2 Reduction factor of β for treated over untreated MB [30] 0

αM Recovery rate from treated MB (year-1) [1] 1

αPN Self-recovery rate from PB (year-1) [11] 0.224

αPT Recovery rate from treated PB (year-1) [1] 2

σM Rate of relapse to MB after recovery (year-1) [11] 0.009

σP Rate of relapse to PB after recovery (year-1) [11] 0.001

vM Disease-induced proportional increase in mortality rate in
untreated MB (year-1) [31]

3.5

νMT Disease-induced proportional increase in mortality rate in treated
MB (year-1) (assumed)

1

PB = paucibacillary disease

MB = multibacillary disease

doi:10.1371/journal.pntd.0004925.t001
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uniform distribution with a range limited by ± the variance of each parameter in the previous
particle.

Initial values in each of the compartments were determined analytically based on the
parameters and observed prevalence. As the duration of treatment in MB disease is twice the
duration of treatment in PB disease under MDT, the observed prevalence was assumed to be

divided between TM(0) and TP(0) with the ratio 2 � incidenceðMBÞ
incidenceðPBÞ . The ratio of Ni(0):Ti(0), Ei(0):

Ni(0), Ri(0):Ti(0), and AM(0):NM(0), where i 2 {M,P}, were set empirically in a multi-step pro-
cess similar to that described previously [22]. Briefly, the ratios were adjusted manually for
each region such that the model, simulated with the assumed values in Table 1, predicted the
incidence of both PB and MB cases in that region with less than 10% deviation from the
observed values in 2000 (the first year of observation) and 2002 (the year of peak incidence in
most regions). The model was then fitted with the initial population distribution determined
by these ratios, and the median of the estimated distribution for each fitted parameter was used
to predict incidence of both PB and MB cases in each region. If the predicted incidences in
2000 or 2002 deviated from observed values in any region by more than 10%, the ratios were
again adjusted manually to correct the deviation and the model was re-fitted. This process
repeated until the median of the estimated distribution for each fitted parameter was able
to predict incidence of PB and MB cases in each region with less than 10% deviation from
observed values in both 2000 and 2002.

As density-dependent transmission was assumed, but is known to be a simplification of true
human contact rates [32], the above process was repeated for a frequency-dependent transmis-
sion model. In this model, the force of infection λf becomes

lf ¼ bf
PðNP þ APÞ þ bf

MðNM þ AMÞ ð4Þ

where bf
P and b

f
M are adjusted from the density-dependent model to account for population

size. The results of the frequency and density dependent models were compared using Bayes
factor analysis, in which the Bayes factor was the ratio of the summed distance in all regions,
corrected for differences in regional population size, across a weighted sample of 1,000 poste-
rior parameter sets.

The results of the best-fitting regional model (frequency or density dependent) were exam-
ined for similarity between distributions, and 3 hierarchical fittings were considered: transmis-
sion parameters (βM, βP) shared across regions (V1), transition parameters (φM, φP) shared
across regions (V2), all parameters (βM, βP, φM, φP) shared across regions (V3), and sharing no
parameters (the regional model described above, V4). In the hierarchical models, the distance
function was altered to

d ¼
X

r

X2010

y¼2000

ðincPBobsðy; rÞ � incPBpredðy; rÞÞ2 þ ðincMB
obs ðy; rÞ � incMB

predðy; rÞÞ2=Nr ð5Þ

where r represents the region and Nr is the population of region r in 2000. Hierarchical models
were compared to each other and the regional model using Bayes factor analysis, in which the
Bayes factor was the ratio of the summed distance in all regions, corrected for differences in
regional population size, across a sample of 1,000 posterior parameter sets weighted by the
inverse of their summed regional distances (Eq 5).

In order to check the consistency of the model results, data were simulated for each region
using the median of the best fitted value from the preferred hierarchical model. These data
were then used to repeat the full model selection and parameterization process, including
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hierarchical model selection and parameterization. Results were compared to the simulated
input values.

Posterior predictions were produced using a weighted sample of 1,000 parameter sets from
the posterior distribution of both the preferred hierarchical model and the regional model, and
outcomes of interest were predicted from this sample. Outcomes were the time to elimination
in years (telim) and the predicted incidence overall and of MB and PB cases in the year 2050
(i2050, iM2050, and iP2050, respectively).

All models and fitting were performed in R 3.0.3,[33] which was accessed through the Revo-
lution R Analytics interface (copyright 2014 Revolution Analytics, Inc.).

Results
The median and range of each parameter for the each of the model fits are shown in Table 2.
Transmission and transition parameters were similar between the density-dependent and fre-
quency-dependent models. Bayes factor analysis identified the frequency-dependent model as
having the lowest summed deviance from the observed incidence. As a result, the frequency-
dependent model was used for hierarchical model fitting.

Bayes factor analysis identified the regional version as having the lowest summed deviance
from the observed incidence, although the preference for the regional version was not strong
(Bayes Factor of 1.2 to 2.1, compared to the hierarchical models). Transmission coefficients
were estimated to be similar in all regions even in the regional model, but transition rates
had high variability between regions. Transition rates were lower in the Midwest for all individ-
uals, higher in the South and Southeast for MB individuals, and higher in the North for PB
individuals.

The final distribution of the initial population, as determined by the empirical process, is
shown in Fig 2 for each region and model fit. The number of latent and undetected individuals
was the most variable across models, with the density-dependent model requiring higher num-
bers of latent individuals to reproduce the initial and peak incidence in each region.

Posterior predictions for the preferred hierarchical model and the regional model are shown
in Fig 3 and Table 3. The results show that the fit underestimated PB incidence in the North
and Midwest and MB incidence in most regions in later years. The South and Southeast
reported incidences below the elimination threshold in 2001, and this was also predicted to be
possible by the model, although the average time to elimination was predicted to be 2002 and
2007, respectively. On average, the North and Midwest were predicted to reach the elimination
threshold by 2045, while the Northeast was predicted to reach the elimination threshold by
2044. However, the ranges of values were wide, indicating that the Northeast could require up
to the year 2053 to reach the elimination threshold.

Simulation results (Table 4) show that the model was able to predict the simulated values in
most cases. The exceptions were the values of φM and φP, which tended to overestimate the
true value, and the values of βM and βP in the density-dependent model, which tended to
underestimate the true value.

Discussion
This study presents a compartmental model for Hansen’s Disease that takes into account the
current understanding of the disease but that is computationally simple and easy to adapt.
The structure of this model differs from that of Meima et al. [11] in 2 ways. First, this model
assumes that the 90% of people who never develop leprosy are inherently resistant, rather than
self-healing. Second, this model assumes that the 80% of susceptibles who will only develop PB
disease are again inherently resistant to MB disease. That allows us to separate the relapsed
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cases appropriately, such that only those recovered from MB disease relapse to MB disease.
These assumptions also allow for including differences of susceptibility in a compartmental
model, which is less computationally intensive, easier to fit to data, and easy to adapt to other
populations or across larger and more diverse regions. However, Ridley-Jopling classification
allows for borderline cases which can cross between PB and MB groups during relapse.[34]
While it would be advantageous to capture the full diversity of leprosy presentation in future
models, the parameterization of such models will require improved reporting; at present, Brazil
reports only the PB and MB classifications of detected cases.[25]

Many studies at the national or regional level will report a “case detection rate”. This, how-
ever, is not the true case finding rate represented by φM and φP in this model. It is, instead, the
annual observed incidence, and uses the population as the denominator, not the delay in diag-
nosis. This is an important difference: a high “case detection rate” could indicate an outbreak
rather than fast detection, while the true case finding rate only represents the time necessary to

Table 2. Posterior distribution median and 95% prediction intervals determined by ABC fitting of Approximate Bayesian Computation models for
Hansen’s Disease to data from the 5 regions of Brazil. Version 4 consisted of fitting the regional best-fit model to each region’s observed data separately
with both frequency and density-dependent transmission assumptions; all other versions used a hierarchical structure with density-dependent transmission
in which at least some parameters were shared across regions, and fitting was done simultaneously across all 5 regions. Mean error refers to the average
value of d per iteration of each version, based on a sample of 1,000 iterations, with confidence intervals based on 100 samples of 100 iterations each.

Va Reg.c βM βP φM φP Mean Error

1 N 0.41 (0.1–2.6) 0.45 (0.11–2.9)

NE 0.01 (0.01–0.01) 0.01 (0.01–0.012) 2.1e-14

SE 1.4 (0.011–2.5) 0.75 (0.0012–2.4) 0.01 (0.01–2.7) 0.01 (0.01–2.7) 2e-14-

S 0.01 (0.01–2.7) 0.01 (0.01–2.6) -2.3e-14)

MW 0.47 (0.11–3) 0.41 (0.057–2.7)

2 N 1.5 (0.0031–2.5) 1.5 (0.004–2.5)

NE 0.84 (0.0031–2.4) 1.3 (0.0013–2.5) 1.3e-14

SE 1.1 (0.0024–2.5) 1.2 (0.0015–2.5) 0.19 (0.15–0.25) 0.23 (0.17–0.32) (1.2e-14-

S 1.1 (0.004–2.5) 1.2 (0.0073–2.5) 1.3e-14)

MW 1.5 (0.0057–2.5) 1.3 (0.0085–2.5)

3 All 1.6 (0.0036–2.5) 1 (0.0036–2.5) 0.19 (0.14–0.28) 0.23 (0.16–0.35) 1.7e-14 (1.7e-14-1.8e-14)

4f
b N 2.2 (1.4–2.5) 1.4 (0.0027–2.4) 0.2 (0.2–0.22) 0.52 (0.39–0.73)

NE 2.1 (1.5–2.5) 1.1 (0.59–1.6) 0.2 (0.2–0.21) 0.2 (0.2–0.2) 1.0e-14

SE 1.5 (0.68–2.5) 0.66 (0.007–1.1) 0.51 (0.44–0.63) 0.2 (0.2–0.21) (1.0e-14-

S 1.8 (0.76–2.5) 0.86 (0.0024–1.7) 0.46 (0.43–0.52) 0.2 (0.2–0.2) 1.0e-14)

MW 1.7 (1.2–2.5) 0.26 (9.1e-3-0.56) 0.01 (0.01–0.01) 0.01 (0.01–0.01)

4d N 0.7 (0.5–0.8) 0.7 (8.9e-4-0.8) 0.2 (0.2–0.22) 0.52 (0.39–0.73)

NE 2.5 (1.8–3.0) 1.4 (0.7–1.9) 0.2 (0.2–0.21) 0.2 (0.2–0.2) 1.4e-14

SE 2.7 (1.2–4.6) 1.2 (1.3e-2-2.1) 0.51 (0.44–0.63) 0.2 (0.2–0.21) (1.4e-14-

S 1.1 (0.5–1.6) 0.5 (1.6e-3-1.1) 0.46 (0.43–0.52) 0.2 (0.2–0.2) 1.4e-14)

MW 0.1 (8.2e-3-0.2) 0.01 (4.8e-5-0.1) 0.01 (0.01–0.01) 0.01 (0.01–0.01)

aVersion of the hierarchical structure sharing parameters across 5 regions of Brazil: 1) all parameters shared; 2) transmission parameters shared; 3)

transition parameters shared; 4f) no parameters shared, frequency-dependent transmission; 4d) no parameters shared, density-dependent transmission
bDensity-dependent transmission parameters have been transformed to be comparable to frequency-dependent transmission parameters by multiplying the

estimated values by the population size in the year 2000.
cRegion: N = North (Acre, Amapá, Amazonas, Pará, Rondônia, Roraima, and Tocantins States), NE = Northeast (Alagoas, Bahia, Ceará, Maranhão,

Paraíba, Pernambuco, Piauí, Rio Grande do Norte, and Sergipe states), SE = Southeast (Espírito Santo, Minas Gerais, Rio de Janeiro, and São Paulo

states), S = South (Paraná, Rio Grande do Sul, and Santa Catarina states), MW = Midwest (Goiás, Mato Grosso, Mato Grosso do Sul, and Distrito Federal

states)

doi:10.1371/journal.pntd.0004925.t002
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Fig 2. Number of initial population in infected categories for a dynamic model ofMycobacterium leprae in Brazilian regions. The colors
represent different model fits (black H1: fitted transmission parameters shared across all regions, red H2: fitted transition parameters shared
across all regions, green H3: all fitted parameters shared across all regions, dark blue RF: no fitted parameters shared across regions, and light
blue RD: no fitted parameters shared across regions and density-dependent transmission). Each row is a different region. The infected categories
are: EP, latent paucibacillary (PB); PN, undetected PB; PT, treated PB; PR, recovered PB; PA, recurrent PB; EM, latent multibacillary (MB); MN,
undetected MB; MT, treated MB; MR, recovered MB; and MA, recurrent MB.

doi:10.1371/journal.pntd.0004925.g002
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Fig 3. Posterior predictions for incidence andmultibacillary (MB) incidence of the compartmental model of Hansen’s disease for the
regions of Brazil, compared to the observed values for 2000–2012.Unknown parameters were fitted to each region individually. All models
were fit using Approximate Bayesian Computation with the Sequential Monte Carlo algorithm.

doi:10.1371/journal.pntd.0004925.g003
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identify a clinical case. We found that the range of potential case finding rates was fairly similar
across most regions, but that cases were estimated to be infectious for 5 years in most cases
before treatment was initiated. This agrees with the findings of multiple studies [35,36], where
people delayed seeking treatment partly from an assumption that the symptoms were not seri-
ous and potentially from a worry of the stigma attached to a diagnosis [37]. It also falls into the
range assumed by previous models within Brazil for this time period [24]. In a modeling study,

Table 3. Posterior predictions (mean and range) from the regional model for Hansen’s Disease fit to regional data from Brazil. Incidence of Han-
sen’s Disease in the year 2050 is reported overall (i2050) and for multibacillary (iM2050) and paucibacillary (iP2050). The time to elimination (telim) was calculated
as the year in which overall incidence was�1/10,000, starting from 2001.

Region i2050 (/10,000) iM2050 (/10,000) iP2050 (/10,000) telim
North 0.91 (0.83–0.98) 0.57 (0.55–0.59) 0.34 (0.29–0.4) 45 (40–49)

Northeast 0.99 (0.92–1.1) 0.54 (0.52–0.56) 0.45 (0.41–0.5) 44 (38–53)

Southeast 0.22 (0.17–0.28) 0.14 (0.12–0.17) 0.071 (0.042–0.11) 7.3 (7–8)

South 0.16 (0.15–0.17) 0.13 (0.12–0.13) 0.031 (0.024–0.039) 1 (1–1)

Midwest 0.89 (0.88–0.89) 0.66 (0.63–0.69) 0.22 (0.2–0.25) 45 (44–46)

doi:10.1371/journal.pntd.0004925.t003

Table 4. Posterior distribution median and 95% prediction intervals determined by ABC fitting of Approximate Bayesian Computation models for
Hansen’s Disease to data simulated by the best-fit model. The values fit were βM = 1.9, βP = 1.2, φM = 0.2, and φP = 0.2 for all but the North, where φ2 =
0.46. Version 4 consisted of fitting the regional best-fit model to each region’s observed data separately with both frequency and density-dependent transmis-
sion assumptions; all other versions used a hierarchical structure with density-dependent transmission in which at least some parameters were shared across
regions, and fitting was done simultaneously across all 5 regions. Values in bold italics contained the simulated value within their range. Mean error refers to
the average value of d per iteration of each version, based on a sample of 1,000 iterations, with confidence intervals based on 100 samples of 100 iterations
each.

Va Region βM βP φM φP Mean Error

1 North 0.44 (0.23–1.2) 0.42 (0.2–1.2)
Northeast 0.2 (0.2–2.1) 0.2 (0.2–0.86) 5.7e-15

Southeast 1.2 0.89 0.2 (0.2–2.8) 0.2 (0.2–2.7) (5.4e-15-

South (0.00049–2.5) (0.00049–2.4) 0.2 (0.2–2.6) 0.2 (0.2–2.6) 6.1e-15)

Midwest 0.45 (0.22–1.3) 0.2 (0.2–0.33)
2 North 1.6 (0.00073–2.5) 1.3 (0.005–2.5)

Northeast 1.1 (0.00073–2.5) 1.6 (0.00022–2.5) 3.7e-15

Southeast 1.3 (0.0038–2.5) 1.2 (0.0031–2.5) 0.5 (0.39–0.69) 0.47 (0.35–0.65) (3.5e-15-

South 1.3 (0.0054–2.5) 1.2 (0.00095–2.5) 3.8e-15)

Midwest 1.5 (2.8e-05-2.5) 1.5 (0.00043–2.5)

3 All 2.1 (0.24–2.5) 1.6 (3e-04-2.5) 0.49 (0.39–0.7) 0.46 (0.34–0.66) 3.6e-15 (3.3e-15-3.7e-15)

4f
b North 2 (0.0086–2.5) 1.2 (0.00018–2.5) 0.5 (0.4–0.67) 0.49 (0.39–0.64)

Northeast 2.4 (1.8–2.5) 2.1 (1.3–2.4) 0.48 (0.4–0.64) 0.44 (0.36–0.56) 3e-15

Southeast 2.4 (1.8–2.5) 2.2 (1.4–2.5) 0.49 (0.36–0.83) 0.27 (0.2–0.38) (2.8e-15-

South 2.1 (0.2–2.5) 1.3 (0.00069–2.5) 0.49 (0.31–0.97) 0.46 (0.22–1.2) 3.1e-15)

Midwest 2 (0.00078–2.5) 1.2 (0.00024–2.4) 0.5 (0.4–0.7) 0.49 (0.37–0.69)

4d North 1.4 (0.13–3) 0.85 (1e-5-2.3) 0.48 (0.39–0.62) 0.44 (0.37–0.63)

Northeast 1e-5 (1e-5-1.5) 1e-5 (1e-5-0.6) 0.2 (0.2–0.2) 0.2 (0.2–0.2) 1.7e-14

Southeast 2.8 (2–4.7) 1.3 (1e-5-2.4) 0.2 (0.2–0.2) 0.2 (0.2–0.2) (1.6e-14-

South 0.36 (1e-5-1.5) 1e-5 (1e-5-0.97) 0.2 (0.2–0.2) 0.2 (0.2–0.21) 1.7e-14)

Midwest 1e-5 (1e-5-1e-5) 1e-5 (1e-5-1e-5) 0.2 (0.2–0.2) 0.2 (0.2–0.2)

aVersion of the hierarchical structure sharing parameters across 5 regions of Brazil: 1) all parameters shared; 2) transmission parameters shared; 3)

transition parameters shared; 4f) no parameters shared, frequency-dependent transmission; 4d) no parameters shared, density-dependent transmission
bFrequency-dependent transmission parameters have been transformed to be comparable to density-dependent transmission parameters.

doi:10.1371/journal.pntd.0004925.t004
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Fischer et al. [10] found that contact tracing was important to avoid the diagnostic delay; con-
tact tracing was decreased in India in order to meet WHO case detection rate goals, and the
result was treatment delays [38], which would produce a long-term effect of higher incidence
and, eventually, higher case detection rates. Importantly, our model predicted that cases in the
Midwest were infectious for an average of 100 years before detection, an unrealistic value indi-
cating that the true detection rate of cases is too low to estimate properly. If true, this could
indicate a public health failing that should be addressed. This difference in detection rate
between regions could be socio-economic in origin, as the three regions predicted to have low
detection rates (Northeast, North, and Midwest) also have lower GDP per capita. Similar
regional health disparities have been noted for ischaemic heart disease [39] and laryngeal can-
cer [40] mortality, suggesting regional disparities in health care [41].

The decision was made to compare density- and frequency-dependent models, despite the
fact that leprosy is considered to be a disease of close contact and therefore would be classically
considered to have density-dependent transmission. This is due to the limitations of a model
such as this, caused by the homogeneous mixing assumption, in capturing the limited number
of close contacts any individual is likely to have. Thus, while a disease may be truthfully den-
sity-dependent, it may behave mathematically as a frequency-dependent disease. The results
of this study show that the density-dependent model was slightly preferred to the frequency-
dependent model. This question would not arise with an individual-based model, such as SIM-
COLEP [42], but those models are not as easy to adapt as they must rely on population-specific
characteristics in their design, which may require parameters that are not locally available. The
goal of this study was to provide an adaptable model that was still able to capture the regional
dynamics of leprosy spread. The preference of the regional model supported this decision, but
the preference was not strong, indicating that some national-level models may be as informa-
tive as the regional models.

Several models assume that PB individuals are non-infectious [11]. We observed that PB
individuals did contribute to the force of infection, although with roughly half to two-thirds
the strength of MB individuals. In other mycobacterial diseases, less infectious individuals have
been found to be potentially important in maintaining the endemicity of the infection [43,44].
This highlights the importance of diagnosing and treating all cases; although the PB cases do
not have as serious sequelae as the MB cases, they may serve to maintain the infection in a
region. With regards to the intra-regional variation in transmission parameters, we found that
higher transmission parameters were predicted in regions with higher incidence. This is to be
expected, and highlights the ability of the model fitting to identify regional differences.

The results of the scenario analysis show that all regions are well on-track to eliminate lep-
rosy, with the South and Southeast, which have the lowest incidence, likely to eliminate leprosy
first. The posterior prediction plots (Fig 2) show that the fitted model estimated the observed
decrease in PB incidence fairly accurately in most regions, but slightly overestimated the
decrease in incidence of MB cases in all but the Midwest. It may be assumed, therefore, that
these results are best-case scenarios for those regions. The predicted incidence in the Northern
region is higher than has recently been predicted for Para State, which is within that region, but
the time to the elimination target generally agrees between the two models [24]. All regions
observed an increase in incidence up to 2003, followed by a slow decrease. This is likely due to
the slow impact of control programs, rather than a change in case detection rates; chronic dis-
eases with long latent periods, like leprosy, will require consistent control over long periods of
time to reverse incidence trends.

It is important to note that the incidence of MB disease was predicted to be in the range of
13,983 to 14,913 new MB cases in Brazil in 2015. However, the North, Northeast, and Midwest
are likely to require a much longer period to reach official elimination than the South and
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Southeast. The best way to decrease the time to elimination would be increasing the case find-
ing rate [45]. This would also improve the level of disability in new cases, as delay in onset of
treatment is a major cause of disability. Our results, therefore, indicate that the North, North-
east, and Midwest regions of Brazil would benefit from improving the true case finding rate,
which we have estimated to be slow.
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