
Micro-Geographical Heterogeneity in Schistosoma
mansoni and S. haematobium Infection and Morbidity in
a Co-Endemic Community in Northern Senegal
Lynn Meurs1*, Moustapha Mbow1,2, Nele Boon1,3, Frederik van den Broeck1,3, Kim Vereecken1,
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Abstract

Background: Schistosoma mansoni and S. haematobium are co-endemic in many areas in Africa. Yet, little is known about
the micro-geographical distribution of these two infections or associated disease within such foci. Such knowledge could
give important insights into the drivers of infection and disease and as such better tailor schistosomiasis control and
elimination efforts.

Methodology: In a co-endemic farming community in northern Senegal (346 children (0–19 y) and 253 adults (20–85 y);
n = 599 in total), we studied the spatial distribution of S. mansoni and S. haematobium single and mixed infections (by
microscopy), S. mansoni-specific hepatic fibrosis, S. haematobium-specific urinary tract morbidity (by ultrasound) and water
contact behavior (by questionnaire). The Kulldorff’s scan statistic was used to detect spatial clusters of infection and
morbidity, adjusted for the spatial distribution of gender and age.

Principal Findings: Schistosoma mansoni and S. haematobium infection densities clustered in different sections of the
community (p = 0.002 and p = 0.023, respectively), possibly related to heterogeneities in the use of different water contact
sites. While the distribution of urinary tract morbidity was homogeneous, a strong geospatial cluster was found for severe
hepatic fibrosis (p = 0.001). Particularly those people living adjacent to the most frequently used water contact site were
more at risk for more advanced morbidity (RR = 6.3; p = 0.043).

Conclusions/Significance: Schistosoma infection and associated disease showed important micro-geographical heteroge-
neities with divergent patterns for S. mansoni and S. haematobium in this Senegalese community. Further in depth
investigations are needed to confirm and explain our observations. The present study indicates that local geospatial
patterns should be taken into account in both research and control of schistosomiasis. The observed extreme focality of
schistosomiasis even at community level, suggests that current strategies may not suffice to move from morbidity control to
elimination of schistosomiasis, and calls for less uniform measures at a finer scale.
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Introduction

Schistosomiasis is amongst the most common human parasitic

diseases with over 230 million people affected worldwide [1]. More

than 90% of them live in sub-Saharan Africa [2]. The two major

species are Schistosoma mansoni and S. haematobium, which are co-

endemic in many regions [3]. However, little is known about the

geographical distribution of both species within such co-endemic

regions. Knowledge on micro-geographical variations of single and

mixed Schistosoma infections and associated disease could provide

important insights into the drivers of infection and disease and as

such better tailor schistosomiasis control and elimination efforts.

Recent progress in geographic information systems (GIS) has

facilitated a better understanding of geospatial dimensions of

schistosomiasis on the large scale. On continental and national

scales, climatic (e.g. temperature and rainfall) and physical factors

(e.g. vegetation, large water bodies, altitude) have been identified

as major determinants of the heterogeneous geographical distri-

bution of Schistosoma infection (either S. mansoni or S. haematobium,

e.g. [4–13]). On subnational levels, distance to water contact sites,

land use and the distribution of infected snails have been reported

to contribute to these heterogeneities (e.g. [14–20]).

Few studies have however exploited these techniques to address

the geospatial dimensions of schistosomiasis on the micro-scale, i.e.
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within communities or among households [21–29]. Most of these

considered spatial patterns of only one Schistosoma species even

though S. mansoni and S. haematobium often occur together [3].

Moreover, micro-geographical clustering of Schistosoma infection

has never been studied in relation to Schistosoma-specific morbidity.

In the present study, we set out to investigate the spatial patterns

of S. mansoni and S. haematobium infection and morbidity in a co-

endemic community on the bank of Lake Guiers in the north of

Senegal [30,31]. During the past decades, many communities

around Lake Guiers (‘Lac de Guiers’) in the north of Senegal have

become co-endemic for S. mansoni and S. haematobium [32–35].

Schistosoma mansoni was introduced in Richard-Toll in 1988 upon

construction of the Diama dam and rapidly spread throughout the

region [36,37]. By 1994, virtually the whole Lake Guiers area had

become exposed to this species [38]. Today, both S. mansoni and S.

haematobium are wide-spread in the communities around the lake,

and the situation is still dynamic.

Methods

Ethics statement
This study was part of a larger investigation on the epidemi-

ology of schistosomiasis and innate immune responses (SCHIS-

TOINIR: www.york.ac.uk/res/schistoinir) for which approval was

obtained from the review board of the Institute of Tropical

Medicine, the ethical committee of the Antwerp University

Hospital and ‘Le Comité National d’Ethique de la Recherche en

Santé’ in Dakar. Informed and written consent was obtained from

all participants prior to inclusion into the study. For minors,

informed and written consent was obtained from the legal

guardian.

Participants with severe pathology that needed further treat-

ment were referred to the appropriate health authority. After the

study, all community members were offered praziquantel (40 mg/

kg) and mebendazole (500 mg) to treat and prevent schistosomiasis

and soil-transmitted helminthiasis, respectively [30], according to

WHO guidelines [39].

Study area
This cross-sectional study was conducted from July until

November 2009 in Diokhor Tack (16u119240N 15u529480W), the

largest community on the Nouk Pomo peninsula in Lake Guiers.

Details on the study area have been described elsewhere [30]. In

short, it is an isolated, compact and homogeneous Wolof

community of Muslim faith with a surface of ,0.25 km2.

Cultivation is the main means of subsistence and the farmlands

that surround the village are irrigated with water from the lake.

Although the water from Lake Guiers is piped to the capital city of

Dakar, 250 km away [40], the people living nearby do not have

access to safe water. Water contact takes place in the lake or in

specific sites in canals that are connected to the lake in the west

(Figure 1). There were no periodic anthelminthic treatment

programs prior to our study and the community does not have a

health facility. The nearest ‘health post’ is ,12 km away. All

community members that gave informed consent (or their legal

guardians) were included in the study. Participants were registered

and recruited from door to door for the parasitological and

ultrasound surveys. The community consisted of 71 households, 68

of which participated in this study (Figure 1). This corresponded to

a total study population of 599 individuals.

Data collection and definitions
For microscopic diagnosis of Schistosoma infection, two feces and

two urine samples were collected from each participant on

consecutive days. For each feces sample, two Kato-Katz slides of

25 mg fecal material each were prepared, and urine samples were

filtered and processed according to standard procedures, as

previously described [30,31]. In analogy with earlier micro-

geographic studies [21–23], S. mansoni and S. haematobium infection

densities were expressed as the number of eggs detected per gram

of feces (epg) or per 10 ml of urine (ep10ml), respectively,

including both negative (0 epg or 0 ep10ml) and positive

individuals [41]. Single infection was defined as passing eggs of

only one species, and mixed infection as passing eggs of both S.

mansoni and S. haematobium, irrespective of the route of egg

elimination [30]. Schistosoma-specific morbidity was determined by

ultrasound, as previously described [31]. Pathologic lesions

associated with S. haematobium or S. mansoni infection were recorded

according to the Niamey guidelines [42]. Individuals with signs of

hepatic morbidity that were not specific to S. mansoni (e.g. hepatitis,

cirrhosis or fatty liver) were excluded [42]. To assess the presence

or absence of S. mansoni-specific hepatic fibrosis, the liver image

pattern was determined [42]. Liver image patterns of C

(‘‘periportal fibrosis possible’’) to F (‘‘very advanced periportal

fibrosis’’) were categorized as S. mansoni-specific hepatic fibrosis

[31]. Individuals with liver image pattern A (‘‘no sign of periportal

fibrosis’’) or B (‘‘incipient periportal fibrosis not excluded’’) were

categorized as controls [42]. To assess the presence or absence of

S. haematobium-specific urinary tract morbidity, the urinary bladder

score was determined [42]. A score of $1 was considered as S.

haematobium-specific bladder morbidity in accordance with previous

studies [31,43,44]. The severity of morbidity was represented by

the liver image pattern score for S. mansoni- and by the upper

urinary tract score for S. haematobium-specific morbidity [42].

Finally, individual questionnaires were used to explore water

contact behavior in a random subsample of people older than 5

years of age.

Mapping and geospatial processing
Water contact sites as well as the center of each household were

located using a hand-held differential global positioning system

with an accuracy of 3 m (Garmin Etrex H). Household locations

Author Summary

In the developing world, over 230 million people are
infected with parasitic Schistosoma worms. Schistosoma
mansoni and S. haematobium are the most abundant
species in Africa, affecting the liver and urinary tract,
respectively. Both parasites are spread through infested
freshwater. Although it is known that the disease occurs
focally within countries or regions, little is known on its
geographic spread on a smaller scale. Here, we examined
599 people from a community in northern Senegal for S.
mansoni and S. haematobium infections and related
abnormalities of the liver and urinary tract. We recorded
where they lived and where they had water contact and
visualized this information in geographical maps. The
study showed that each Schistosoma species clustered in a
different section of the community, and that liver
abnormalities were more severe near the mostly used
water contact site. So far, this is the first study to
investigate the geographical spread of both species in a
single community, and the first to map schistosomal
disease on such a small scale. Further studies are needed
to confirm and explain these results. They could contribute
to a better understanding of schistosomiasis and have
important consequences for the control and elimination of
this disease.
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in latitude and longitude were then linked to the collected

individual infection, morbidity and questionnaire data (multiple

observations per location). These data were imported into

SaTScan 9.1.1 (Software for the spatial and space-time scan

statistics, developed by M. Kulldorff, Harvard Medical School,

Boston and Information Management Services Inc., Silver Spring,

Maryland, USA. Available at www.satscan.org) according to the

software’s user guide [45]. ArcMap 9.3 (ESRI, Redlands,

California, USA) was used to project the geographic coordinates

and statistically significant clusters (see below) on to the Universal

Transverse Mercator zone 28N (1984 datum).

Spatial statistics
The widely used Kulldorff’s scan statistic in SaTScanTM tests

whether events such as disease cases are distributed randomly in

space and, if not, identifies the approximate location of significant

geospatial clusters [46]. The test uses a moving circular window

that varies up to a predefined size. Each window is a potential

cluster. For each window, a likelihood ratio test is applied based on

the observed and expected number of cases inside and outside the

window to test the null hypothesis of absolute spatial randomness

against the alternative hypothesis that there is an elevated risk

within the window as compared to outside. The window with the

maximum likelihood is the ‘most likely cluster’. The p-value of the

maximum likelihood ratio test statistic was obtained after 999

Monte Carlo replications. A maximum window size of 50% of the

study population was chosen upon sensitivity analysis using

maximum sizes from 10 to 50%. Only statistically significant

(p,0.05) most likely clusters were reported, and standard settings

(i.e. non-overlapping secondary clusters) were used throughout all

analyses. In case the most likely (significant) cluster contained only

one household, an additional check was performed to increase the

robustness of cluster detection. The standard analysis was repeated

while allowing for overlapping secondary clusters (using the

‘‘criteria for reporting secondary clusters’’ option ‘‘no restric-

tion = most likely cluster for each grid point’’ [45]), and the

secondary cluster (including the first household) was reported, if it

remained significant. Additionally, clusters with p,0.06 were

displayed to indicate households that tended to have increased

risks.

Infection densities of S. mansoni and S. haematobium showed

skewed distributions, and were therefore normalized by log (base

10)-transformation after adding half of the detection limit to allow

for zeros. The detection limit for S. mansoni infection was 10 epg

and that for S. haematobium infection 0.5 ep10ml. The spatial

distribution of log-transformed infection densities was assessed

using normal models [47]. Geometric mean (GM) infection

densities in- and outside spatial clusters were computed to quantify

significant spatial heterogeneities. Subsequently, Bernoulli models

[46] were run to investigate the distribution of single S. mansoni,

single S. haematobium and mixed infections, comparing spatial

distributions of people with:

N single S. mansoni (1) versus those without single S. mansoni

infections (0);

N single S. haematobium (1) versus those without single S.

haematobium infections (0);

N mixed (1) versus those without mixed infections (0).

The spatial distribution of the prevalence of hepatic fibrosis and

urinary tract morbidity was tested using binary variables in

separate Bernoulli models. Ordinal models were used to assess the

distribution of the severity of S. mansoni- and S. haematobium-specific

morbidity [48]. Relative risks (RR) comparing people in- and

outside clusters, as well as prevalences in- and outside clusters were

calculated to quantify significant spatial heterogeneities based on

Bernoulli and ordinal models.

Figure 1. General map of the study village. The inset shows that Diokhor Tack is located in the south-west of the Nouk Pomo peninsula in Lac
de Guiers. The main figure indicates the locations of the 68 households that participated in the study (white dots). Red dots with Roman numerals
refer to the sites where people come into direct contact with water from the lake. Water contact site III and IV are open spaces enclosed by dense
vegetation. Site IV is the largest water contact site. The more remote water contact sites (I, II, and V) are located along irrigation canals in which
vegetation was more sparse at the time of study.
doi:10.1371/journal.pntd.0002608.g001

Micro-Geographical Variations in Schistosomiasis
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Gender and age are important risk factors for both Schistosoma

infection [30], and morbidity [31]. To investigate whether these

demographic factors 1) caused clustering of infection and morbidity,

and/or 2) impacted on the size and exact locations of statistically

significant clusters, the abovementioned analyses were adjusted

using multiple datasets [49]. Six datasets were prepared, containing

either males or females from 0 to 9, 10 to 19, or $20 years old

(Table 1). SaTScanTM incorporated all datasets into a single log

likelihood function. This function is defined as the sum of the

individual log likelihoods for those data sets for which the observed

case count is more than the expected. Since this adjustment was

only possible for the Bernoulli and normal models, separate

Bernoulli models were run for the ordinal morbidity model showing

significant spatial heterogeneities in the unadjusted analysis.

Finally, Bernoulli models were used to compare the geospatial

distribution of people reporting to frequent a particular water

contact site versus the distribution of people who did not report to

frequent that site.

Results

Characteristics of the study population
Complete parasitological data were obtained from a total of 599

individuals from 68 households. The median household size was 8

people (range 1–20). The total study population consisted of 302

males and 297 females with a median age of 15 (range 0–85) years.

Ultrasound and questionnaire data were obtained from random

subsamples of 291 individuals (64 households), and 277 individuals

(63 households), respectively. The prevalence of overall S. mansoni

infection was 55% (328/599) and that of S. haematobium 44% (261/

599). Mixed infections were observed in 32% of the population

(189/599). The prevalence of S. mansoni-specific hepatic fibrosis was

31% (90/291). Most cases had liver image pattern C (71/90), 9/90

had pattern D, while advanced periportal fibrosis was observed in

10/90 cases (nine with liver image pattern E and one with F). The

prevalence of S. haematobium-specific urinary tract morbidity was

80% (233/291). Positive upper urinary tract scores (range 3–12)

were observed in 6% of the study population (18/291). Distributions

of single and mixed Schistosoma infections, S. mansoni-associated

hepatic fibrosis and S. haematobium-associated bladder morbidity

according to gender and age are summarized in Table 1.

Spatial distribution of Schistosoma infection
Figure 2A depicts the heterogeneous geospatial distribution of S.

mansoni and S. haematobium infection densities (p = 0.001 for both

unadjusted analyses). While the size of the S. haematobium infection

density cluster increased upon correction for the spatial distribu-

tion of gender and age, both S. mansoni and S. haematobium clusters

remained statistically significant (Figure 2B; p = 0.002 and

p = 0.023, respectively).

Participants with mixed and those with single S. haematobium

infections were randomly distributed (p = 0.16 and p = 0.080,

respectively), while those with single S. mansoni infections tended to

cluster geographically (Figure 3A; RR = 1.7; p = 0.053). Figure 3B

indicates that the clustering of single S. mansoni was independent of

the spatial distribution of gender and age (p#0.050), although the

cluster size and exact location were slightly altered upon

adjustment.

Spatial distribution of Schistosoma-specific morbidity
Figure 4A indicates that people with hepatic fibrosis (RR = 1.9;

p = 0.054) and urinary tract morbidity (RR = 1.2; p = 0.053) tended

to cluster in the same area. Adjusted analysis however indicated that

these heterogeneous patterns were dependent on the distribution of

gender and age (p = 0.087 for hepatic fibrosis and p = 0.071 for

urinary tract morbidity in the adjusted analysis). In order to assess

the distribution of morbidity by severity, ordinal analyses were

performed for liver image pattern and upper urinary tract scores.

Figure 4B shows that this resulted in one significant cluster

(p = 0.001) in which the RR increased with the severity of hepatic

fibrosis: the RR for a healthy liver image pattern A was 0.3, that for

B 1.3, for C 1.4, for D 2.7 and for E 4.3. Moreover, the only person

with pattern F in the community lived in this cluster. Bernoulli

models were used to investigate whether this cluster of severe

hepatic fibrosis was independent of the distribution of gender and

age. Since more severe hepatic fibrosis was only observed in adults,

these analyses were restricted to $20-year-olds. Unadjusted

Bernoulli models revealed that image patterns D–F (as opposed to

A–C) clustered in the households within the hepatic fibrosis cluster

that were closest to water contact site IV (RR = 6.3; p = 0.043; data

not shown). The combined distribution of patterns E and F (as

opposed to A–D) was homogeneous (p = 0.20). In the adjusted

model, the cluster of pattern D–F remained statistically significant

(Figure 4B; p = 0.031).

The risk of severe urinary tract morbidity was homogeneously

distributed (p = 0.38 in the ordinal analysis).

Water contact behavior
Water contact activities were concentrated at site IV with 62%

of the interviewees (172/277) reporting to frequent this site.

Table 1. Characteristics of the 6 datasets used for the gender- and age-adjusted spatial analyses.

Infectiona Morbiditya

Gender Age (years) ntotal

Single S.
mansoni Single S. haematobium Mixed infections ntotal

Hepatic
fibrosis

Urinary tract
morbidity

Male 0–9 109 15 17 27 49 3 41

Female 0–9 79 9 16 17 28 2 18

Male 10–19 90 21 10 49 49 12 48

Female 10–19 68 11 6 42 34 6 26

Male $20 103 39 3 15 49 33 44

Female $20 150 44 20 39 82 34 56

Total 599 139 72 189 291 90 233

aTotal study population in the first columns and numbers of cases in subsequent columns.
doi:10.1371/journal.pntd.0002608.t001

Micro-Geographical Variations in Schistosomiasis
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Numbers of observations in the other sites were limited.

Nonetheless, spatial analysis of the questionnaire data revealed

significant heterogeneities in the self-reported use of the different

water contact sites (Figure 5). People from two adjacent

households in the northeast were more likely to frequent site II

than those from the rest of the community (3/4 in- versus 5/273

outside the cluster; p = 0.005). People living in the center of the

community were more likely to frequent site III than others (4/17

versus 2/260; p = 0.022). Those from the southwest were more

likely to frequent site V (8/53 versus 1/224; p = 0.001). Use of site I

and IV did not appear to be linked to a particular group of

households (p = 0.31 and p = 0.16 respectively).

Discussion

The present micro-geographical study revealed significant

clusters of S. mansoni and S. haematobium infection density in

different sections of one community in a co-endemic area, possibly

related to heterogeneities in the use of different water contact sites.

While the distribution of urinary tract morbidity was homoge-

neous, a strong geospatial cluster was found for severe hepatic

fibrosis. Particularly those people living adjacent to the most

frequently used water contact site were more at risk for advanced

morbidity than those living farther away.

These findings confirm the well-known focality of schistosomi-

asis [50]. Even within one community, one cannot assume the risk

of schistosomiasis to be homogenous. More remarkably even, the

two Schistosoma species clustered in different sections of the

community; Schistosoma mansoni infections clustered in the north

while S. haematobium clustered in the south. A series of recent GIS

studies showed significant micro-geographical heterogeneities in S.

haematobium infection within a mono-endemic Kenyan community

[21,22]. Those in S. mansoni mono-endemic communities showed

conflicting results with heterogeneous spatial patterns in some

studies and homogeneous patterns in others [24–29]. To our

knowledge, only Farooq et al have so far investigated the spatial

distribution of both infections in a co-endemic community in

Egypt in the 1960s. They reported higher infection levels of S.

mansoni in small children in one section of the community and

higher levels of S. haematobium in another section [51]. This is in

agreement with the divergent distributions of S. mansoni and S.

haematobium infection densities observed in the present study.

Several interrelated factors may underlie these observations, and

are discussed below.

Figure 2. Spatial distribution of S. mansoni and S. haematobium infection densities. Black circles and crosses indicate households that were
included in and excluded from the analysis, respectively. Roman numerals indicate water contact sites. Panel A depicts the unadjusted clusters
(p = 0.001 for both S. mansoni and S. haematobium). The geometric mean (GM) S. mansoni infection density was 33 epg for those living in inside the
northern S. mansoni cluster (n = 285) compared to12 epg in the rest of the community (n = 314). The GM S. haematobium infection density was 4.7
ep10ml inside the southern S. haematobium cluster (n = 34) and 0.7 ep10ml outside (n = 565). Panel B depicts the gender- and age-adjusted clusters
(p = 0.002 for S. mansoni (north), and p = 0.023 for S. haematobium (south).
doi:10.1371/journal.pntd.0002608.g002

Micro-Geographical Variations in Schistosomiasis
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First of all, the micro-geographic distributions of the interme-

diate snail host of S. mansoni and S. haematobium, which belong to

the genus Biomphalaria and Bulinus, respectively, may be divergent

as well. Unfortunately, it was logistically impossible to collect snails

in the present study. Yet, it is known that these snail species prefer

different niches and that their distribution is influenced by

chemical, physical, and biological factors [52–57]. Indeed, Wool-

house and Chandiwana demonstrated that the snail hosts of S.

mansoni and S. haematobium occupy different locations in one single

habitat in a co-endemic focus [53]. Ecological factors may thus

have favored S. mansoni transmission in the north and S.

haematobium transmission in the south.

At the human host level, behavioral factors may have played a

role in the observed spatial pattern of infection. Although based on

a small number of observations, our questionnaire data indeed

indicated that people from the north and center were more likely

to frequent the northern sites than other community members,

whereas those from the southwest were more likely to use the

southernmost site. It thus seems that the first group maintained S.

mansoni transmission in the north and the second S. haematobium

transmission in the south. This corresponds to the study of

Woolhouse and Chandiwana reporting 1) a similar geospatial

segregation of S. mansoni and S. haematobium infection in the snail

host population between transmission sites, and 2) a very focal

man-to-snail transmission, within a distance of 40 m. Interestingly,

they proposed that these divergent patterns most likely reflected

differences in the distribution of defecation from that of urination,

favoring S. mansoni and S. haematobium transmission, respectively

[53]. In contrast to water contact behavior, age and gender of the

human host were shown to have a negligible impact on the

divergent pattern of S. mansoni and S. haematobium infection. Spatial

clustering in the different sections of the community remained

significant upon correction for age and gender. Other factors that

may have contributed to the spatial pattern include genetic

differences in susceptibility to infection [58–60]. Indeed, extended

families tended to live together in this community (L. Meurs,

personal observation). Also, people from the same section/

extended family are more likely to have similar behavioral patterns

[51,61–63].

In contrast to the spatial distribution of S. haematobium infection,

the distribution of S. haematobium-associated urinary tract morbidity

was homogeneous. This was unexpected as S. haematobium infection

has consistently been reported as an independent risk factor for

urinary tract morbidity [43,44,64–71]. The fact that S. haematobium

was only introduced in this region approximately 6 years prior to

this study [72], may explain the relatively low severity of urinary

tract morbidity in this community and the consequent absence of a

spatial pattern. The severity of urinary tract morbidity is expected

Figure 3. Spatial distribution of single S. mansoni infections. Black circles and crosses indicate households that were included in and excluded
from the analysis, respectively. Blue Roman numerals indicate water contact sites. Continuous pink circles are statistically significant clusters (p,0.05)
and dotted circles are borderline significant (p,0.06). Panel A depicts the unadjusted cluster (RR = 1.7; p = 0.053). The prevalence of single S. mansoni
infection was 30% (83/278) inside and 17% (56/321) outside the cluster. Panel B shows the gender- and age-adjusted clusters (p = 0.045 for the most
likely cluster (center) and p = 0.050 for the secondary cluster (north).
doi:10.1371/journal.pntd.0002608.g003

Micro-Geographical Variations in Schistosomiasis
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to progress over time with cumulative exposure to S. haematobium

eggs [73].

On the other hand, a strong geospatial cluster was found for

severe S. mansoni-specific hepatic fibrosis which overlapped with

that of S. mansoni infection density. At first sight, this seems to be in

contrast with previous studies by this group showing that current S.

mansoni infection is not associated with hepatic fibrosis [31], which

usually develops after 5–15 years of exposure [3]. However, a

closer look at the overlapping clusters showed that teenagers had

the highest infection densities and contributed most to the S.

mansoni infection density cluster (data not shown). Adults on the

other hand had more advanced morbidity, and contributed most

to the severe hepatic fibrosis cluster. This suggests that these adults

were in fact the teenagers with the highest S. mansoni infection

densities earlier in life.

Moreover, the clustering of severe hepatic fibrosis in adults

seemed to be associated with the distance to the water. Those

living within ,100 m of the major water contact site (Figure 4B)

were at least six times more likely to develop advanced hepatic

fibrosis (liver image pattern D–F) than those living further away.

However, other factors cannot be excluded such as genetic

predisposition [74], diet or nutritional status [75], or co-infections,

which may have put those living in close vicinity of the water at a

higher risk of developing hepatic morbidity than the rest of the

community.

To our knowledge, only Booth et al have so far investigated

micro-geographical variations in Schistosoma-associated morbidity.

They found an association between splenomegaly and the

combined exposure to S. mansoni and Plasmodium falciparum but

did not explicitly investigate spatial clustering [76].

To our knowledge this is the first study to quantify micro-

geographical infection patterns of S. mansoni and S. haematobium in a

co-endemic community, and the first to relate these to patterns of

Schistosoma-specific morbidity. Apart from the strengths, it is also

important to address some limitations of our study. First, the study

was cross-sectional and the results were merely descriptive in

nature. The present study was a first attempt to describe patterns

of schistosome infection and morbidity on a micro-scale, and it was

Figure 4. Spatial distribution of S. mansoni- and S. haematobium-specific morbidity. Black circles and crosses indicate households that were
included and excluded from the analysis, respectively. Continuous colored circles are statistically significant clusters (p,0.05) and dotted circles are
borderline significant (p,0.06). Roman numerals indicate water contact sites. Panel A depicts the unadjusted clusters for the prevalence of
morbidity. Both S. mansoni-specific hepatic fibrosis (pink dotted circle; RR = 1.9) and S. haematobium-specific urinary tract morbidity clusters (green
dotted circle; RR = 1.2) were borderline significant (p = 0.054 and p = 0.053, respectively). The prevalence of hepatic fibrosis was 41% (59/145) in- and
21% (31/146) outside, and that of urinary tract morbidity was 89% (117/131) in- and 73% (116/160) outside the cluster. Gender- and age-adjusted
analysis revealed no (borderline) significant clusters for the prevalence of morbidity. Panel B depicts the clusters of morbidity by severity. The risk of
severe hepatic fibrosis was elevated in the circle with a RR of 0.3 for liver image pattern A, 1.3 for B, 1.4 for C, 2.7 for D and 4.3 for E, and the only
person with pattern F lived here (p = 0.001; unadjusted ordinal model). The gender- and age-adjusted cluster for patterns D–F (as opposed to A–C) in
adults constituted of the households indicated in pink (p = 0.031; Bernoulli model).
doi:10.1371/journal.pntd.0002608.g004
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not designed to explain the underlying mechanisms of potential

micro-geographical clustering. Based on the limited data that were

available, we generated a number of hypotheses, but other risk

factors, including environmental, malacological, genetic, immu-

nological and socio-economic factors, should be included in future

studies. In addition, more spatial as well as spatio-temporal studies

[21–23] are necessary to confirm our observations in other

geographical areas and to explain them. Another limitation was

that there is as yet no standard technique available to investigate

spatial patterns. The emergence of various statistical methods has

greatly boosted geospatial studies on schistosomiasis and increased

our understanding of this disease. On the other hand, the large

variety of methods has also hampered the comparison between the

different micro-geographical studies that have be conducted so far

and standardization is recommended.

Current WHO schistosomiasis control strategies aim to prevent

morbidity in later life through regular mass drug administration

(MDA) to at risk populations in so-called homogeneous ecological

zones [77,78]. However, the strong micro-geographical clustering

of infection and morbidity observed in the present study suggests

that less uniform strategies should be developed to better tailor

control efforts at the local level. A more targeted approach will be

even more relevant in view of resolution WHA65.21 on the

elimination of schistosomiasis, recently adopted by the WHO [77].

It is expected that MDA alone cannot break the Schistosoma life

cycle and that complementary interventions will have to be put in

place [79]. Micro-geographical studies will help to get much

needed insights into local transmission dynamics of S. mansoni and

S. haematobium and hence to develop sustainable control and

elimination strategies [80].
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