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Abstract

Background: The gene regulation mechanism along the life cycle of the genus Schistosoma is complex. Small non-coding
RNAs (sncRNAs) are essential post transcriptional gene regulation elements that affect gene expression and mRNA stability.
Preliminary studies indicated that sncRNAs in schistosomal parasites are generated through different pathways, which are
developmentally regulated. However, the data of sncRNAs of schistosomal parasites are still fragmental and a complete
expression profile of sncRNAs during the parasite development requires a deep investigation.

Methodology/Principal Findings: We employed high-throughput genome-wide transcriptome analytic techniques to
explore the dynamic expression of microRNAs (miRNAs) and endogenous siRNAs (endo-siRNAs) of Schistosoma japonicum
covering the free-living cercarial stage and all stages in the definitive host. This led us to analyze over 70 million clean reads
represented both high and low abundance of the small RNA population. Patterns of differential expression of miRNAs and
endo-siRNAs were observed. MiRNAs was twice more than endo-siRNAs in cercariae, but gradually decreased along with the
development of the parasite. Both small RNA types were presented in equal aboudance in lung-stage schistosomula, while
endo-siRNAs accumulated to 6 times more than miRNAs in adult female worms and hepatic eggs. Further, miRNAs were
found mainly derived from genes located in the intergenic regions, while endo-siRNAs were mainly generated from
transposable elements (TEs). The expression pattern of TE-siRNAs, as well as the pseudogene-derived siRNAs clustered in
mRNAs of cytoskeletal proteins, stress proteins, enzymes related to energy metabolism also revealed distinction throughout
different developmental stages. Natural antisense transcripts (NATs)-related siRNAs accounted for minor proportion of the
endo-siRNAs which were dominantly expressed in cercariae.

Conclusions/Significance: Our results represented a comprehensive expression profile of sncRNAs in various
developmental stages of S. japonicum with high accuracy and coverage. The data would facilitate a deep understanding
of the parasite biology and potential discovery of novel targets for the design of anti-parasite drugs.
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Introduction

Schistosomiasis is a chronic debilitating disease that afflicts more

than 200 million individuals in the tropics and sub-tropics regions

[1]. The agents of this disease, parasitic flatworms of the genus

Schistosoma, have a complex developmental life cycle characterized

by a distinct parasitic phase in mammalian and molluscan hosts

and a free-living phase in freshwater. There are at least seven

discrete developmental stages of the parasite within the definitive

(lung-stage schistosomula, juvenile, adult male and female worms,

and eggs) and intermediate (sporocysts) hosts as well as the aquatic,

free-swimming miracidia and cercariae, with dramatically mor-

phological changes [2]. And they are among the few platyhelminth

parasites to adopt a dioecious lifestyle and possess heteromorphic

sex chromosomes, which are arrayed in 7 pairs of autosomal

chromosomes and one pair of sexual chromosomes (Z, W),

homozygous (ZZ) for male and heterozygous (ZW) for female

[3,4]. Previous investigations on Schistosoma japonicum had revealed

that a complex gene regulation pattern was deployed by this genus

of parasites [5] and its haploid genome, which is about 270 Mb in

size, has been recently decoded as a valuable entity for

identification of small regulatory RNAs of this parasite [6].

Small non-coding RNA transcripts, approximately 18–30

nucleotides in length, are critical regulators in silencing of target

genes in fungi, plants, and metazoans [7–9]. Three major

categories of sncRNAs, siRNAs, miRNAs, and Piwi-interacting

RNAs (piRNAs) have been well established and extensively studied

[10]. SncRNAs exert their regulatory functions in chromatin

architecture modelling, post-transcriptional repression and mRNA

destabilization, mobile genetic elements suppression, and virus

defence, usually through guiding the RNA-induced silencing

complex (RISC) to their target genes [7,11–13]. In Drosophila,
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sncRNAs are generated through Dicer-dependent or independent

pathways [14]. Dicer-1 generates miRNAs whereas Dicer-2

creates endo-siRNAs. Recently, it was found that the Argonaute

protein family, which include the ubiquitous AGO (AGO1 and

AGO2) and the germline-specific Piwi (AGO3) were devoted to

different small RNA-mediated regulatory pathways [15]. AGO1

functions primarily in the miRNA-dependent pathway that

silences messenger RNA, whereas AGO2 has been involved in

RNAi-mediated silencing directed by exogenous and endogenous

siRNAs. Further study in Drosophila somatic cells revealed that

there were two classes of endo-siRNAs, one was generated from

TEs and involved in retrotransposon repression; the other was

produced in a Dicer-2-dependent manner from distinctive

genomic loci, through refolding of RNA transcripts. The function

of the second class of endo-siRNAs was likely to regulate mRNA

stability in somatic cells [14].

Recently, several groups have endeavored to identify and

characterize sncRNAs of schistosome with conventional cloning

method and the deep-sequencing technique, mainly focused on

juvenile and mixed adult worms, the two relatively closed

developmental stages of the parasite [16–21]. A repertoire of

miRNA transcripts unique to S. japonicum or those conserved to

other metazoan lineages was identified. Differential expression of

certain miRNAs was observed between the two developmental

stages of S. japonicum (hepatic schistosomula and adult worms) and

S. mansoni (7d schistosomula and adult worms), suggesting that

miRNAs play a distinct role in modulating development,

maturation, and reproduction of the parasite [17–19,21].

Importantly, miRNA genes within one cluster could be differen-

tially expressed, which emphasized that individual transcript might

be developmentally regulated by distinct mechanisms [17,19].

Meanwhile, a set of endo-siRNAs derived mainly from transpos-

able elements (TEs) and the natural antisense transcripts (NATs) of

S. japonicum has also been defined [17,19]. Interestingly, the distinct

length and 39 end heterogeneity of endo-siRNAs derived from

both TEs and NATs were also associated with the developmental

differentiation of the parasite [17].

Though the knowledge regarding sncRNA biology within the

juvenile and mixed adult worms of S. japonicum is expanding, it is

indispensable to systematically profile the repertoire of sncRNAs

in other stages, especially the cercariae, which is the only infectious

stage to penetrate its mammalian hosts; the lung-stage schisto-

somula, that is viewed as the most susceptible stage for

intervention [22,23]; the tissue trapped eggs, which is the critical

mediator for severe pathology in schistosomiasis, and the

difference between the two sexes of adult worms. In this study,

the expression profile of sncRNAs in the four critical develop-

mental stages of S. japonicum was systematically investigated. The

data, for the first time, provide a broader view of small non-coding

RNAs in the parasite.

Materials and Methods

Parasites and animals
The freshly released cercariae of S. japonicum were harvested

from parasite-infected Oncomelania hupensis purchased from Jiangxi

Institute of Parasitic Diseases, Nanchang, China. The lung-stage

schistosomula (3 days post infection) were isolated from lung

tissues of infected Kunming strain mice as previously described

[24]. Adult worms were obtained by hepatic-portal perfusion of

New Zealand White rabbits or BALB/c mice 7-weeks post

infection. Male and female worms were manually separated with

the aid of a light microscope. Liver tissues deposited with

schistosome eggs were obtained from BALB/c mice at day 30

and 45 post infection, respectively. All procedures performed on

animals within this study were conducted following animal

husbandry guidelines of the Chinese Academy of Medical Sciences

and with permission from the Experimental Animal Committee.

All animal work have been conducted according to Chinese and

international guidelines.

Total RNAs isolation
Total RNAs of S. japonicum at different developmental stages

(cercariae, lung-stage schistosomula, adult male and female worms

perfused from infected rabbits) and liver total RNAs of BALB/c

mice 30d and 45d post infection were extracted using Trizol

reagent (Invitrogen, CA, USA). RNA quantification and quality

were evaluated by Nanodrop ND-1000 spectrophotometer

(Nanodrop Technologies, Wilmington, DE) and Agilent 2100

Bioanalyzer (Agilent Technologies, Palo Alto, CA).

Small RNA libraries construction and sequencing
Construction of small RNA libraries was carried out as

described previously. Briefly, RNAs between 15–30 nucleotides

(nt) were excised from a 15% TBE urea polyacrylamide gel

electrophoresis (PAGE). RNA samples were purified and ligated to

Illumina’s proprietary 59 and 39 adaptors, and further converted

into single-stranded cDNA with Superscript II reverse transcrip-

tase (Invitrogen, CA, USA) and Illumina’s small RNA RT-Primer.

The cDNA was amplified with high fidelity Phusion DNA

polymerase (Finnzymes Oy, Finland) in 18 PCR cycles using

Illumina’s small RNA primer set. The purified PCR products were

sequenced by an Illumina Genome Analyzer at the BGI (Beijing

Genomics Institute, Shenzhen, China).

Mapping sequence reads to the reference genome
Raw datasets produced by deep sequencing from the libraries

(cercariae, lung-stage schistosomula, adult male and female

worms, and infected liver tissues) were pooled. Clean reads were

obtained after removing of the low quality reads, adaptor null

reads, insert null reads, 59 adaptor contaminants, and reads with

Author Summary

Schistosomiasis, a debilitating disease, caused by agents of
the genus Schistosoma afflicts more than 200 million
people worldwide. Schistosomes could serve as an
interesting model to explore gene regulation due to its
evolutional position, complex life cycle and sexual
dimorphism. We previously indicated that sncRNA profile
in the parasite S. japonicum was developmentally regulat-
ed in hepatic and adult stages. In this study, we
systematically investigated mircoRNA (miRNA) and endog-
enous siRNA (endo-siRNA) profile in this parasite in more
detailed developmental stages (cercariae, lung-stage
schistosomula, separated adult worms, and liver tissue-
trapped eggs) using high-throughput RNA sequencing
technology. We observed that the ratio of miRNAs to
endo-siRNAs was dynamically changed throughout differ-
ent developmental stages of the parasite. MiRNAs were
expressed dominantly in cercariae, while endo-siRNAs
accumulated in adult female worms and hepatic eggs.
We demonstrated that miRNAs were mostly derived from
intergenic regions whereas siRNAs were mostly derived
from transposable elements. We also annotated miRNAs
and siRNAs with stage- and gender- biased expression. Our
findings would facilitate to understand the gene regula-
tion mechanism of this parasite and discover novel targets
for anti-parasite drugs.
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ployA tail. Adapter sequences were then trimmed from both ends

of clean reads. All identical sequences were counted and merged as

unique sequences, herein referred to as sequence tags. The unique

reads along with associated read counts were mapped to the S.

japonicum genome sequences (http://lifecenter.sgst.cn/schistoso-

ma/cn/schdownload.do) using the program SOAP [25]. As for

the liver libraries, the unique reads were mapped to the genome of

mouse (http://hgdownload.cse.ucsc.edu/downloads.html#mouse)

with SOAP, and those perfectly matched ones were removed prior

to mapping to the S. japonicum genome.

Bioinformatic analysis of S. japonicum small RNAs
Briefly, the perfectly matched reads were first BLAST-searched

against the 78 known mature miRNAs of S. japonicum deposited in

Sanger miRBase [26,27] (Release 15) using the program Patscan

[28]. The remains were then BLAST-searched against Metazoa

other than S. japonicum miRNAs allowing two mismatches to

identify homologs of known Metazoa miRNAs. These homologs,

as well as non-conserved reads (with rRNA, tRNA, snoRNA and

high repetitive reads being filtered out [29]) were considered as

potential miRNAs. To avoid repeated prediction and reduce the

calculation redundancy, we then searched against the genome of S.

japonicum and combined candidate unique reads located in close

proximity in the reference genome with less than 150 bp and we

called the joint genomic fragment as a block. For each block,

150 nt upstream and 150 nt downstream sequence were extracted

for secondary structure analysis. We used software Einverted of

Emboss [30] to find the inverted repeats (step loops or hairpin

structure), with the parameters threshold = 30, match score = 3,

mismatch score = 3, gap penalty = 6, and maximum repeat

length = 240 as described [31]. Each inverted repeat was extended

10 nt on each side, the secondary structure of the inverted repeat

was folded using RNAfold [32] and evaluated by mirCheck using

default parameters [31]. MiRNA candidates passed mirCheck

were Blast-searched against Metazoa miRNAs except those of S.

japonicum using the program Patscan again and labeled with

conserved and non-conserved (novel) miRNAs, respectively. The

novel unique reads that sequenced less than 2 times were removed.

Finally, miRNA precursors that passed MirCheck were inspected

manually in order to remove the false prediction. We employed

IDEG6 to identify miRNAs showing statistically significant

difference in relative abundance (as reflected by TPM value)

between any two small RNA libraries [33]. The general Chi262

test was applied to determine whether one particular miRNA was

significantly differentially expressed between any two samples (P

value , = 0.01). Hierarchical clustering of the known S. japonicum

miRNAs was constructed based on the transformed data of log10

of TPM value.

The transposable elements in the S. japonicum genome were

predicted by using REPET (http://urgi.versailles.inra.fr/index.

php/urgi/Tools/REPET). TE-derived siRNAs were identified as

previously described [17]. Figures were constructed to reflect the

relative abundance of sense and antisense of TE-derived siRNAs

during the parasite development. Briefly, the expression value of

each base on TE was the sum of the expression of siRNAs that

mapped to the position. After a proper bin (20–50 bases) was

selected based on the length of TE sequences, the average

expression value was calculated for each bin, and the expression

level for four stages was marked by different colors. The natural

antisense transcripts of S. japonicum were annotated and NAT-

derived siRNAs were confirmed as described [17]. The small

RNAs that failed to pass mirCheck were aligned to S. japonicum

predicted mRNA sequences of SGST (http://lifecenter.sgst.cn/

schistosoma/cn/schdownload.do) using the program SOAP, and

perfectly matched reads were retained. Then a Perl script was

wrote to scan the predicted mRNAs, if the region continuous

covered by small RNAs is longer than 100 bp, the region was

deemed as a ‘‘siRNA-Cluster’’.

Quantitative RT-PCR analysis of sex-biased miRNAs
Stem-loop qRT-PCR was performed to quantitate the sex-

biased expressed miRNAs [20,34]. Stem-loop RT primers were

designed to reverse-transcribe target miRNAs into cDNAs using

total RNAs isolated from male and female adult worms,

respectively (from the same smaples used for Solexa sequecing).

The 20 ml reaction system contained 1 mg of total RNA, 50 nM of

each individual stem-loop RT primer, 16RT buffer, 0.5 mM

dNTPs (Takara), 0.01 M DTT (Invitrogen), 0.25 ml Superscript

III reverse transcriptase (200 U/ml, Invitrogen, CA, USA), and

0.1 ml RNaseOUT inhibitor (40 U/ml, Invitrogen). cDNA was

synthesized by incubation for 30 min at 16uC, 30 min at 42uC,

15 min at 70uC. Real-time quantification was carried out using an

Applied Biosystems StepOne Plus system. PCR reactions were set

up by combining 0.5 mM miRNA-specific forward primer, 0.5 mM

common reverse primer, 2 ml of RT product (1:1 dilution), 10 ml of

Power SYBR Green PCR Master Mix (ABI, CA, USA), and

adjusted to a final volume of 20 ml with DEPC-treated water in

triplicates. For endogenous control, 1 mg of male or female total

RNA was converted to cDNA with oligo(dT). The forward primer:

59-CCTTCATGGTAGACAACGAAGCT-39 and reverse prim-

er: 59-TGTAGGTTGGACGCTCTATGTCC-39, were used to

amplify the a-tubulin gene as an endogenous control. The reaction

conditions were as follows: 95uC for 5 min, followed by 40 cycles

of 95uC for 5 sec and 60uC for 30 sec. The quantification of each

miRNA relative to a-tubulin mRNA was calculated using the

equation: N = 22DCt, DCt = CtmiRNA - Cta-tubulin [35]. All primers

used are listed in Table S1.

Northern blot
59-DIG-labeled miRCURY LNA probes were ordered from

Exiqon (Vedbaek, Denmark) (Http://www.exiqon.com). Northern

blot analysis was performed mianly by a method described in a

previous study [36]. Total RNAs were isolated from male adult

female adult worms perfused from BALB/c mice 7-weeks post

infection. 10 mg total RNA of each smaple was resolved by 15%

denaturing (7 M urea) PAGE and were blotted by capillary

transfer to neutral Nylon Membranes (Hybond-NX, GE) with

206SSC. RNAs were further cross-linked to the membrane by

EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) method

[37]. Blots were pre-hybridized by incubation with DIG Easy

Granule (Roche) at 37uC for 3 h. And hybridization were carried

out in the same buffer containing 1 nM DIG-labeled LNA probe

at temperature recommended by manufacturer (RNA Tm - 30uC)

overnight. Blots were washed twice in a low stringently buffer

(26SSC, 0.1% w/v SDS), and four times in a high stringently

buffer (0.16SSC, 0.1% w/v SDS), for 30 min each, both at

hybridization temperature. The membrane was rinsed in washing

buffer, and incubated in blocking solution at room temperature for

at least 2 h (DIG washing buffer and blocking solution Set,

Roche). Subsequently, blots were incubated with a 10,000-fold

dilution of anti-DIG-AP (Roche) in blocking solution at room

temperature for 30 min, washed 5 times for 15 min each in

washing buffer. After rinsing in detection buffer for 5 min, the

blots were detected using CDP-star chemiluminescent substrate for

alkaline phosphatase (Roche). Blots were stripped by boiling for

1 min at 100uC in 10 mM Tris-HCl, pH 8.0, 5 mM EDTA, and

0.1% SDS and probed up to three times.
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Results and Discussion

Small RNA distribution in libraries from various
developmental stages

Six small RNA libraries were generated by high-throughput

RNA sequencing (see Materials and Methods and Table S2). Four

libraries, SjC, SjL, SjM, and SjF, were constructed from sequences

that were directly derived from the cercariae, lung schistosomula,

adult male, and female worms, respectively. The two remaining

libraries, SjE30 and SjE45, were egg libraries derived from the

hepatic tissues of BALB/c mice 30 and 45 days post-infection,

respectively. The reads that aligned to the mouse genome were

filtered before they were mapped to the genome of S. japonicum. In

total, 65,630,916 clean reads were obtained from libraries SjC,

SjL, SjM, and SjF, which were merged into 6,989,949 unique tags,

thus resulted in an average redundancy as high as 89.3

(Redundancy = 100-(Total Unique Tags/Total Clean Reads

6100)). Among these unique tags, 1,593,604 (22.80%) could be

aligned to the genome of S. japonicum (Table S3). The match rate

was varied among different libraries, from the lowest of 20.46%

(SjM) to the highest of 31.95% (SjF), this phenomenon may related

with the change of ratio of different small RNAs during

development and/or between sexes. The low match ratio to the

genome may be caused by either genome variation of different

parasite isolates or due to less sequence information of the

intergenic regions where most of the miRNAs were generated.

The phenomenon was also observed in similar studies by others,

and several explanations have been offered [18]. Regarding the

egg libraries, 15,774 and 20,800 unique tags from libraries SjE30

and SjE45, respectively, mapped to the S. japonicum genome (Table

S4). These datasets contain roughly an order of magnitude more

sequence than previous similar studies.

The short ncRNA transcripts were categorized according to

features related to primary and secondary structure (Figure 1 and

Table S5). The majority of the ncRNA transcripts were miRNAs

and TE-derived endo-siRNAs, accounting for 26.75% and

44.77%, respectively, of the total sncRNA pool (Figure 1A). Only

2.21% of the miRNAs identified in our libraries were novel,

indicating that most miRNAs have been recovered from the

genome. Long terminal retrotransposons (LTR) and un-annotated

transposons were predominant in the set of endo-siRNAs.

Interestingly, the sets of miRNAs and endo-siRNAs displayed

stage- or sex-related variation in expression (Figure 1B and C).

The percentage of miRNA was approximately double than that of

the TE-derived endo-siRNA set in the cercariae library; the

amount of miRNAs and endo-siRNAs was almost equal in lung-

stage schistosomula, while endo-siRNAs were dominant in the

adult worms and eggs, especially in female worms and early

deposited eggs (6 times more than that of miRNAs). A class of

endo-siRNAs derived from unclassified transposons was domi-

nantly expressed in the male and female parasite compared to

other stages (Figure 1B). The clear pattern of preferential

expression of the genes encoding the two classes of small RNAs

suggests that they play stage-specific regulatory functions. Before

invasion into a mammalian host, the parasite is likely to mainly

utilize miRNA pathways to regulate gene expression, while endo-

siRNA mediated regulation is suppressed. The high percentage of

TE-derived endo-siRNAs in females and early deposited eggs

suggests that siRNAs are more functional at these developmental

stages. Earlier studies in D. melanogaster and mouse oocytes

demonstrated that endo-siRNAs were critical elements for

maintaining genomic stability through suppression of TE activity

[38–40]. S. japonicum possesses a faster reproductive rate than flies

or mice, and thousands of eggs are released by one female adult

worm each day. Efficient suppression of TE activity is likely a

prerequisite for continuity of parasite development and transmis-

sion, a possible explanation for why TE-derived endo-siRNAs

were dominantly found in late-stage parasites.

miRNAs identified in different stages of S. japonicum
When the sequences of the small RNAs containing classical

miRNA structure were aligned to the Sanger miRBase (Release

15), 77 sequences homologous to known or well-characterized

miRNAs were identified. We found 74, 71, 69, 70, 18, and 25 such

sequences in libraries SjC, SjL, SjM, SjF, SjE30, and SjE45,

respectively. Only one miRNA, the previously reported sja-miR-8-

5p [19], was not detected in this study (Table S6). Among the set

of 77 known miRNAs, approximately 20 miRNAs were conserved

homologues of sequences from the planarian Schmidtea mediterranea,

the genus most closely related to Schistosoma, in previous

investigations [17,19,20,41–43], indicated that phylum Platyhel-

minthes contains common miRNAs that carry out similar

biological function. The maximum read number of a single

miRNA was 1,044,358 (library SjC, sja-miR-1; Table S7),

illustrating the sequencing depth of our investigation. The range

of read numbers was from the single-digits to millions, highlighting

the sequencing capacity of next-generation sequencing technology

and suggesting that expression variation of these miRNAs does

indeed exist. This observation most likely reflects functional

differentiation among the miRNAs.

Apart from the known miRNAs, 193 hairpins containing 45

conserved mature miRNAs derived from 19 families were

predicted in our sequence libraries. These miRNAs along with

their expression level (reflected by transcripts per million, TPM)

during development were shown in Table S8. Additionally, we

identified 199 novel miRNAs with various expression levels and

stage specificities (Table S9). In contrast with the common or

evolutionarily conserved miRNAs, most novel miRNAs identified

in this study possessed low read numbers, with the exceptions of

sequences sja-novel-23-5p and sja-novel-48-3p, which was mainly

expressed in female adult worms and cercariae, respectively.

Previous investigations of miRNA biogenesis revealed that

miRNA genes are located either in intergenic regions [44] that are

controlled by their own miRNA promoters and regulatory units

[45], or in introns, non-protein coding genes, or exons, and thus

they are likely to be regulated in concert with host genes [46]. In

an earlier study, we found that many S. japonicum miRNA genes

were clustered together, and that genes within the same cluster

may be regulated independently [17]. In the present study, we

mapped all identified miRNA sequences to the S. japonicum genome

and found that miRNAs were generated from 59 or 39 UTRs,

intragenic, and intergenic regions in the genome; however, a

majority of sequences (87.2% of the total miRNAs identified) were

transcripts derived from genes located in intergenic loci (Figure 2).

Thus, compared to Caenorhabditis elegans, S. japonicum has evolved

more sophisticated control mechanisms for regulation of miRNA

expression, possibly explaining the complicated nature of the

transcription profiles of individual miRNAs in various develop-

mental stages of the parasite.

Differential expression of miRNAs during parasite
development

Although the relative expression level of a particular miRNA

has been proposed to be represented by the number of sequence

reads, other investigations have argued that neither read counts

nor northern blot signal accurately reflect actual abundance or

expression level [19,47,48]. Here, the expression levels of each

unique tag in cercariae, lung-stage schistosomula, separated adult

Small Non-Coding RNAs in Schistosoma japonicum
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worms and eggs libraries were normalized to TPM as previously

described [18,49,50]. Thus, the read abundance should basically

reflect the expression level of the tags in the parasites. The scale of

the relative miRNA abundance during the various developmental

stages appears in Figure 3. Of 77 known miRNAs, 28 miRNAs

exhibited high expression levels in one or more developmental

stages. The expression levels of the novel miRNAs identified in this

study were generally low (Table S9). However, four miRNAs were

with relatively higher expression level in one particular stage, as

sja-Novel-23-3p and sja-Novel-23-5p were dominantly expressed

in the female parasite, while sja-Novel-48-3p and sja-Novel-74-3p

were substantially expressed in cercarial stage.

Like C. elegans, schistosomal parasites need to complete a series

of biological and physiological activities, including protease

secretion, tail detachment, glycocalyx shedding, and tegument

transformation before developing to the schistosomula stage

[51,52]. A particular gene repertoire of S. mansoni parasites was

previously shown to be up-regulated during the transition from

schistosomula to adult worms [22]. Here, we observed that the

expression of a set of miRNAs including sja-bantam, sja-miR-1,

sja-miR-124-3p, sja-miR-2a-3p, sja-miR-3492, and sja-miR-36-3p

was substantially down-regulated in lung-stage schistosomula

compared to cercariae (Table S6), suggesting that the target

mRNAs of these miRNAs may encode proteins fulfilling important

functions at this stage.

Sex-biased miRNA expression
We further explored the differential expression of miRNA genes

between male and female adult worms. The expression of a set of

miRNAs, sja-miR-7-5p, sja-miR-61, sja-miR-219-5p, sja-miR-

125a, sja-miR-125b, sja-miR-124-3p and sja-miR-1 were domi-

nant in male worms, while sja-bantam, sja-miR-71b-5p, sja-miR-

Figure 1. Classification and percentage of S. japonicum sncRNA. A. Classification and percentage of S. japonicum sncRNA using mixed small
RNA data from all stages sequenced. MiRNAs took up more than 25% of total small RNAs. TE-siRNAs were mainly derived from LTR, LINE, TIR, and
MITE, and accounted for approximately 45% of total small RNAs (including those from unknown TEs). B. Classification and percentage of S. japonicum
sncRNA from different developmental stages. C. The percentage of miRNAs and TE-siRNAs during different developmental stages. The ratio of siRNA
to miRNA was gradually increased and accumulated to the top in female worms and early deposited eggs. Note that the color scheme used in section
B was the same as section A.
doi:10.1371/journal.pntd.0001256.g001

Small Non-Coding RNAs in Schistosoma japonicum

www.plosntds.org 5 August 2011 | Volume 5 | Issue 8 | e1256



3479-5p, and sja-Novel-23-5p were predominantly found in the

female parasites (Table S6 and S9). The expression of these sex-

biased miRNAs was validated by stem-loop RT-PCR (Figure 4A).

The expression level of sja-miR-1 was relatively high in male adult

worms (1.09860.228) and female adult worms (0.35860.021)

when compared to other miRNAs, and was not shown in

Figure 4A. The correlation between the TPM values and qPCR

was investigated by a method described in a previous study

(R = 0.882, Spearman’s Rho, p,0.0001, n = 11) [53]. However,

among individual miRNAs, the qPCR results did not exactly

reflect the TPM values of the maximally expressed miRNAs,

probably due to the existence of extensive miRNA isomiRs, or

asymmetrical amplification during library construction. We

further validated the expression differences of ten sex-biased

miRNAs by northern blot analysis using the total RNA extracted

from adult male and female worms isolated from BALB/c mice 7-

weeks post infection (Figure 4B). The differential expression

pattern of these miRNAs except sja-miR-71b-5p between male

and female worms was quite consistent with the TPM values of

high-throughput sequencing and the qRT-PCR results. The

phenomenon was also observed in a recent study which noted

that several miRNAs were expressed at similar levels in

protoscoleces of G1 and G7 genotypes Echinococcus granulosus,

which parasitized in different hosts [54]. Thus, these data

indicated that host factors may have little impact on the expression

profile or level of sncRNAs.

Figure 2. Percentage of miRNAs generated from three different genomic loci in S. japonicum. MiRNA transcripts identified in S. japonicum
genome were derived from up- and down-stream UTR, intragenic and intergenic regions. Proportion of the miRNAs from the three regions was 2.4%,
14.4%, and 87.2%, respectively.
doi:10.1371/journal.pntd.0001256.g002
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Although the function of these miRNAs remains to be

elucidated, the significant differential expression between male

and female adult worms indicated that they may participate in

regulation of sexual differentiation and maintenance, pairing

and reproduction of the parasite. Moreover, miRNAs may

cooperate with other small RNAs (such as endo-siRNAs) and

transcription factors to form a comprehensive network to

regulate growth, development, differentiation, and reproduction

for adaptation to a variety of environments [19]. Further studies

on these miRNAs may contribute to better understanding of the

developmental mechanism of sexual dimorphism in this

parasite.

Figure 3. Hierarchical clustering of the known miRNAs during different developmental stages using Pearson correlation. Heatmap
was constructed based on the log10 of TPM value of miRNAs. Black indicated the expression value of the miRNA was 0 after normalization. Grey
indicated that the miRNA was not detected in that library. TPM value for each tag was calculated by the sum of total clean reads which were
within62 bp variations of the mature miRNAs on the precursor.
doi:10.1371/journal.pntd.0001256.g003
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TE-derived endo-siRNAs
Recent observations of endo-siRNAs in D. melanogaster, mice,

and schistosome have added more complexity to our knowledge of

small RNA-mediated regulatory pathways [14,17,38–40,55–58].

So far, endo-siRNAs have been found to be mainly derived from

TEs, complementary annealed NATs, and the long ‘‘fold-back’’

transcripts known as hairpin RNAs [59]. We previously found that

the TE-derived siRNAs in S. japonicum were more predominant

than other endo-siRNAs, including NAT-derived siRNAs [17].

Here, we systematically analyzed the expression levels of sense and

antisense endo-siRNAs that derived from various TEs in cercariae,

lung-stages schistosomula, male and female adult worms (Table

S10–14). The read numbers of endo-siRNAs in egg libraries were

much lower than the other libraries, leading us to exclude the egg

libraries from further analysis.

We observed that LINE, TIR, and LTR transposon classes

were the main sources of endo-siRNAs, while the endo-siRNAs

derived from other TEs were much less abundant (Figure 5).

Further, endo-siRNAs mapped to the top (sense siRNA) and

bottom (antisense siRNA) strands of LTR and non-LTR TEs. The

expression patterns of LTR-derived sense and antisense siRNAs

were relatively symmetrical, though there were obvious stage and

sex specificities in expression loci (Figure 5A, B, and C). Reads

mapped to the S. japonicum LTR retrotransposon SjCHGCS11 [6]

were annotated as SACI-7_2p in our analysis (Figure 5A). Both

sense and antisense siRNAs were concentrated in the coding

region of reverse transcriptase in a manner similar to that observed

in D. melanogaster somatic cells [38].

Sjpido, SjR1, and SjR2 are three classes of non-LTR retro-

transposons that make up 5% of the S. japonicum genome; siRNAs

generated from these elements mainly mapped to certain sequence

regions (Figure 5B), contrary to our observations of LTR

retrotransposons. The expression levels of siRNAs derived from

SjR1 were much higher in cercariae than in male and female adult

worms, indicating that these siRNAs are more functional in the

earlier developmental stage (Figure 5B). Sj-alpha-1 derived siRNAs

were predominantly generated from the antisense strand, while Sj-

alpha-2 derived siRNAs were generated from the sense strand;

however, both types of siRNAs had low expression levels

(Figure 5C). In cercariae and lung-stage schistosomula, the TIR

(Sj_Blaster_Recon_7337_MAP_14 annotated as SmTRC1_1p in

the genome) derived siRNAs were highly expressed, while the

MITE (Sj_Blaster_Grouper_1934_MAP_4) derived siRNAs were

mainly expressed in the adult worms, and predominantly

corresponded to the antisense strand (Figure 5D). Thus, the TE-

derived endo-siRNAs of S. japonicum were more diverse than those

found in D. melanogaster. Although the origin of the antisense

siRNAs is not known (cis- or trans-transcription), their abundance

suggests that they are stable and likely participate in regulatory

pathways.

Previous studies of mouse oocytes revealed that antisense

transcripts from pseudogenes formed double-strand RNAs with

their functional counterparts, the sources of the endo-siRNAs, and

the sense siRNAs were predominant in the endo-siRNA [55]. It

has been proposed that the ‘‘passenger strand’’ of an siRNA is

unstable due to the thermodynamic asymmetry of the two strands

Figure 4. Validation of sex-biased miRNAs by quantitative RT-PCR and Northern blot. A. The relative abundance of 9 known miRNAs and
one novel miRNA investigated by quantitative RT-PCR. Six miRNAs (from sja-miR-7-5p to sja-miR-124-3p) showed higher expression level in male
parasites, while the remaining four were dominantly expressed in the female parasites. B. Northern blot analysis of ten sex-biased miRNAs using RNAs
isolated from male and female adult worms perfused from BALB/c mice. M, ultra low range DNA ladder denatured in RNA loading Dye solution as the
total RNA done. W: male adult worms; X: female adult worms.
doi:10.1371/journal.pntd.0001256.g004
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[60]. However, this hypothesis cannot explain our identification of

many reads corresponding to the antisense siRNAs; in some cases,

only the antisense strands were identified. Further dissection of the

function of the two endo-siRNA classes would be an essential step

toward understanding the network of gene regulation during the

parasite development.

Trans-NATs were the predominant sources of
NAT-derived siRNAs

NAT-derived siRNAs are a second source of endo-siRNAs;

these endo-siRNAs are further classified as cis-NAT- or trans-NAT-

derived endo-RNAs [56,61,62]. Cis-NAT-derived endo-siRNAs

are generated from transcripts from the same gene locu, while

trans-NAT-derived endo-siRNAs come from NAT transcripts of

distinct loci. We detected potential NAT pairs by aligning the

predicted mRNA sequences to each other. Only one cis-NAT pair

and 1772 trans-NAT pairs were identified in silico using data from

SGST. Our sequencing results were remarkably similar to the in

silico prediction; one cis-NAT pair and 225 trans-NAT pairs were

detected (Table S15), indicating that bi-directional transcription

was much less prevalent in schistosomal parasites and transcripts

from duplicated genes are more common. Thus, trans-NAT-

derived endo-siRNAs are likely the main sources of NAT-derived

siRNA in S. japonicum, a scenario that differs from other organisms

[63]. However, we cannot rule out the possibility that most of the

cis-NAT pairs may be undetectable given the lack of information

about the non-protein-coding regions of the S. japonicum genome.

The identification of long non-coding RNAs in S. japonicum is still

underway, and may provide an important source of NAT-derived

siRNAs [64].

A previous study of D. melanogaster somatic cells demonstrated

that endo-siRNAs mapped to protein-coding mRNAs rather than

to transcripts of transposons that regulate mRNA expression [38].

Here, we also mapped the endo-siRNAs to the predicted mRNA

sequences of S. japonicum, and found that nearly half of the siRNA-

related transcripts clustered within predicted mRNAs. These

mRNAs mainly encoded proteins from four categories: 1) proteins

similar to pol polyprotein and endonuclease-reverse transcriptase;

Figure 5. The abundance of sense and antisense siRNAs that mapped to the S. japonicum TEs. The TPM of the siRNA sequences generated
from TEs during different developmental stages was presented with bars in different colors. A. Endo-siRNAs mapped to the LTR retrotransposon
SjCHGCS11. The amount of siRNAs generated from the sense and antisense strands were similar but with different stage preferences. B. Endo-siRNAs
mapped to TE of LINE type, Sjpido (upper), SjR1 (middle), SjR2 (lower). Compared to those from LTR, siRNAs from these TEs were transcribed from
more concentrated region in the genes. C. Endo-siRNAs mapped to TE of SINE Type, Sj-alpha-1 (upper), Sj-alpha-2 (lower). D. Endo-siRNAs mapped to
TE of TIR type (Sj_Blaster_Recon_7337_MAP_14) and MITE type (Sj_Blaster_Grouper_1934_MAP_4). The sum and percentage of TPM of sense and
antisense siRNAs from each stage were displayed in Pie Chart.
doi:10.1371/journal.pntd.0001256.g005
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2) cytoskeletal proteins such as myosin, actin, and tropomyosin; 3)

enzymes or transporters such as COX1, COX2B, superoxide

dismutase 1, glyceraldehyde 3-phosphate dehydrogenase, lactate

dehydrogenase A, ATP-dependent RNA helicase, cation-trans-

porting ATPase, H+-transporting ATPase, and cathepsin B and L;

4) stress proteins including heat shock protein, cold shock protein,

and stress-induced phosphoprotein 1 (Table S16). We were unable

to distinguish whether siRNAs clustered in pol polyprotein and

endonuclease-reverse transcriptase transcripts were derived from

retrotransposons or NATs. We speculated that some of the

siRNAs in the other three categories were derived from trans-

NATs formed by transcripts of pseudogenes and their parental

genes, as suggested recently [65]; for example, the pseudogenes of

hsp70 and cathepsin B exist in schistosome genomes [66,67].

Furthermore, the pseudogenes of actin, COX, GAPDH, FABP,

and histone are common in mammalian genomes. Pseudogene-

derived endo-siRNAs were previously detected in mouse oocytes,

with two transcripts, Hsp90ab1 (heat shock protein 90 kDa alpha,

class B member 1) and Dynll1 (dynein, light chain), possessing

features similar to our findings [55]. Thus, unlike the silencing of

selfish genetic elements by TE-related siRNAs, trans-NAT-derived

endo-siRNAs mainly regulate the expression of mRNAs coding for

a diverse set of proteins.

Our current study generated comprehensive profiles of

endogenous small RNAs (miRNAs and endo-siRNAs) during the

four crucial developmental stages of S. japonicum. Reverse

expression patterns of miRNAs and endo-siRNAs during the

parasite development and differentiation process were observed.

Two classes of endo-siRNAs derived from TEs and trans-NATs

were identified, and the LTR retrotransposon derived siRNAs

were more abundant than siRNAs from non-LTR TEs. There are

likely two layers of regulatory function employed by the parasite;

the antisense siRNAs directly affect the stability of mRNA

transcripts, while the sense siRNAs may function indirectly by

affecting the amount of antisense transcripts. Thus, the small

RNA-mediated network in schistosomal parasites is more complex

than networks reported in other organisms.
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