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Abstract

Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries.
Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we
present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing
from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than
81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time
points in the parasite’s life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes
have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of
the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used
to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535
genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a
searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further
transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental
dataset to underpin further advances in schistosome research.
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Introduction

Schistosoma spp. are platyhelminth (flatworm) parasites respon-

sible for schistosomiasis, a tropical disease endemic in sub-tropical

regions of Africa, Brazil, Central America, regions of China and

Southeast Asia, which causes serious morbidity, mortality and

economic loss. An estimated 779 million people are at risk of

infection and more than 200 million are infected [1].

The paired adult males and females of S. mansoni reside in the

hepatic portal vasculature, each female depositing 200–300 eggs

per day near the intestinal wall. These eggs either pass into the

gut lumen to be voided in the faeces and continue the life cycle or

pass up the mesenteric veins and lodge in the liver, where they

can cause serious pathology including granulomatous inflamma-

tion response and fibrosis. On contact with fresh water, free-living

motile miracidia hatch from the eggs to infect aquatic snails

(Biomphalaria spp.), where parasites undergo two rounds of asexual

multiplication and are released as infective cercariae into water.

Cercariae infect the human host, by penetrating unbroken skin,

and transform into schistosomula. After several days the parasites

exit the cutaneous tissue via blood (or lymphatic) vessels and

travel first to the lungs and onward into the systemic vasculature.

They may make multiple circuits before arriving in the hepatic

portal system; only then do they start to feed on blood, mature

and pair up, the whole process taking approximately five weeks

[2].
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Two Schistosoma draft genomes (S. mansoni and S. japonicum) were

recently published [3,4] and represent the only described genomes

amongst parasitic flatworms to date. Their assemblies were

generated by conventional capillary sequencing but are highly

fragmented (S. mansoni, 19,022 scaffolds; S. japonicum, 25,048

scaffolds) and severely compromise gene prediction, as well as

comparative and functional genomics analyses. The transcriptome

has similarly only been partially characterised by large-scale

expressed sequence tag (EST) sequencing and low-resolution

cDNA-based microarrays.

Second-generation sequencing technologies provide new op-

portunities to characterise both genomes and transcriptomes in

depth. In addition to whole genome de novo sequencing [5,6] and

genome improvement [7], massively parallel cDNA sequencing

(RNA-seq) can identify transcriptionally active regions at base-pair

resolution [8–11] and accurately define the exon coordinates of

genes [12]. In addition, the quantitative nature and high dynamic

range of RNA-seq allows gene expression to be scrutinised

[11,13,14] in a more sensitive and accurate way than other

previous high-throughput methods [15,16].

In this study we systematically improved the draft genome of S.

mansoni, using a combination of traditional Sanger capillary

sequencing, second generation DNA sequencing from clonal

parasites and reanalysis of existing genetic markers [17]. This

allowed us to assemble 81% of the genome sequence into

chromosomes. We have also used RNA-seq data from several

life-cycle stages to refine the structures of 45% of existing genes as

well as to identify new genes and alternatively spliced transcripts.

In addition to cis splicing, our data highlight extensive trans-splicing

and provide clear evidence that the latter can be used to resolve

polycistronic transcripts. With RNA-seq we profiled the parasite’s

transcriptome during its transformation from the free-living,

human-infectious cercariae to the early stages of infection and in

the mature adult. As the infective form transforms into a

mammalian-adapted parasite, the relative abundance of tran-

scripts shifts markedly during a 24-hour period, from those

involved in glycolysis, translation and transcription to those

required for complex developmental and signalling pathways.

The improved sequence and new transcriptome data are available

to the community in a user-friendly and easy to query format via

both the GeneDB (www.genedb.org) and SchistoDB (www.schis-

todb.net) databases. These data demonstrate that revisiting a

previously published draft genome, to upgrade its quality, is an

option that should not just be reserved for model organisms.

Materials and Methods

The full description of materials and methods is presented in

Supplementary Materials (Text S1). A synopsis of the methods

used in this paper is presented below.

Parasite material, library preparation and sequencing
S. mansoni clonal DNA was obtained from single miracidium

infections of Biomphalaria snails. Male and female adults (NMRI

strain, Puerto Rican origin) were obtained from infected C57Bl/6

mice. DNA extraction was performed and sequencing libraries were

prepared as previously described [18]. Eight and lanes were

sequenced for the male samples and one lane for the female sample,

both as 108-base paired reads. For RNA-seq samples, total RNA

samples were obtained from cercariae, 3 hours and 24 hours post-

infection schistosomula, and 7-week old mixed sex adult worms.

Schistosomula samples were obtained using mechanical transfor-

mation [19]. RNA-seq libraries were prepared using a modified

version of the protocol described in [8] and sequenced as 76-base

paired reads. All samples were sequenced using the Illumina

Genome Analyzer IIx platform. Raw sequence data were submitted

to public data repositories; DNA reads were submitted to ENA

http://www.ebi.ac.uk/ena/ under accession number ERP000385

and RNA-seq reads were submitted to ArrayExpress http://www.

ebi.ac.uk/arrayexpress/ under accession number E-MTAB-451).

Generating a new assembly and transferring previous
gene annotation

The Arachne assembler (version 3.2, [20]) was used to produce a

new assembly using the existing capillary reads from the previously

published draft assembly [3], supplemented with an additional

,90,000 fosmid and BAC end sequences. FISH-mapped BACs [3]

were also end-sequenced generating 438 reads that were incorpo-

rated into the assembly. Illumina reads were used to close gaps with

the IMAGE pipeline [7]. The sequences of 243 published linkage

markers [17] of S. mansoni were retrieved and used as anchors within

the assembly by incorporating them as faux capillary reads. Scaffolds

containing these reads were ordered, orientated and merged into

chromosomes. Except where indicated, all analyses reported in the

present study refer to a frozen dataset taken at this stage of the

assembly process (S. mansoni genome v5.0, available at http://www.

sanger.ac.uk/resources/downloads/helminths/schistosoma-man-

soni.html). All comparisons were made against the previously

published draft genome (v4.0).

As part of the active finishing process, we randomly checked

,20% (2,062) of the gaps automatically closed by IMAGE and

found 90% of these could be verified by visual inspection. Contigs

containing telomeric repeat sequences (TTAGGG) [21] were

extended by oligo-walking pUC clones until a unique sequence

was identified. Where the unique sequence was linked to a known

marker, the telomere could be placed onto a chromosome. All

manual improvement changes were included in a subsequent

snapshot of the data (v6.0).

To transfer the existing annotation to the latest reference we

used RATT [22] (with the old assembly split into four parts and

using options –q and –r) to define regions with synteny between

Author Summary

Schistosomiasis is a disease caused by parasitic blood
flukes of the genus Schistosoma. Human-infective species
are prevalent in developing countries, where they
represent a major disease burden as well as an imped-
iment to socioeconomic development. In addition to its
clinical relevance, Schistosoma mansoni is the species most
widely used for laboratory experimentation. In 2009, the
first draft of the S. mansoni and S. japonicum genomes
were published. Both genome sequences represented a
great step forward for schistosome research, but their
highly fragmented nature compromised the quality of
potential downstream analyses. In this study, we have
substantially improved both the genome and the tran-
scriptome resources for S. mansoni. We collated existing
data and added deep DNA sequence data from clonal
worms and RNA sequence data from four key time points
in the life cycle of the parasite. We were able to identify
transcribed regions to single-base resolution and have
profiled gene expression from the free-living larvae to the
early human parasitic stage. We uncovered extensive use
of single transcripts from multiple genes, which the
organism subsequently resolves by trans-splicing. All data
from this study comprise a major new release of the
genome, which is publicly and easily accessible.

Improved Genome and Transcriptome of the S. mansoni
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both assemblies and transform the annotation coordinates onto the

new assembly.

The annotated genome sequence was submitted to EMBL

http://www.ebi.ac.uk/embl/ under the accession numbers

HE601624 to HE601631 (nuclear chromosomes); HE601612

(mitochondrial genome); and CABG01000001 to CABG01000876

(unassigned scaffolds).

Gene finding using RNA-seq
Each lane of RNA-seq reads was independently aligned to the

genome using TopHat [23] and the resulting alignment files used

as the input for the gene finder Cufflinks [12]. Transcript

fragments with less than 106 average read depth coverage and

fewer than 50 codons were excluded from subsequent analyses.

JIGSAW [24] was used to combine existing models with Cufflinks’

transcript fragments. The final set of gene models can be accessed

through GeneDB http://www.genedb.org/Homepage/Smansoni

and SchistoDB http://www.schistodb.net.

Trans-splicing and polycistronic transcription
RNA-seq read pairs that contained the splice leader (SL)

sequence [25] were used to find trans-splicing sites; where a gene

was found within 500 bases from a trans-splice site its transcript was

tagged as putative trans-spliced. By looking for genes whose 39 end

was located within 2,000 bp upstream of a putative trans-spliced

acceptor site, putative polycistronic units were identified. RT-

qPCR was performed to validate both trans-spliced and polycis-

tronic transcripts.

Quantification of RNA-seq and differential expression
RNA-seq reads were aligned to the reference genome using

SSAHA2 [26]. A minimum mapping score 10 was applied to filter

aligned reads. Reads per gene and RPKMs (reads per Kilobase

per million mapped reads [8]) were calculated using only coding

regions coordinates. We also estimated the background signal for

non-coding regions (RPKM,2). Total reads per gene were used to

identify differentially expressed genes (using only genes with

.background RPKM) in pair wise comparisons (adjusted p-

value,0.01 – adjusted for multiple testing [27]) using the edgeR

package [28] implemented in the Bioconductor R-package [29].

Gene Ontology (GO) term enrichment analysis was performed

with TopGO [30], also implemented in R [31].

Ethics statement
The procedures involving animals in the UK were carried out in

accordance with the UK Animals (Scientific Procedures) Act 1986,

and authorised on personal and project licences issued by the UK

Home Office. The study protocol was approved by the Biology

Department Ethical Review Committee at the University of York.

The procedures involving animals in the US were carried out in

strict accordance with the Animal Welfare Act (Public Law 91–

579) and the recommendations in the Guide for the Care and Use

of Laboratory Animals of the National Institutes of Health

(OLAW/NIH, 2002). The protocol was approved by the

University of Texas Health Science Center Institutional Animal

Care and Use Committee (IACUC, Protocol Number: 08039x).

Results

An improved chromosomal assembly
Using the existing Sanger-sequencing data from the published

draft genome [3], supplemented with an additional ,90,000

fosmid and BAC ends, we produced an improved version of the S.

mansoni genome de novo using the Arachne assembler [20]. With

only 885 scaffolds, the new assembly contains less than one-

twentieth of the original number of scaffolds (Table 1). Half of the

364.5 Mb genome is represented in scaffolds greater than 2 Mb

and 90% are over 0.5 Mb. Ordering and orientating scaffolds

based on 243 available linkage markers [17] and end-sequences

from FISH-mapped BACs [3] further improved the continuity of

the genome. The largest scaffold of 10 Mb contains 8 microsat-

ellite markers from Chromosome 6 and no ambiguities, i.e., the

order of the contigs in this scaffold is the same as the order of the

markers in the linkage group. Chromosome 1 represents the

largest placed chromosome of 79.6 Mb with 41.8 Mb of the

sequences ordered and concatenated as a single scaffold. There

were only 6 microsatellite ambiguities in the whole assembly and

these were corrected by targeted manual finishing.

We then used genomic DNA from a clonal adult male

population (see Methods, Text S1 and Figure 1A) to reduce the

number of gaps within scaffolds and generally improve the

assembly. Using the Genome Analyzer IIx platform, we generated

11 Gb of 108-base paired reads, approximately 60-fold genome

coverage. IMAGE [7] was then used to iteratively extend contigs

into gaps by performing local assemblies of the Illumina reads

(Figure 1B). After 33 iterations with a range of k-mer sizes,

IMAGE closed a total of 11,158 gaps (53.4% of all possible gaps).

The closed gaps had an average length of 315 bp with the largest

gap being 6.5 kb (Figure S1). The statistics of the improved new

Table 1. Characteristics of the old and improved Schistosoma
mansoni genome assemblies.

Old versiona New versionb

Assembly size (Mb) 374.9 364.5

Proportion assigned to chromosome (%) 55 81

Contig statistics

Number 50,292 9203

Average length (kb) 7.5 39.4

N50 length (kb) 16.3 78.3

Largest contig (kb) 139.4 460

Scaffold statistics

Number 19,022 885

Average length (kb) 20 411.9

N50 length (Mb) 0.8 32.1

Largest scaffold (Mb) 4.2 65.5c

Accuracy assessment using mapped readsd

Properly mapped read pairse (%) 91.5 91.8

Pairs mapped too far apartf (%) 0.23 0.18

Pairs mapped in wrong orientation (%) 0.28 0.27

Pairs mapped to different scaffolds (%) 0.17 0.11

Only one mate mapped (%) 2.44 2.47

Unmapped (%) 5.37 5.16

aVersion 4.0 of the S. mansoni genome was the published draft genome [3].
Note the sequence in version v4.0 was identical to the previously released v3.1.

bVersion 5.0.
cThis figure refers to a ‘‘super-scaffold’’ of chromosome I sequence where 41
assembly-scaffolds are linked using genetic markers.

d101,079,940 pairs of Illumina reads.
eReads mapped in their correct orientation and at a distance apart that
corresponds to that predicted by the fragment library size.

fReads that mapped in their correct orientation but at a distance apart that did
not match that predicted by the fragment library size.

doi:10.1371/journal.pntd.0001455.t001
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assembly are shown in Table 1. Compared with the previous draft

assembly, the number of contigs was reduced from 50,292 to 9,203

and the N50 was increased from 16 to 78 kb.

Because the linkage markers were associated with much larger

scaffolds, we were able to allocate an additional 84 Mb of

consensus sequence data into individual chromosomes, bringing

the total to 81% (Figure S2). The improvement is best illustrated in

chromosome 6, which consists of the largest and 5 smaller scaffolds

in the new assembly, but corresponds to 1,537 scaffolds from the

old assembly. Illumina reads from clonal worms, mapped to both

assemblies, were also used to assess assembly improvement.

Table 1 shows that the mapping statistics were broadly similar

in both assemblies. However, in terms of absolute numbers, more

reads mapped to the new assembly despite the total genome length

having been reduced by ,10 Mb. Further, an increased number

of read-pairs mapped in their correct orientation, within a distance

predicted by the sequencing library fragment size, indicating fewer

mis-assemblies.

Following assembly, the genome was further improved by

manual finishing. In particular, 305,465 Sanger reads (comprising

repetitive sequences that were previously excluded by assembly

software) were manually incorporated, three more scaffolds were

ordered into chromosome sequences, and 17 new contigs were

assembled to further extend the ends of chromosomes. For

example, by closing 33 gaps, one end of chromosome 6 has been

extended by 1.4 Mb and now includes its telomeric tract.

Sex chromosomes share significant sequence
The S. mansoni genome has one pair of sex chromosomes.

Females are the heterogametic sex with both Z and W

chromosomes and males are homogametic with a ZZ pair. We

found Z and W assembled together into 34 scaffolds, which could

be ordered and orientated based on 51 previously reported genetic

linkage markers [17] and comprised a total of 59 Mb. We used

differences in coverage of reads mapped from male and female

DNA, to identify both Z and W specific regions (Text S1).

Approximately 30% of the Z/W chromosome was Z-specific

(Figure S3) and contained 23 Z-specific genetic markers [17].

Amongst the unplaced sequences that lack genetic markers, were

an additional 69 Z-specific scaffolds (.100 kb) and a further 114

unplaced scaffolds (,1.1 Mb) that were W-specific. Repeats

comprise 90% of the latter, and include previously identified

female-specific repeat [32] as well as 0.1 Mb of previously

uncharacterised female-specific sequences. These scaffolds usually

have female reads mapped many fold higher than the average

coverage of the assembly, for example scaffold 1570 has 26 times

higher coverage than the average, suggesting that the heterochro-

matin portion of the W chromosome have been collapsed into

Figure 1. Improving the genome assembly of S. mansoni. (A) Generation of clonal adult worms for Illumina sequencing. A single B. glabrata
snail was infected with one miracidum only. The normal asexual reproduction stage of the sporocyst in the snail produces thousands of clonal
cercariae that were used to infect mice. Clonal adult worms were recovered 7 weeks post-infection and processed for DNA extraction. (B) Closing
gaps with IMAGE. Illumina data generated from the clonal adult worms were used to close gaps in the assembly using IMAGE [7] and, in conjunction
with previous sequencing data, linkage markers and BAC ends, allowed the genome to be assembled into chromosomes. (C) Organisation of the S.
mansoni genome into chromosomes. Top: The total length of the scaffolds that have evidence (either linkage markers or FISH-mapped BACs)
assigning them to the 7 autosomal and W/Z chromosomes. Bottom: A schematic diagram showing the example of supercontig_21 (3 Mb), which was
allocated to chromosome 6 using information from genetic mapping [17], and was able to link together 9 supercontigs from the old assembly into
the first 350 kb.
doi:10.1371/journal.pntd.0001455.g001
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these scaffolds. Based on the differences between the genome-wide

assembly coverage and the coverage of these scaffolds, we estimate

these heterochromatin portions of the W chromosome to comprise

,3.3 Mb collapsed into the 1 Mb of consensus. Interestingly, the

W-specific scaffolds appear to contain no coding genes whereas the

Z-specific portion of Z/W sequence contains 782 genes, ,95% of

which exist as single-copies within the assembly.

The mitochondrial genome
Amongst the unassembled reads there were 5,647 that

originated from mitochondrial DNA. An independent assembly

of these reads using CAP3 [33] generated a single contig of 21 kb

(to which 15 scaffolds from the previous genome assembly could be

aligned). The first 14 kb of the contig was 99.9% identical to the

published coding portion of the S. mansoni mitochondrial genome

[34]. Based on restriction fragment analysis, a long non-coding

region that is repetitive and highly variable between individuals

has previously been partially characterised [35]. In our data, the

additional 9 kb non-coding portion of the mitochondria genome is

now complete and comprises known 62 bp repeats [35], plus

additional 558 bp repeats and long tracts of low complexity

sequence.

Improvements to gene models using RNA-seq
We obtained total RNA from four time points of the life cycle of

S. mansoni: 1) free-living mammalian-infectious cercariae, mechan-

ically transformed schistosomula at 2) three hours and 3) twenty

hours post infection, and 4) seven-week old mixed-sex adults

recovered from hamster host. The 183 million 76-base RNA-seq

read pairs were mapped to the new reference genome using

SSAHA2 alignment tool [26]. An average 70% of the RNA-seq

reads generated in each sequenced library aligned as proper pairs

to the genome (Table 2), an improvement over the previous

version of the genome. Less than 6% of reads mapped to the

mitochondrial genome in each sample; the lowest (0.5%)

corresponding to the schistosomula stages.

The majority (91%) of the 11,799 gene models from the

previous version of the genome could unambiguously be

transferred onto the new assembly. Splitting gene models from

the previous assembly increased the gene count by 307; however,

the coalescence of genes previously located on multiple different

scaffolds caused some redundancy (an example is shown in

Figure 2), removal of which reduced the number of transferred

genes to 10,123. Of the 1,065 genes that could not be transferred

to the new assembly, at least 83% were presumed to represent

incorrect annotations due to a lack of sequence similarity and their

short lengths, 1- or 2-exon structures (Figure S4) or a lack of start

or stop codons.

RNA-seq data has been used to refine and improve gene model

predictions in various organisms [10,36,37]. In the first draft of the

S. mansoni genome, gene models were generated using a

combination of ab initio gene predictions and EST evidence [38],

with only a few hundred manually curated genes. To systemat-

ically upgrade the quality of annotations, we aligned pooled RNA-

seq reads using TopHat [23], which allows gaps in the read-to-

reference alignment at putative splice sites. Using the upgraded

genome sequence 30% more RNA-seq reads with putative splice

junctions aligned, highlighting putative new genes or structural

refinements that could be made to existing genes.

Cufflinks [12] was used to aid the refinement of gene structures

by creating transcript ‘‘fragments’’ with sharply defined exon

boundaries [23]. Using transcript fragments with at least 10 reads

coverage at each base we found 78% of previous gene models had

evidence of transcriptional activity within the sampled life cycle

stages. Of these models, 3,604 (45%) were modified to include new

exons derived from RNA-seq data, hence generating alternative

gene predictions (Table 3). Using the transcript data as a guide,

236 genes were merged and 26 split into two or more gene models.

To assess the accuracy of gene models, we calculated two

metrics: the proportion of intron-exon junctions found in previous

models that matched to the same intron-exon junction in a

transcript fragment, and the proportion of the coding sequence in

previous models that overlapped with the transcript fragments.

Figure 3A is a heatmap showing these two metrics; existing models

are clustered around top right of the plot, which indicates that

RNA-seq evidence-based transcript fragments are similar to the

existing models. Sixteen percent of gene models were perfectly

reproduced by the transcript fragments (Figure 3B), while 90% of

gene models with transcriptional evidence have at least 70% of the

coding region covered by the transcript fragments.

In the new dataset, only 53% of gene models have at least 70%

of their exon boundaries preserved. There are two main reasons

for this low specificity in predicting exon boundaries. First,

Cufflinks was unable to successfully predict the small introns

typically observed in the 59 end of many S. mansoni genes

(Figure 3C and [3]). Consistently, when the first four exons of the

old gene models were excluded, we found that transcript

fragments could perfectly predict 90% of exon boundaries.

Table 2. Summary of RNA-seq mapping.

Cerc 3 h Som 24 h Som Adult

Total read pairs sequenced (out of 183,590,080) 69,498,003 53,041,873 50,528,949 10,521,255

Properly mapped read pairsa (%) 70.7 68.6 69.8 72.3

Additional properly mapped read pairs in new assemblyb (%) 2.0 0.2 0.4 2.8

Pairs mapped to repeats (%) 23.8 14.0 16.2 19.7

Pairs mapped to different scaffolds (%) 0.2 2.1 3.0 0.3

One mate mapped or mapped in wrong orientation (%) 4.3 12.2 9.7 6.1

Unmapped (%) 1.0 3.2 1.4 1.6

Proportion of reads mapped to mitochondria 5.1 0.6 0.4 3.7

Number of RNA-seq reads mapped using SSAHA2 to the genome from libraries prepared from cercariae (Cerc); 3-hour post-infection schistosomula (3 h Som); 24-hour
post-infection schistosomula (24 h Som); and mixed male and female adult worms (Adult).
areads mapped within expected distance apart and in the correct orientation.
breads that were properly mapped to the new assembly but not in the previous.
doi:10.1371/journal.pntd.0001455.t002
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Second, sequencing errors in the previous assembly resulted in

introns being falsely incorporated into gene models during

prediction to compensate for apparent frameshifts. These ‘‘intron’’

sequences are no longer necessary to preserve the reading frame

and were identified as part of exons by Cufflinks in the new

assembly (Figure 3D). For the two reasons above, we used

JIGSAW [39] to combine existing models with those produced

from RNA-seq data, resulting in 1,264 exon coordinates being

changed.

We identified 1,370 transcripts corresponding to putative full

length coding sequences but which did not overlap with existing

gene models. To check whether they indeed represented novel

genes, we first screened them against known repeats and

transposable elements. The 36 previously published transposable

element sequences in S. mansoni matched 866 of the transcribed

fragments, the longest of which (5,061 bp) was 99% identical to

the coding portion of the LTR retrotransposon Saci-1 [40].

Of the remaining 504 complete transcript fragments we found

sequence similarity for 231 in the NCBI nr protein database,

mostly to other genes already annotated in S. mansoni (presumably

representing gene duplications or members of multi-gene families)

or S. japonicum. However, seven out of the remaining 273 full-

length transcript fragments did show at least one conserved

domain: a putative Tpx-1/SCP related allergen, a rhodopsin-like

GPCR domain, a DNA-protein interaction domain, a epidermal

growth factor-like (EGF-like) domain, and a polypeptide encoding

a fascicline-like domain (FAS1) domain), and two transcripts with

ArsR transcriptional regulator sequences. The new transcript

fragments were on average shorter (261 bp) and exhibited unusual

codon usage (Wilcoxon rank sum test, p,0.01, Figure S5)

compared with a typical schistosome gene. Although we cannot

rule out at this stage that the small set of atypical genes are non-

coding RNA species, they are included in the total number of

putative protein coding genes, which stands at 10,852.

Trans-splicing
Both cis and trans-splicing are used to produce mature

transcripts in S. mansoni. By filtering for RNA-seq reads containing

the spliced leader (SL) sequence [25], strongly supported trans-

Figure 2. Removal of assembly redundancies produces a more reliable set of gene models. Gene models were migrated from previous
version using RATT [22]. Repeats and sequencing errors in the old assembly resulted in ambiguities and sequences being represented more than
once. In the new version, many scaffolds coalesced into one region and hence the gene models contained in them overlap each other. In this
example, four supercontigs from the previous version collapsed on an unplaced region of Chromosome 3 in the new assembly. The smaller gene
models are now obsolete as they were clearly incomplete annotations and their coding region are part of the exons of the larger gene model.
doi:10.1371/journal.pntd.0001455.g002

Table 3. Fate of gene models.

Number

Total gene models in old genome versiona 11,719

Not transferred 1,088

Deleted models 545

Split or merged models 731

Models with additional exons 3,438

Models that have been automatically replaced 1,116

New genes 504

Genes in new versionb 10,852

The criteria for including genes into each category are described in the main
text.
aVersion 4.0.
bVersion 5.0.
doi:10.1371/journal.pntd.0001455.t003
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splicing events could be mapped on a genome-wide scale and

highlighted 1,178 (,11%) genes (an example is shown in

Figure 4A), a figure in close agreement with a previous prediction

[41]. For validation, we randomly chose ten putative trans-spliced

gene models and could verify the existence of their trans-spliced

transcripts by RT-PCR (Figure 4B, Table S1). In many cases,

mapping information suggests a second trans-splicing acceptor site,

usually within 20–50 bases from the primary acceptor site,

indicating that alternative splicing operates at the trans as well as

cis levels. Using Gene Ontology enrichment [30], we could find no

particular functions or processes enriched within the trans-spliced

genes, agreeing with the previous report [41].

Polycistronic transcripts originate from a single promoter but

are later processed to generate two or more individual mRNAs.

This type of transcriptional regulation is characteristic of

trypanosomatids [42] and is present in C. elegans [43] and other

organisms [44]. It has been suggested [45] that the S. mansoni

Ubiquinol-cytochrome-c-reductase (UbCRBP) and phosphopyru-

vate hydratase (Smp_024120 and Smp_024110 respectively) genes

might be transcribed as a polycistronic unit and that trans-splicing

of the phosphopyruvate hydratase might resolve the polycistron

into individual transcripts. In our study we provide strong evidence

that this is indeed the case. One of the characteristics of

polycistronic transcripts is a short intergenic distance (,200 bp)

between individual ‘‘monocistrons’’. We identified a total of 46

trans-splicing acceptor sites that fall between gene models that have

a maximum intergenic distance of 200 bp, and 115 cases

(Figure 4C, Table S2) where the intergenic regions expands up

to 2 kb (maximum reported for C. elegans). We validated four of

these polycistrons by RT-PCR (Figure 4D, Table S1) and Sanger

sequencing (data not shown). Unlike C. elegans, which uses a second

spliced leader (SL2) to resolve polycistrons [43], S. mansoni seems to

use the same SL for both polycistronic- and non-polycistronic-

trans-spliced transcripts. The role of polycistrons in schistosome

gene expression remains to be determined but no pattern could be

discerned between the ascribed functions of genes within each

polycistron.

Transcriptome analysis and differentially expressed
genes

In order to profile the transcriptional landscape of the parasite

establishing in the mammalian host, the RNA-seq data from four

key time points in the parasite’s life cycle were analysed

independently. Consistent with RNA-seq experiments elsewhere

[16], we found good reproducibility between biological replicates,

indicated by high correlation coefficients (average Pearson

correlation of log RPKM values, across five pairs of biological

replicates, was 0.95; Figure S6).

A total of 9,535 (88%) genes were expressed (above an

empirically determined background RPKM cut-off of 2 – Text

S1 and Figure S7) in at least one surveyed time point and the

remaining 12% were regarded as genes with expression too low to

be detected or expressed during life stages not surveyed in this

study (e.g. intra-molluscan stages) and therefore were excluded

from further analysis. Of the excluded genes, 65% are annotated

as hypothetical proteins (higher than the genome-wide figure of

44%).

To gain better insight into the resolution of the RNA-seq

approach in S. mansoni, we compared our results with a few

Figure 3. Improvement of gene annotation using RNA-seq. (A) Heatmap displaying comparisons between previous gene models and
transcript fragments generated from Cufflinks. For each model, the extent of coding region that overlaps with a Cufflinks’ model and the proportion
of correctly predicted exon boundaries was calculated and categorised into bins of 70–100%. Models in this plot were excluded with less than 70% of
their exon boundaries or coding regions predicted. (B), (C) and (D) Example scenarios of Cufflinks’ models compared with previous gene models
where (B) the Cufflinks prediction is identical to the 1,239 existing models; (C) Cufflinks fails to identify small introns; (D) Cufflinks removes incorrect
introns present in the previous gene model, probably due to the improved assembly which, by correcting gaps, produced a longer single exon while
the reading frame is preserved.
doi:10.1371/journal.pntd.0001455.g003
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Figure 4. RNA-seq reveals trans-spliced transcripts. (A) Schematic view of the 59 end of trans-spliced gene Smp_176420. Shaded coverage
plots represent non-normalized RNA-seq reads still containing the spliced-leader (SL) sequence (green – unclipped reads) and reads previously found
to contain the SL sequence (orange - clipped). In the latter, the SL sequence was removed prior to aligning the reads to the genome; which improved
the reads mapability (lower in the unclipped reads than in the orange reads). (B) RT-PCR validation of 10 putative trans-spliced genes with SL1 as
forward primer and a gene-specific reverse primer. Smp_024110.1, previously described as trans-spliced [41], was included as a positive control
(indicated with ‘+’) while Smp_045200.1 was included as a negative control (‘2’). All PCRs but one (Smp_176590.1) show bands corresponding to
expected PCR product size. (C) Schematic view of the putative polycistron Smp_079750-Smp_079760. PCR1 represents the amplicon obtained from
the unprocessed polycistronic transcript containing the intergenic region while PCR2 the trans-spliced form of Smp_079760. (D) RT-PCR validation of
5 putative polycistrons and a positive control (Smp_024110-Smp_024120; lane 9) previously reported in [45]. Each putative polycistron was subjected
to two PCRs that correspond to PCR1 (e.g lane 1) and PCR2 (e.g lane 2) in panel C.
doi:10.1371/journal.pntd.0001455.g004
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example genes that have been described to undergo pronounce

changes in their expression along the parasite’s life cycle: an 8 kDa

calcium binding protein, associated with tegument remodelling

during cercariae transformation into schistosomula [46,47]; a heat

shock protein 70 (HSP70), active in schistosomula after penetra-

tion through mammalian host skin [48–50]; and the tegument

antigen Sm22.6 [51], associated with resistance to re-infection in

adult patients of endemic areas [52]. Our RNA-seq results broadly

agree (Figure 5) with relative gene expression measurements

obtained through other approaches. We also investigated how well

the RNA-seq data correlate with previous microarray studies

[53,54]. Comparing normalised intensity values of the array

features against the RNA-seq read depth for each microarray

probe location in the genome (Figure S8) suggests that these data

broadly correlate (Pearson’s correlation of the log values 0.67).

A total of 2,194 genes had detectable expression in at least one

stage but not another and were therefore differentially expressed.

We also used a pair-wise approach to analyse genes differentially

expressed between the following life cycle stages: cercariae vs. 3-

hour schistosomula, 3-hour schistosomula vs 24-hour schistosom-

ula, and 24-hour schistosomula vs. adult. A total of 3,396 non-

redundant transcripts (excluding alternative spliced forms) were

differentially expressed (adjusted p-value,0.01) within the three

pair wise comparisons (Table 4 and Table S3). An example

showing differential expression between cercariae and 3-hour post-

infection schistosomula is presented in Figure 6. To obtain a broad

overview of the biological changes occurring at the gene

expression level, we used Gene Ontology term enrichment to

identify annotated functions and processes that were overrepre-

sented in genes that were statistically (adjusted p-value,0.01) up-

or down- regulated. Aerobic energy metabolism pathways were

down regulated in schistosomules compared to cercariae and

antioxidant enzymes were overrepresented in transcripts from

adults. Three-hour post-infection schistosomula showed enrich-

ment of transcripts involved in transcriptional regulation, G-

protein coupled receptor (GPCR) and Wnt signalling pathways,

cell adhesion and a considerable number of genes involved in

potassium/sodium transport (Table S4). Most of the categories

enriched at 3 hours post transformation persist through to

24 hours (e.g. GPCR signalling pathways). A total of 165 proteins

are found to be associated with GPCR signalling pathways

(annotated via GO). Of these, 30 and 18 were up regulated in 3

and 24 hours post-infection schistosomula, respectively, compared

with cercariae.

In order to investigate major processes occurring individually in

each life cycle stage, we studied genes with expression above the 95

percentile in cercariae, 24-hour schistosomula and adults

(Figure 7). Across the life cycle stages studied, some core cellular

processes are consistently highly expressed, including glycolytic

enzymes and protein translation but other broad changes are also

apparent. Free-living cercariae utilise internal glycogen stores;

accordingly genes involved in glycolysis and the tricarboxylic acid

cycle (TCA) are highly expressed. After penetrating the skin and

transforming into obligate endoparasites, the schistosomula switch

to anaerobic metabolism [55,56] before aerobic metabolism partly

resumes in the adult. These events are also reflected in the

transcriptome. At the schistosomulum stage there is a switch to

high expression of L-lactate dehydrogenase, while TCA cycle

transcription markedly decreases. As noted above, the cercariae

and adult samples have relatively high contributions from the

Figure 5. Comparison of expression of genes previously identified to be developmentally regulated. Barplots represent relative
normalized reads (from RNA-seq data) for 3 transcripts, asterisks represent comparisons where differential expression is significant (adjusted p-
value,0.01). Relative expression reported in the literature [46,49,51] is shown at the bottom (+++, high expression, ++ medium expression, + some
expression, 2 not expressed, NA no information available). C = cercariae, 3S = 3-hour schistosomula, 24S = 24-hour schistosomula, A = adult.
doi:10.1371/journal.pntd.0001455.g005
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mitochondrial transcriptome (Figure S9) reflecting the high

energy-demands of these two stages.

Other genes highly expressed in the schistosomula are involved in

protein re-folding and chaperone function: 5 heat shock proteins

(Smp_008545, Smp_035200, Smp_062420, Smp_072330, HSP70/

Smp_106930) are among the top 50 most expressed genes at this

stage and may reflect a response to the rapid temperature rise

between fresh-water (,28uC), in which the cercariae are found, and

the warmer mammalian host (,37uC). Within the host, schistosomes

are exposed to potentially damaging reactive oxygen species

produced during metabolism. Consistent with previous work [57]

we found that antioxidant enzymes - particularly the peroxiredoxins

(Prx1, Smp_059480 and Prx2, Smp_158110) - are highly expressed

in adults, 24 hours after transformation and for Prx1, as early as

3 hours after transformation.

Our results highlight the advantages of RNA-seq transcriptome

profiling, especially its ability to dramatically improve the gene

annotation alongside accurately recording changes in gene expression.

Discussion

In 2009 a draft genome of S. mansoni was published and

provided a major resource for gene discovery and data mining.

Our motivation for this study was to take S. mansoni’s genome to

the next level, to systematically upgrade its draft sequence so that

gene structures can be more accurately predicted and the genomic

context of genes can be better explored. Although systematic

manual finishing has occurred for some parasite genomes, it is not

an economically viable option for most non-model organisms. The

genome of S. mansoni is approximately 10 times larger that the

genomes of protozoan parasites and is set in the context of a field

that attracts less funding. Although additional ‘‘traditional’’

targeted, long-range capillary sequence was introduced, more

than 40,000 gaps were closed simply by re-sequencing at deep

coverage, from a low-polymorphic population of adult worms.

Further substantial changes were made from re-evaluating existing

genetic marker information. As a result, the genome is measurably

Figure 6. Detection of differentially expressed genes. The plot (left) shows the log fold change (y-axis) vs. log relative concentration (x-axis) for
the cercariae – 3-hour schistosomula comparison. A total of 1,518 genes are differentially expressed between these two life cycles stages (adjusted p-
value,0.01). On the right, example coverage plots for differentially and non-differentially expressed genes. Of particular interest, genes up regulated
in the 3-hour schistosomula stage are enriched in G-protein coupled receptors and integrins, suggesting that signalling is a key process in this life-
cycle transition.
doi:10.1371/journal.pntd.0001455.g006

Table 4. Number of differentially expressed genes.

Stage comparison Up regulated Down regulated Total

Cercariae - 3 hour schistosomula 1,002 516 1,518

3 hour schistosomula - 24 hour schistosomula 433 595 1,028

24 hour schistosomula - adult 1,141 935 2,076

Figures refer to those genes with significant differential expression (adjusted p-value,0.01). NB the v5.0 assembly contains 10,852 genes.
doi:10.1371/journal.pntd.0001455.t004
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more accurate and its continuity has been transformed; 81% of the

data is now assembled into chromosomes.

We have also upgraded the annotation using deep coverage

RNA-seq. Compared with the 2009 draft genome, the net change

in the gene content is that there are now ,900 fewer genes.

However, 500 genes are new and more than 1600 low confidence

or erroneous predictions have been removed. Across the genome,

more than one third of genes now have new sequences. The value

of the genome resource will therefore be tangibly improved: data

mining approaches to identify genes will be more sensitive and

trawling through kilobases of sequence for missing exons will be

come less common.

Our results also highlight the major benefit of using RNA-seq

for transcriptome profiling - its ability to dramatically improve the

gene annotation, whilst accurately recording changes in gene

expression. We see major expected changes, for example, the well

described metabolic switch on host penetration, plus some

previously overlooked ones, such as a battery of receptors up

regulated at the onset of infection in the mammalian host. Our

data also define with high resolution some of the important

building blocks of the schistosome transcriptome – long transcripts,

cis and trans-splicing, and for the first time, clear evidence of the

trans-splicing being used to resolve polycistrons. By increasing the

quality of the genome, we have increased the utility of our RNA-

seq data and taken it well beyond the levels attainable by previous

microarray approaches. Although only a broad view of gene

expression changes are presented herein, the resolution of our

analyses reflects the functional annotation that has been previously

ascribed. The true value of these data will arise from their use

within the context of genome databases such as GeneDB and

SchistoDB to query the behaviour of specific genes or groups of

genes.

The quality of a genome directly influences the uses to which it

can be put and with many more, low-cost, draft-genome

sequencing projects underway, the requirement for higher quality

reference material, is increasing. Chain et al. 2009 recently defined

several levels or standards for genome assemblies [58]. In the

present study, we have taken an existing draft genome and

demonstrated that in relatively modest period of time it can be

upgraded to annotation-directed grade using second generation

sequencing technology without the need for extensive manual

finishing. The much improved genome assembly and gene

structures, along with the expression data, are available at

GeneDB and SchistoDB and will be an excellent resource not

only for the helminth research community but also for in depth

comparative genomics studies across metazoa.

Supporting Information

Figure S1 The frequency and length of newly inserted
sequences at gaps.

(PDF)

Figure S2 The S. mansoni v5.0 genome assembly
superimposed over a genetic linkage map [17]. The

numbers on the left of chromosomes are map distances in

centimorgans, and the identifiers on the right of each chromosome

denote contigs and scaffolds of assembly v5.0 (e.g. 6569_28 is

contig 6569, which is assembled into scaffold 28). Lines connecting

chromosomes indicate where an assembly scaffold contains contigs

from two different chromosomes. There are multiple possible

reasons for such occurrences, including repetitive sequences,

assembly errors. All assembly ambiguities of this kind have been

manually inspected and cannot be resolved using the current data.

(PDF)

Figure 7. Genes with expression above the 95 percentile different in cercariae and intra-mammalian stages. Venn diagram represents
the distribution of genes above 95 percentile of expression in 3 different life cycle stages of the parasite. Examples of the genes/processes found
within these groups are discussed in the main text.
doi:10.1371/journal.pntd.0001455.g007
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Figure S3 Analysis of male and female specific sequenc-
es. Sequence data from both Z and W chromosomes assembled

together but was resolved by aligning male (blue) and female (red)

genome sequence reads. The arrowheads indicate Z-specific

genetic linkage markers.

(PDF)

Figure S4 Plot showing (A) transcript length and (B)
number of exons for the three different categories of
gene models transfered using the Rapid Annnotation
Transfer Tool (RATT). Outliers were not drawn in the

boxplot.

(PDF)

Figure S5 Codon usage of the (manually) curated genes
and the 466 novel genes.

(PDF)

Figure S6 Correlation between replicate experiments.
Biological replicates are evaluated by calculating the Pearson’s

correlation for each pair of samples.

(PDF)

Figure S7 Cumulative distribution of RNA-seq coverage
(expressed as RPKM values, see Methods) for exons,
introns, intergenic sequences and untranslated regions.
(PDF)

Figure S8 Correlation of RNA-seq data and microarray
data. The scatter plots show the coverage (Log2-transformed) of

reads per probe location compared with normalized microarray

intensities (Log2-transformed) from (A) Fitzpatrick et al. 2009 [54]

and (B) Parker-Manuel et al. 2011 [53]. The graphs was generated

using the smoothScatter function from the R software package

[31].

(PDF)

Figure S9 Relative gene expression levels for mitochon-
drial genes. C = cercariae; 3S = 3 hour schistosomula;

24S = 24 hour schistosomula; A = adult.

(PDF)

Table S1 Primers used for validation of trans-spliced
(top) and polycistronic (bottom) transcripts.
(XLS)

Table S2 Putative polycistrons with a maximum inter-
genic distance of 200 bp and 2000 bp.
(XLS)

Table S3 Differentially expressed genes in the cercariae
vs. 3 hr schistosomula comparison, 3 hr vs. 24 hr
schistosomula comparison and 24 hr schistosomula vs.
adult comparison. Only significantly differentially expressed

transcripts (adjusted p.value,0.01 – BH correction) are listed.

(XLS)

Table S4 Gene Ontology (Biological Processes) enrich-
ment for differentially expressed genes in the cercariae
vs. 3 hr schistosomula comparison, 3 hr vs. 24 hr
schistosomula comparison and 24 hr schistosomula vs.
adult comparison. The top 20 hits are shown.

(XLS)

Text S1 Supplementary Materials and Methods.
(DOC)
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