Resolution of Praziquantel

Michael Woelfle1, Jean-Paul Seerden2, Jesse de Gooijer2, Kees Pouwer2, Piero Olliaro3, Matthew H. Todd1*

1 School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia, 2 Syncom B.V., Groningen, The Netherlands, 3 UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland

Abstract

Background: Praziquantel remains the drug of choice for the worldwide treatment and control of schistosomiasis. The drug is synthesized and administered as a racemate. Use of the pure active enantiomer would be desirable since the inactive enantiomer is associated with side effects and is responsible for the extremely bitter taste of the pill.

Methodology/Principal Findings: We have identified two resolution approaches toward the production of praziquantel as a single enantiomer. One approach starts with commercially available praziquantel and involves a hydrolysis to an intermediate amine, which is resolved with a derivative of tartaric acid. This method was discovered through an open collaboration on the internet. The second method, identified by a contract research organisation, employs a different intermediate that may be resolved with tartaric acid itself.

Conclusions/Significance: Both resolution procedures identified show promise for the large-scale, economically viable production of praziquantel as a single enantiomer for a low price. Additionally, they may be employed by laboratories for the production of smaller amounts of enantiopure drug for research purposes that should be useful in, for example, elucidation of the drug’s mechanism of action.

Introduction

Schistosomiasis (bilharziosis) is termed a “neglected” tropical disease owing to the continuing low level of investment in treatments, prevention and research, yet the disease accounts for an extraordinarily high level of suffering around the world.[1,2] Schistosomiasis has been called a "silent pandemic".[3]

Over the past decades several compounds have been used for the treatment of schistosomiasis,[4–6] but today there is only one drug of choice, a highly effective small molecule called praziquantel (PZQ).[7,8] PZQ is produced on a very large scale (300 metric tons worth of API per year) and is used primarily in veterinary medicine. In human medicine, PZQ is synthesized and administered as a racemate. The L-(–)-enantiomer is associated with side effects and is also primarily responsible for the extremely bitter taste of the pill. Therefore investigations into the viability of a process-scale route to the production of smaller amounts of enantiopure drug for research purposes that should be useful in, for example, elucidation of the drug’s mechanism of action.

PZQ is synthesized and administered as a racemate. The L-(–)-enantiomer is the eutomer[21–24] and has the (R) configuration.[7,23] Administration of the pure eutomer resulted in fewer side effects than the racemate.[22] The inactive (+)-enantiomer is associated with side effects and is also primarily responsible for the extremely bitter taste of the pill.[25] Factors such as taste and large pill size contribute to there being a compliance problem with PZQ in the affected communities.[26–27] The typical dose per pill (40 mg kg⁻¹, pill contains 600 mg active pharmaceutical ingredient (API)) is large. The pill is difficult to swallow for children (who are the main target of mass chemotherapy campaigns) often requiring tablets to be split and crushed, which brings out the bitter taste even further. Decreasing the pill size, reducing side effects and removing the bitter taste, while having the right amount of the active ingredient, could be accomplished were the drug to be made available as a single enantiomer. For these reasons investigations into the viability of a process-scale route to enantiopure PZQ were included in the WHO/TDR business plan for 2008–2013.[28] Availability of the separate enantiomers would be a valuable tool for the elucidation of the mechanism of action of
Author Summary

The drug praziquantel (PZQ) is used very widely in both animal and human medicine, where it is the mainstay of the treatment of the neglected tropical disease schistosomiasis. The drug is currently manufactured and administered as a racemate (1:1 mixture of enantiomers) but for various reasons the large-scale production of PZQ as the single active enantiomer is very desirable. We describe here the preparation of praziquantel as a single enantiomer using classical resolution. The protocols are experimentally simple and inexpensive. One method was found and validated by an unusual research mechanism—open science—where the details of the collaboration (involving both academic and industrial partners) and all research data were available on the web as they were acquired, and anyone could participate. The other route was found in parallel by a contract research organisation. Besides being possible routes by which praziquantel may be produced in large quantities for the affected communities, it is also hoped that these methods can be used for the production of smaller quantities of enantiopure PZQ for pharmacological studies.

The drug, still unknown after more than 30 years of use, has recently been shown to be efficacious for the treatment of the neglected tropical disease schistosomiasis. The drug is currently manufactured and administered as a racemate (1:1 mixture of enantiomers) but for various reasons the large-scale production of PZQ as the single active enantiomer is very desirable. We describe here the preparation of praziquantel as a single enantiomer using classical resolution. The protocols are experimentally simple and inexpensive. One method was found and validated by an unusual research mechanism—open science—where the details of the collaboration (involving both academic and industrial partners) and all research data were available on the web as they were acquired, and anyone could participate. The other route was found in parallel by a contract research organisation. Besides being possible routes by which praziquantel may be produced in large quantities for the affected communities, it is also hoped that these methods can be used for the production of smaller quantities of enantiopure PZQ for pharmacological studies.

The drug praziquantel (PZQ) is used very widely in both animal and human medicine, where it is the mainstay of the treatment of the neglected tropical disease schistosomiasis. The drug is currently manufactured and administered as a racemate (1:1 mixture of enantiomers) but for various reasons the large-scale production of PZQ as the single active enantiomer is very desirable. We describe here the preparation of praziquantel as a single enantiomer using classical resolution. The protocols are experimentally simple and inexpensive. One method was found and validated by an unusual research mechanism—open science—where the details of the collaboration (involving both academic and industrial partners) and all research data were available on the web as they were acquired, and anyone could participate. The other route was found in parallel by a contract research organisation. Besides being possible routes by which praziquantel may be produced in large quantities for the affected communities, it is also hoped that these methods can be used for the production of smaller quantities of enantiopure PZQ for pharmacological studies.

Methods

\((\text{rac})\)-PZQ was a gift from WHO/TDR; the sample was originally synthesized by Merck. Analytical samples of \((R)\)-and \((S)\)-PZQ were a gift from Intervet Innovation GmbH and were prepared according to the literature method.[25]

Hydrolysis of PZQ

HPLC Analysis of \((\text{rac})\)-PZQ. Enantiomeric composition of praziquantel can be assayed by a number of enantioselective HPLC columns. For example: Chiralcel OD-H column, hexane/isopropanol/triethylamine solvent system (60:40:0.1), flow rate 0.7 mL per minute. Retention times: 11.6 \((R)\)-PZQ and 13.7 \((S)\)-PZQ minutes.[35] (Figure S1)

HPLC Analysis of \((\text{rac})\)-PZQamine. Enantiomeric composition of HPLC columns suitable for baseline separation of the enantiomers of praziquanamine include Chiralcel OJ-H, Chiralpak IA and AS-H,[36] (Text S1) eluent solvent system: heptane/EtOH/ Et3NH (60:40:0.2) at 0.5–0.7 mL/min flow rate. Columns found to be unsuitable include Chiralcel OD,[17] OD-H, Chiralpak IB[36] and AD-H.[37] (Figure S2).

Hydrolysis of \((\text{rac})\)-PZQ to \((\text{rac})\)-PZQamine. [38] \((\text{rac})\)-PZQ (20.0 g, 64.0 mmol) was dissolved in a mixture of EtOH (150 mL) and 1 N NaOH and heated at reflux for 26 h. The solution was cooled to rt and washed with ethyl acetate (3×10 mL). The ice-cooled solution was adjusted to pH 12 with 5 N NaOH and extracted with DCM (4×30 mL). The combined organic layers were washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The residual yellow solid (12.4 g, 61.3 mmol, 96%) was recrystallized from toluene and a further batch of analytically identical crystals was obtained from the mother liquor after concentration and recrystallization. PZQamine was thus obtained as a pale yellow solid (11.9 g, 58.8 mmol, 92% yield).

Resolution of Praziquantel

Hydrolysis of \((\text{S})\)-PZQ. [40] To \((\text{S})\)-PZQ (300 mg, 960 pmol) in EtOH (3 mL) was added 1 N HCl (12 mL) and the mixture was heated at reflux for 18 h. The yellow solution was cooled to rt and

Figure 1. General approaches to the preparation of enantiopure praziquantel (PZQ).

doi:10.1371/journal.pntd.0001260.g001
adjusted to pH 12 by addition of aq. 5 N NaOH. The solution was extracted with DCM (3×3 mL), the combined organic layers were washed with brine, dried over NaSO₄ and concentrated under reduced pressure. The remaining yellow solid was purified by flash column chromatography (silica gel, ethyl acetate:methanol:triethylamine, 4:1:0.01) to give (S)-(-)-PZQamine as a pale yellow solid (10.2 g, 85% from this procedure, 37% essentially complete after 2 h. This procedure gave the salt as (S)-PZQamine and (S)-PZQamine as [\text{[D]}]₂⁰ = 296° (c = 1, DCM) [lit.][22] [\text{[D]}]₂⁰ = 0° (R-(-)-PZQamine). (Alternatively, the salt could be dissolved in 12% aq. solution of potassium carbonate (150 mL). When the salt was completely dissolved, the solution was extracted with dichloromethane (4×15 mL). The combined organic layers were washed with brine, dried over sodium sulfate and concentrated under reduced pressure to give R-(-)-PZQamine as a colourless solid (3.32 g, 33% overall). m.p. 99–102°C [lit.][44] 95–98°C for (−)-dibenzyol-L-tartaric acid d2 isopol as colourless spicular crystals (58.9 g, 68%).

m.p. 99–102°C [lit.][44] 95–98°C for (−)-dibenzyol-L-tartaric acid d2 isopol as colourless spicular crystals (58.9 g, 68%).

m.p. 99–102°C [lit.][44] 95–98°C for (−)-dibenzyol-L-tartaric acid d2 isopol as colourless spicular crystals (58.9 g, 68%).

m.p. 186–188.5°C [lit.[47] 186°C. ¹H NMR (DMSO-d₆, 200 MHz): δ = 3.50 (bs, 2H), 3.86 (s, 6H), 5.80 (s, 2H), 7.13 (d, 2H), 7.97 (d, 2H, 8 Hz), 9.97 (d, 2H, 8 Hz), 13.80 (bs, 2H). (Figure S7) ¹³C NMR (DMSO-d₆, 50.3 MHz): δ = 55.7 (2C), 71.2 (2C), 114.4 (4C), 120.7 (2C), 131.6 (4C), 163.8 (2C), 164.3 (2C), 167.4 (2C). (Figure S8). IR (neat): ν = 2943 cm⁻¹, 1720, 1662, 1601, 1243, 1170, 1012, 847, 762, 691. MS (ESI (+)) m/z (%): 875 (35), 859 (85) [2M+Na⁺], 441 (53) [M+Na⁺], 345 (85), 329 (100). HRMS (ESI (+)) Calcd. for [C₁₈H₁₃O₈Na⁺]: 441.0792; found: 441.0790. [\text{[D]}]₂⁰ = +167° (c = 1, MeOH), [lit.[47] [\text{[D]}]₂⁰ = +167° (c = 1, MeOH), [lit.[47]
pressure until isopropanol was evaporated. The remaining suspension was dissolved by adding 2 N sodium hydroxide or 12% aq. solution of potassium carbonate until a pH 10–11 was reached. The solution was extracted with dichloromethane (4×15 mL). The combined organic layers were washed with brine, dried over sodium sulfate and concentrated under reduced pressure to give enantiomeriched S-(+)-PZQamine as a yellow solid (3.34 g, 53%), m.p. 102–104°C. \([\delta]_D^{20} = +170^\circ \quad (c = 1, \text{DCM}, 56\% \text{ ee})\) (determined by polarimetry).

Recycling of the Resolving Agent.

The combined basic aq. portions from both amine liberation processes were adjusted to pH 2–3 by addition of 2 N HCl immediately after the extraction of PZQamine. (Allowing the aqueous portions to stand at alkaline pH tends to result in hydrolysis of the resolving agent.) The resulting colourless precipitate was filtered, washed with cold water and dried under vacuum to give (−)-dibenzoyl-L-tartaric acid as a colourless solid (21.1 g, 89%). For further purification the solid was recrystallized from acetone/hexane (1:2).[48]

Synthesis of R-(−)-PZQ from R-(−)-PZQamine [49]

To an ice-cooled solution of R-(−)-PZQamine (3.27 g, 16.2 mmol) and triethylamine (2.43 g, 3.38 mL, 24.3 mmol, 1.5 eq.) in dichloromethane (80 mL) was added dropwise cyclohexanoyl chloride (2.62 g, 2.39 mL, 17.8 mmol, 1.1 eq.) at 0°C and stirring was continued for 14 h at rt. The solution was quenched with water (10 mL) and stirred for a further 30 min. The layers were separated and the organic layer was washed with saturated sodium carbonate solution, 0.5 N HCl solution and brine, dried over magnesium sulfate and concentrated under reduced pressure. The remaining yellow oil became solid after drying under high vacuum and storing at 5°C. The pale yellow solid was recrystallized from acetone/hexane (35 mL, 1:1 mixture) and two further batches of analytically identical crystals were obtained from the mother liquor after concentration and recrystallization. R-(−)-PZQ was thus obtained as colourless crystals (4.56 g, 90%, 97% ee). \((\text{Figure S11})\) m.p. 113.5–114.5°C. \([\delta]_D^{20} = -136^\circ \quad (c = 1, \text{EtOH})\).

Resolution Procedure via Benzoyl Intermediate 3

An outline description of this procedure can be found online.[50]

Results and Discussion

A coordination website was created on which was posted the problem of the preparation of praziquantel as a single enantio-mer.[51] While suggestions were received, input was initially low. In mid-2008 the project was funded by a government/NGO consortium. The resulting raw experimental data were posted in full to an open, online electronic lab notebook (based on the open source electronic lab notebook system, Labtrove, developed by the University of Southampton, UK).[52] Periodic updates were posted on the coordination website, and the project was popularised to increase traffic (For a description of how the open science project was conducted, see the accompanying paper [53]).

Two approaches were begun in the laboratory that have so far proved intractable. The first, a community suggestion, relied on oxidation of PZQ to an enamine, which was to be subsequently hydrogenated asymmetrically[54] \(\text{[a similar approach was described in a patent, employing Raney Nickel modified with tartaric acid, giving products with low optical purities – see reference [34]; this is a strong approach owing to the highly effective use of asymmetric hydrogenation in process chemistry.]}\) Through an online collaborative process, catalysts are being screened for this reduction[56] but the reaction is difficult owing to the lack of a well-placed coordinating group able to direct the metal catalyst to the double bond. The second approach was based on an asymmetric Pictet-Spengler reaction.[57] Catalysts for similar reactions are known,[58] and the relevant starting material (a peptide acetal) is an intermediate in two known syntheses of PZQ.[39,59] Unfortunately this substrate contains an unreactive aromatic ring (i.e. lacking electron donating groups), and at the time of writing no known asymmetric catalytic has been converted to PZQ.

The third possibility was resolution. Such an approach is widely used in the process-scale production of enantioenriched intermediates because the relevant chiral resolving agents are frequently inexpensive and/or can be recycled. Inputs to the collaborative website and elsewhere suggested this approach was more likely to lead to an economically viable solution to the problem.[60] In response, this approach was prioritized.

To effect a resolution, PZQ should be hydrolysed to praziquanamine (PZQamine, Figure 2A). The process must employ only crystallizations (rather than chromatography) to be practicable. The use of procedures that avoid the synthesis of complex catalysts, chromatographic purifications and NMR-based assessments of purity would also assist laboratories in underdeveloped countries to access enantiopure PZQ locally on smaller scales.

In the corresponding author’s laboratory, PZQamine could be generated with ease, but the enantiomers could not be baseline separated by enantioselective HPLC due to a limited range of chiral stationary phases being available. This precluded a convenient local assay for resolution trials. In addition several attempts to resolve PZQamine with a range of chiral acids had met with mixed success.[61–62] To find a suitable chromatographic assay, an appeal for assistance was posted in several online discussion boards. In particular, the Process Chemists Group on LinkedIn furnished multiple offers of help. One company, Syncom B.V., a contract research organization in the Netherlands, additionally offered to perform a free screen of chiral acids for the resolution of PZQamine in order to discover a lead structure for the project. One gram of racemic PZQamine was shipped to Syncom. An effective chiral stationary phase was found,[36] followed by a chiral resolving agent \((\pm)-dL-p-anisoyl-L-tartaric acid\) that permitted the isolation of the desired \((R)-enantiomer of PZQamine from the mother liquor in ca. 66% ee, which could be increased to 95% ee after one recrystallization.[63]

With this lead in hand, optimization of the process was carried out. The resolving agent in question is commercially available (reasonably expensive on a small scale) but could be synthesised from tartaric acid. However, purification away from the \(p\)-methoxybenzoic acid byproduct formed during its synthesis was non-trivial. It was also thought that isolation of the desired enantiomer of PZQamine from the resolved solid, rather than the mother liquor, would be more desirable; hence \((\pm)-dL-p-anisoyl-D-tartaric acid\) was prepared[46] and used for the resolution of praziquanamine to give the desired \((R)-(-)-praziquanamine in the first-precipitated salt.[64] Such an approach is sub-optimal since this resolving agent must be obtained from unnatural enantiomer of tartaric acid. It was found that the simple expedient of using \((\pm)-dibenzoyl-L-tartaric acid solved both these problems, allowing the isolation of \((R)-PZQamine in 44% yield and 80% ee without recrystallization and 33% yield and 97% ee after one recrystallization (the maximum yield for a resolution is 50%). Although we did not expect \((\pm)-dibenzoyl-L-tartaric acid and \((\pm)-dL-p-anisoyl-L-tartaric acid to give opposite enantiomers of praziquanamine in the first-precipitated salts based on our experience with Dutch resolution and the “family” behaviour of
resolving agents, this is not an isolated example and non-familiar
behaviour has been observed in other resolutions.[63–66] No
Horeau effect[67] is observed for either PZQ[41] or PZQamine[42]
in common solvents and concentrations at room temperature,
meaning that for analytically pure samples of either, optical activity
can be used as an assessment of optical purity in laboratories without
access to enantioselective HPLC.

(R)-PZQamine can be converted to (R)-PZQ with commercially-
available cyclohexanoyl chloride in 90% yield,[49] thus complet-
ing the formal resolution of PZQ. The resolving agent can be
recycled in 89% yield. Conditions to effect the racemization of the
undesired (+)-PZQamine are now being sought.[68]

At the same time as this procedure was being discovered by an
open approach, another contract research organisation was asked
(by WHO/TDR) to look into solutions to the same problem without
communication to the open project. This led to the discovery of a
complementary resolution (Figure 2B). From an investigation of
compounds available in bulk, a resolution of a commercially-
available intermediate (3) was assayed. Tartaric acid could effect
this resolution to provide the enantioenriched intermediate in 37% yield
and 94% ee. PZQ could be synthesized from enantioenriched
3 by cyclization with chloroacetyl chloride and removal of the benzoyl
group, generating (R)-PZQamine, which can be taken on to provide
enantiopure (R)-PZQ as before. A summary of this method was
posted to the coordination website when complete.[50]

Full experimental details for the open process may be found in
this paper. Readers are encouraged to review, evaluate and
contribute to refining the resolutions online by addressing current
weaknesses (e.g., the need for a chlorinated solvent extraction
process in the initial PZQ hydrolysis). Both processes show sufficient
promise in terms of cost on a lab scale (simple methodology,
inexpensive resolving agents, good yields and efficiencies) that costs
approaching those needed should be attainable upon scale-up; the
processes are therefore being examined by WHO/TDR on a
kilogram scale for economic viability. The routes found are quite
similar. An advantage of the approach discovered by the CRO is its
use of tartaric acid itself, as opposed to a derivative, but the
derivatization employed in the open approach is straightforward.

Supporting Information

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>HPLC trace for (rac)-PZQ, (JPG)</td>
</tr>
<tr>
<td>S2</td>
<td>HPLC trace for (rac)-PZQamine, (JPG)</td>
</tr>
<tr>
<td>S3</td>
<td>1H NMR spectrum for (rac)-PZQamine, (PDF)</td>
</tr>
<tr>
<td>S4</td>
<td>13C NMR spectrum for (rac)-PZQamine, (PDF)</td>
</tr>
<tr>
<td>S5</td>
<td>Plot of optical purity vs. optical rotation for PZQ, (TIF)</td>
</tr>
<tr>
<td>S6</td>
<td>Plot of optical purity vs. optical rotation for PZQamine, (TIF)</td>
</tr>
</tbody>
</table>
References

Resolution of Praziquantel

