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Abstract

Background: Dar es Salaam has an extensive drain network, mostly with inadequate water flow, blocked by waste, causing
flooding after rainfall. The presence of Anopheles and Culex larvae is common, which is likely to impact the transmission of
lymphatic filariasis and malaria by the resulting adult mosquito populations. However, the importance of drains as larval
habitats remains unknown.

Methodology: Data on mosquito larval habitats routinely collected by the Urban Malaria Control Program (UMCP) and a
special drain survey conducted in 2006 were used to obtain a typology of habitats. Focusing on drains, logistic regression
was used to evaluate potential factors impacting the presence of mosquito larvae. Spatial variation in the proportion of
habitats that contained larvae was assessed through the local Moran’s I indicator of spatial association.

Principal Findings: More than 70% of larval habitats in Dar es Salaam were human-made. Aquatic habitats associated with
agriculture had the highest proportion of Anopheles larvae presence and the second highest of Culex larvae presence.
However, the majority of aquatic habitats were drains (42%), and therefore, 43% (1,364/3,149) of all culicine and 33% (320/
976) of all anopheline positive habitats were drains. Compared with drains where water was flowing at normal velocity, the
odds of finding Anopheles and Culex larvae were 8.8 and 6.3 (p,0.001) times larger, respectively, in drains with stagnant
water. There was a positive association between vegetation and the presence of mosquito larvae (p,0.001). The proportion
of habitats with mosquito larvae was spatially correlated.

Conclusion: Restoring and maintaining drains in Dar es Salaam has the potential to eliminate more than 40% of all potential
mosquito larval habitats that are currently treated with larvicides by the UMCP. The importance of human-made larval
habitats for both lymphatic filariasis and malaria vectors underscores the need for a synergy between on-going control
efforts of those diseases.
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Introduction

According to the 2004 update of the Global Burden of Diseases

(GBD) [1], 44% of the disease burden in the United Republic of

Tanzania (as measured by disability-adjusted life years – DALYs)

was due to infectious and parasitic diseases. Among those diseases,

malaria carried the largest burden, 20%, and neglected tropical

diseases accounted for 6%, half of which is attributed to lymphatic

filariasis (LF). The estimated number of clinical malaria cases in

the United Republic of Tanzania ranges between 14 and 19

million per year, and the estimated number of deaths between

100,000 and 125,000, of which approximately 80,000 are children

under the age of 5 years [2]. LF is a major cause of permanent and

long-term disability [3,4]. It is endemic in all regions of the United

Republic of Tanzania, with higher antigenemia levels (up to 45–

60%) observed along the coast, and lower levels in the western

portion of the country. It is estimated that 6 million people are

infected with the debilitating manifestation of LF [5], which makes

the United Republic of Tanzania the country with third highest

prevalence of LF in sub-Saharan Africa [6].
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Both malaria and LF are mosquito-borne diseases. Afro-tropical

LF and malaria vectors show a high ecological plasticity utilizing a

broad range of aquatic larval habitats [7–12]. Proper understand-

ing of the typology (type, prevalence, and seasonality) of these

habitats in a particular location is crucial for the adequate

planning of vector control interventions. While the typology is

often related to patterns of land use, local ecology, and human

behavior, adaptation of mosquitoes to the characteristics of fast

growing cities (e.g., mosquito larval development in habitats

organically polluted by rotting vegetation or human feces) poses

additional challenges for vector control efforts in urban areas

[7,8,13]. Indeed, the current pace and pattern of urban growth has

no precedents in human history. In 2008, for the first time, the

majority of the world’s population was living in urban areas. In

Africa, the urban population is likely to double between 2000 and

2030, and it is estimated that more than half of Africans will live in

urban areas by 2030, most in poverty. Currently, approximately

72% of the urban population in sub-Saharan Africa lives under

slum conditions [14,15]. This rapid urbanization alters the

dynamics of mosquito-borne disease transmission, with significant

effects on disease-associated morbidity and mortality, which in

turn has important implications for disease control [16–18].

Fast urban growth often challenges government’s ability to

provide resources and to properly invest in urban planning. As a

result, unplanned and unserviced settlements abound, character-

ized by lack of sanitation and drinking water, precarious housing,

overcrowding, unpaved roads, and inefficient or inexistent solid

waste collection [13]. In addition, it is common to observe clogged

drains and ditches with stagnant water, particularly in those

unplanned settlements, and the practice of urban agriculture is

widespread [19]. These conditions pose serious environmental

challenges [19], but also bring about many public health

challenges, such as an increase in cholera risk [20] and the

proliferation of man-made aquatic habitats suitable for disease

vectors breeding [17,21–24], to name a few.

Historically, environmental manipulation and modification of

potential mosquito larval habitats by engineering works (e.g.,

drainage and filling) [25] to promote environmental management

(EM) [26] were successfully adopted in both urban and rural

settings [27,28], mainly prior to World War II and the

development and large-scale use of the insecticide DDT. Many

important endeavors, such as the construction of the Panama

Canal [29,30], copper mining in Zambia [31,32], rubber

production in Malaysia [33], and the sanitation of Rio de Janeiro

city, Brazil [34,35], were successfully accomplished through EM

efforts. In addition, many cities under colonial rule witnessed EM

activities for disease prevention, including Dar es Salaam in the

United Republic of Tanzania. EM efforts were initiated under the

German rule, intensified under the British rule, and successfully

continued after independence [36–45]. However, EM activities

suffered a major setback in 1972, when adverse economic

conditions resulted in deterioration of the national health system.

Maintenance of drains was nonexistent; water flow was blocked by

silt, vegetation, and waste, favoring the occurrence of flooding

after the rains, and offering ideal conditions for mosquito breeding

inside and in the immediate surroundings of drains [46].

Currently, Dar es Salaam still faces similar problems, augmented

by the pace and pattern of urban growth, particularly since the early

1980s [47]. Dar es Salaam is among the world’s ten large cities with

fastest growth, and its population is expected to double between 2005

and 2020 [48]. In 2007, 29% of the urban population of the United

Republic of Tanzania lived in Dar es Salaam. Approximately 65% of

the households in Dar es Salaam are located in informal areas, living

under slum conditions as defined by the United Nations Human

Settlements Programme (UN-HABITAT), and therefore lacking one

or more of the following conditions: access to an improved drinking

water source, access to improved sanitation facilities, sufficient living

area, durable housing in a non-hazardous location, and security of

tenure [48,49]. Rapid and unplanned urban growth have created

areas with precarious infrastructure and inefficient solid waste

collection [8,45,50]. According to reports of the Dar es Salaam City

Council, approximately 50% of all refuse daily generated in the city is

not collected, and a large portion eventually finds its way into drains

and rivers.

A small-scale urban malaria control effort attempted in Dar es

Salaam during 1986–1993 identified drains as important sources

of Anopheles larval development [45]. In addition, a survey

conducted in 2006–2007 in the City indicated that, on average,

21% of the drains contained immature forms of Anopheles and Culex

mosquitoes throughout the year [51]. Both vectors are of public

health importance: in Dar es Salaam, three species of Anopheles

were identified as malaria vectors, namely An. gambiae s.l., An.

funestus and An. coustani [52], while LF is transmitted by Culex

quinquefasciatus, An. gambiae s.l., and An. funestus [53,54]. Yet, the

actual importance of drains relative to other breeding habitats in

the city remains unknown.

Here, we analyze the typology of mosquito breeding habitats in Dar

es Salaam, to assess the importance of drains as a source of larval

habitats for vectors of LF and malaria. We examine the most common

characteristics of drains that were associated with the presence of

Anopheles and Culex larvae and discuss opportunities for a coordinated

effort of vector control that could foster a synergy between current

programs to control LF and malaria in Dar es Salaam.

Materials and Methods

Study area
Dar es Salaam is the largest city and de facto capital of the United

Republic of Tanzania, located along the shores of the Indian

Author Summary

Lymphatic filariasis and malaria are endemic in Dar es
Salaam and partially share common vectors, but no
synergy exists between their control programs. The vast
majority of mosquito breeding habitats in the city is
human-made, and therefore could be mitigated through
the implementation of a community-based vector control
program accompanied by an educational campaign to
sensitize the population and promote behavior change. Of
particular importance are clogged drains and ditches with
stagnant water, which are the most common larval habitat
in the city. This problem could be addressed by an
environmental management intervention in order to
restore and maintain the functionality of drains. Such
intervention can potentially contribute to reduce vector-
borne disease transmission, but also promote an overall
healthier environment, particularly improving the situation
of those living under slum conditions, as proposed by the
Millennium Development Goal 7. A synergy between
efforts to control lymphatic filariasis and malaria, identify-
ing common strategies, combining monitoring activities,
optimizing the use of limited financial resources, and
carefully evaluating the cost-effectiveness of the joint
venture would not only contribute to current goals of
lymphatic filariasis and malaria elimination, but also
provide important lessons for future integrated control
efforts.
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Ocean. Administratively, the city comprises three municipalities –

Ilala, Kinondoni and Temeke – and is divided into 73 wards, 51 of

those considered to be urban, according to the National Bureau of

Statistics. Wards are further divided into smaller neighborhood

units called mitaa (a Kiswahili word for street, written in the

singular form as mtaa) [55]. Each mtaa is subdivided into ten-cell

units (TCU), or clusters of approximately 10–20 houses, although

some TCUs contain a much larger number of houses.

Our study focused on 15 city wards that comprise 56 km2

(Figure 1) and a population of more than 610,000 people. Since

Figure 1. Study area and administrative units in Dar es Salaam, Tanzania. Administratively, Dar es Salaam comprises three municipalities –
Ilala, Kinondoni and Temeke – and is divided into 73 wards (22 in Ilala, 27 in Kinondoni, and 24 in Temeke), classified by the Tanzania National Bureau
of Statistics (NBS) as urban, rural or mixed. The wards are further divided into smaller areal units called mitaa, which are subdivided into ten-cell units
(TCU), the smallest administrative unit in the city. The map highlights the 15 wards included in the study (5 in each municipality), which comprise the
targeted area for an urban malaria control effort.
doi:10.1371/journal.pntd.0000693.g001
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2004, that area has been targeted with a large operational

community- based Urban Malaria Control Programme (UMCP)

[56], which included routine mapping and surveillance of

mosquito breeding habitats. The UMCP commenced weekly

larvicide application in March 2006 in three out of the 15 wards,

scaled-up to nine wards in May 2007, and to all 15 wards in April

2008. The study area was also covered by a drain assessment

survey conducted in 2006–2007, which gathered information on

varied characteristics of drains, including larval presence [51].

Routine larval habitat mapping
Information on characteristics of mosquito breeding habitats

during 2005–2007 was obtained from the UMCP routine larval

habitat surveys, which have been described in detail elsewhere

[56]. Briefly, all habitats which were open to sunlight (referred to

as ‘open habitats’) in the targeted area were surveyed for mosquito

larvae by dipping [57] and the presence or absence of anopheline

and culicine larva recorded. The UMCP priority is malaria vector

control, therefore sanitation structures, such as pit latrines, soakage

pits, and container type habitats which are closed to the sun

(referred to as ‘closed habitats’) and produce large numbers of

culicines, but no Anopheles [58,59] mosquitoes were not included in

the surveys. Each habitat was assigned a unique identifier and

followed-up weekly. Habitat characteristics recorded were: habitat

type, habitat size in perimeter, presence of water, and occurrence

of emergent plants inside the water. Only aquatic habitats

(containing water) were included in this study, and they were

grouped into ten categories: (1) puddles, (2) swampy areas, (3)

mangrove swamps/saltwater marshes, (4) drains, (5) streams/river

beds, (6) construction (including construction pits, foundations,

man-made holes), (7) water storage containers, (8) agriculture

(including rice paddies, ridge and furrow agriculture, and other

habitat associated with agriculture), (9) ponds, and (10) others (e.g.,

spring and seepage).

Although data were collected on a weekly basis, to date only

information from one week in every 4-week period was stored in

digital format. Therefore, survey data were available for 13 weeks

per year, which comprised a representative sample of the annual

typology of breeding habitats in the city. All data collected

between 2005 and 2007 were aggregated at the TCU level by

month, year and habitat type. Since our goal was to determine the

importance of drains as breeding habitats for disease vectors, and

not to evaluate the use of larviciding introduced by the UMCP, we

excluded from the analysis all wards covered with this intervention

in 2006 and 2007. We evaluated the proportion of aquatic habitats

that contained Anopheles and/or Culex larvae by habitat type. In

addition, among those aquatic habitats that did contain larvae, we

assessed which were the most common types.

Drain assessment survey
During May 2006 and March 2007 we conducted a survey in

the study area to assess the physical characteristics of the drains

(structure, material, dimensions, and geographic coordinates) and

their current conditions (undergoing maintenance activities,

presence of waste and/or vegetation, water flow, accessibility,

history of flooding, and presence of Anopheles and/or Culex larvae)

[51]. Each drain was surveyed once for the same set of

parameters in different segments, which represent sections with

similar direction or separated by covered structures (e.g., car

and/or pedestrian passage; Figure 2). City cadastral maps

(available at 1:2,500 scale) were used to locate drains. These

maps were produced based on 1992 information, and since then

have not been updated. Survey-related field work included (i)

locating existing drains in the cadastral maps, or sketching the

drain if it was built after 1992; (ii) collecting geographic

coordinates at an accuracy level of approximately 5–8 m by the

use of a global positioning system (GPS) receiver (Garmin eTrexH
H; Olathe, KS, USA); (iii) filling out a data collection sheet for

each drain segment; (iv) taking pictures with a digital camera to

document drain conditions; and (iv) checking for the presence of

larvae using a mosquito dipper (using the same protocol adopted

in the UMCP larval habitat survey). A total of 338 drains were

surveyed, comprising 3,272 drain segments and 107.6 km in

extension.

Spatial information and rainfall data
We used the geographic coordinates of surveyed drain segments

to create a spatial database. Points representing each segment were

connected to create a polyline for each surveyed drain. We also

utilized a 2002 Quickbird satellite image to validate the location of

drains not represented in the cadastral maps. Habitat-related

variables were arranged in a spatial database with TCUs as the

spatial unit of analysis. TCU maps were obtained through

participatory mapping as part of the UMCP activities [55].

Dar es Salaam has a hot and humid tropical climate with two

rainy seasons: an intense one observed during the months of

March, April, and May, and a milder one occurring in November

and December. To account for this seasonality, monthly rainfall

data were provided by the Meteorological Agency, and a

categorical variable created to represent dry and wet seasons.

Dry months were January, February, June, July, August, and

September; wet months included March, April, May, October,

November, and December.

Spatial analysis
Spatial variation in the proportion of aquatic habitats that

contained Anopheles and/or Culex larvae (as reported by the UMCP

larval habitat survey data) was assessed through the use of the local

Moran’s I indicator of spatial association [60]. Significant clusters

were identified utilizing a first-order queen neighborhood

definition. All results were corrected for multiple testing utilizing

the false discovery rate control procedure [61,62]. Mapping was

performed in ArcMap (ESRI, Redlands, CA, USA), and spatial

analyses were conducted in GeoDA [63].

Figure 2. Sketches of drain segments that compose one unique
surveyed drain. The Figure shows two hypothetical drains, indicating
how different segments were identified and surveyed during the Drain
Assessment Survey. A. The drain follows the same linear direction
throughout its entire extension, but five drain segments are identified:
three are open (AB, CD, and EF) and two are covered – car and/or
pedestrian passage (BC and DE). B. The drain follows local areal
characteristics, and each change in direction corresponds to a unique
drain segment.
doi:10.1371/journal.pntd.0000693.g002
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Habitat characterization and potential determinants for
Anopheles and Culex breeding

We analyzed the UMCP larval habitat survey data to obtain a

typology of aquatic habitats in the study area and to assess their

seasonal variation due to rainfall. Focusing on drains, we used the

drain assessment survey to evaluate potential factors impacting the

presence of larvae in these habitats. We fitted two separate logistic

regression models. In the first model, the outcome variable indicates

the presence of Anopheles larvae in surveyed drain segments. In the

second model, the outcome variable indicates the presence of Culex

larvae in surveyed drain segments. In both models we included

independent variables that showed a significant effect in univariate

analysis. These independent variables were all binary and included: (i)

presence of a human-made connection to the drain segment – these

connections are often illegal and tend to leave exposed pipes inside

the drain blocking the water flow; (ii) lined drain segment – lined

drains are less likely to present erosion; (iii) located in residential areas;

(iv) presence of waste materials; (v) drain segment contained

vegetation; (vi) efforts to maintain the drain in good conditions were

conducted regularly; (vii) drain segment often floods after the rains;

(viii) presence of stagnant water; (ix) water flowing at low velocity; (x)

drain segment easily accessible by trucks; (xi) drain segment

constructed before 1992; and (xii) drain segment surveyed during

the dry season. Finally, the first model included a binary variable

indicating the presence of Culex larvae, and the second model

included a binary variable indicating the presence of Anopheles larvae.

Model goodness-of-fit was assessed through the calculation of

three diagnostics measures: (i) the area under the receiver

operating characteristic (ROC) curve; (ii) the detection of extreme

observations (Pearson residuals, standardized residuals, deviance,

and Pregibon leverage); and (iii) the assessment of heteroscedas-

ticity in the residuals (robust standard errors) [64]. All data were

stored in databases prepared in Epi InfoTM version 3 (Centers for

Disease Control and Prevention; Atlanta, GA), or Microsoft Excel

(Microsoft Corp.; Seattle, Washington). All statistical analyses were

done using Stata/SE 9.2 (Stata Corp.; College Station, TX, USA).

Results

Between 2005 and 2007, on average 24,039 habitats were

followed-up weekly, and 54% (12,888) contained water in one

or more of the surveyed weeks (Table 1). On average, 8% of

the aquatic habitats that were found per sampling occasion

contained Anopheles larvae, 24% contained Culex larvae, and in

5% the concurrent presence of both anopheline and culicine

larvae was observed. A detailed analysis by habitat type

(Table 1) indicated that aquatic habitats associated with

agriculture were proportionally most frequently colonized by

Anopheles (33%), followed by ponds (25%) and habitats

associated with rivers and streams (21%). In contrast,

anophelines were, on average, found in only 6% of the

drains. Overall, a higher proportion of habitats were

colonized by culicine larvae than anopheline larvae. Culex

larvae were, on average, present in 51% of the ponds, 48% of

habitats associated with agriculture, 43% of habitats associated

with rivers and streams, but in only 25% of the drains.

Notably, the vast majority of the weekly surveyed aquatic

habitats were drains (42%) and only 3% of the habitats were

associated with agriculture. Therefore, 33% (320/976) of all

anopheline positive habitats and 43% (1,364/3,149) of all

culicine positive habitats found per weekly survey were drains

and ditches, three and eight times more than anopheline and

culicine positive agricultural sites, respectively (Table 1 and

Figure 3). Construction pits, foundations, and other human-

made holes were the second most common habitat types

(Figure 3), and combined with drains accounted for more than

half of the aquatic habitats positive for Anopheles larvae. This

typology of larva-positive habitats showed seasonal variation

due to rainfall, particularly for drains and puddles (Figure 4).

Heavy rains increase the water level in drains, causing

flooding in those with precarious conditions, and washing

off waste materials. For a short period immediately after the

rains the water flow can be restored, and the presence of

larvae in the drain reduced. However, over time, waste

eventually gets back into the drains, disturbing water flow and

facilitating mosquito breeding. In contrast, puddles positive for

larvae become more prominent after the rains, and some of

these puddles often occur in the vicinity of drains after

flooding.

There was significant heterogeneity in the spatial distribution of

the proportion of aquatic habitats with mosquito larvae,

considering the TCU as the unit of analysis. Focusing on drains,

Table 1. Average number of habitats surveyed weekly between 2005–2007.

Habitat type Total habitats
Aquatic
habitats Habitats with larvae

Anopheles Culex Both Anopheles and Culex

Total % with larvae Total % with larvae Total % with larvae

Puddle 4,721 1,519 114 7.5 270 17.8 85 5.6

Swamp 789 428 47 11.0 67 15.5 25 5.9

Mangrove swamp 60 51 10 19.5 12 23.4 9 18.3

Drain/ditches 8,198 5,405 320 5.9 1,364 25.2 226 4.2

Human-made holes 5,337 3,028 212 7.0 797 26.3 148 4.9

Water storage 2,983 1,518 46 3.0 301 19.8 36 2.4

Agriculture 1,047 334 110 33.0 160 47.9 80 24.0

River/stream 220 216 45 21.1 92 42.6 34 16.0

Pond 67 57 14 23.8 29 50.0 12 21.1

Other 617 332 58 17.3 57 17.1 17 5.1

doi:10.1371/journal.pntd.0000693.t001
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significant clusters of high proportion of drains with Anopheles

larvae were observed in TCUs located in the northern part of the

study area (Mikocheni ward), in the western part (Kipawa ward),

and in the eastern-most area (Kurasini ward; Figure 5). Mikocheni

is very well serviced with a large network of drains, but they are

mostly located along minor roads in residential areas and are

covered with grass. The majority of settlements in the other two

wards with high density of anopheline positive drains are

unplanned, and drains are frequently blocked and not well

maintained. Very few significant clusters of low proportion of

Anopheles presence in drains were observed. However, clusters of

low proportion of Culex presence in drains were widespread, and

Figure 3. Percentage distribution of aquatic habitats that contained larvae by habitat type, 2005–2007. Data on aquatic habitats
containing Anopheles or Culex larvae were retrieved from the Urban Malaria Control Program (UMCP) routine larval habitat survey.
doi:10.1371/journal.pntd.0000693.g003

Figure 4. Monthly distribution of rainfall and percentage of drains and puddles that contained larvae, 2005–2007. Data on aquatic
habitats by type were retrieved from the Urban Malaria Control Program (UMCP) routine larval habitat survey. Rainfall information was provided by
the Tanzania Meteorological Agency, and was lagged by 1-month. Therefore, mosquito larval presence in a month is compared with the amount of
rainfall in the previous month.
doi:10.1371/journal.pntd.0000693.g004
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clusters of high proportion partially overlapped those found for

Anopheles larvae presence.

Results from the drain assessment survey indicated almost

complete absence of maintenance activities, common presence of

waste materials inside the drains, inadequate water flow,

occurrence of flooding during the rainy season, and presence of

Anopheles and Culex larvae (Table 2). Important characteristics that

impact the presence of Anopheles larvae in drains were related to

Figure 5. Clustering pattern in the proportion of aquatic habitats classified as drains that contained larvae, 2005–2007. Clusters in
the proportion of aquatic habitats that contained larvae, utilizing the ten-cell unit (TCU) as the spatial unit of analysis, were assessed through the use
of local Moran’s I indicator of spatial association, with a first order queen neighborhood. Cluster significance was determined based on a normal
distribution and corrected for multiple comparisons utilizing the false discovery rate procedure (as described in Data and Methods).
doi:10.1371/journal.pntd.0000693.g005
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water flow and vegetation occurrence (Table 3, Model 1).

Compared with a drain segment where water was flowing at

normal velocity, the odds of Anopheles larval presence in drain

segments with water flowing at low velocity were 5.9 (95% CI 4.1–

8.7) times larger, and those with stagnant water were 8.3 (95% CI

5.8–11.7) times larger. Drain segments with vegetation were 3.4

(95% CI 2.5–4.6) times more likely to contain Anopheles larvae.

Finally, Anopheles larvae were more likely to occur in drain

segments that also contained Culex larvae (OR = 18.3, 95% CI

13.4–25.0). An important difference between characteristics that

impacted the presence of Anopheles and Culex larvae was related to

the occurrence of accumulated waste materials in drains (Table 3,

Model 2). There was a strong association between the presence of

waste materials and the probability of finding Culex larvae

(OR = 3.5, 95% CI 2.5–4.8).

Model diagnostics indicated a good fit, as represented by a

ROC value of approximately 0.93 (Table 3). In addition, a robust

estimation did not change significantly the standard errors, and

therefore heteroscedasticity was not likely to occur in the models.

Sensitivity of the model was assessed by removing 11 observations

with extreme values (large residuals) in Model 1 and 31

observations in Model 2. The new fitted models indicated no

significant changes in the estimated coefficients.

Discussion

Dar es Salaam is served by an extensive network of drains

(approximately 1,130 km), designed to lower the water level in the

city and to prevent the accumulation of stagnant water suitable for

vector proliferation [25,37]. In fact, some of these drains were

specifically designed by anti-malarial engineers to drain water

from malarious areas, and were locally known as ‘anti-malaria

drains’ [40]. The current conditions of drains, however, increase

the risk of vector breeding, and they commonly become associated

with a different meaning: ‘malaria drains’. The results of our

analysis provide evidence that drains are the most common

aquatic habitat and the most common habitat containing Anopheles

and Culex larvae in the city of Dar es Salaam. Nevertheless, drains

seem not to be the most preferred habitat by these species, since a

small proportion contained larvae. In contrast, the much fewer

aquatic sites associated with urban agriculture are more likely to

be found with larvae of both mosquito species. In addition, the vast

majority of larval habitats in Dar es Salaam are human-made.

Drains, borrow pits, and house foundations under construction

comprised 55% of all habitats that contained Anopheles larvae and

69% of all open habitats that contained Culex larvae. These

habitats are direct consequences of human actions, as opposed to

puddles, swampy grounds, marshes and seepages which are mainly

a result of the local environmental conditions.

In well maintained drain segments, where water can flow

undisrupted and vegetation is absent, the likelihood of finding

anopheline larvae was reduced by over 90%. Culicines showed a

wider distribution in drain segments with various characteristics,

particularly waste accumulation. Interestingly, there was a very

strong positive association between the presence of anophelines

and the presence of culicines. Similar findings have been reported

from habitats in rural areas in East and West Africa [9,65]

indicating that there is no clear separation between ‘typical’

Anopheles and Culex larval habitats. These results highlight that,

under ideal conditions, drains should serve as a tool for source

reduction of all mosquito types, including the vectors of numerous

neglected tropical diseases, and therefore it is not the habitat per se

that is conducive to mosquito breeding, but human activity and

lack of maintenance that can produce ideal conditions for larval

development.

The typology of breeding habitats did vary spatially. Some

habitat types, such as ponds, agricultural sites, and drains are

located in specific areas, and are not randomly distributed across

the city. In the case of agriculture, previous studies showed that the

presence of larvae was more likely in larger fields (sizes between

100 and 400 m2), located in lowland areas, close to rivers or ponds

but far from drains, and with loamy or clayey soils [22]. Some

areas may lack drains because they are unplanned settlements or

because their local ecology does not require modifications to

reduce the water level. Significant clusters of TCUs with high

proportion of drains with Anopheles and Culex larvae were observed

in three out of the 15 surveyed city wards. This spatial variability is

likely to be a result of idiosyncratic interactions between the local

ecology and human behaviors that have the potential to minimize

or augment the negative impacts of human-made transformations

on vector development. Spatial exploratory approaches similar to

those utilized in this analysis, as well as more sophisticated spatial

modeling, should be applied more frequently in entomological

studies to better capture the occurrence of local patterns in the

distribution of positive habitats, and to shed light on the likely

factors that determine such patterns.

A weakness of our survey is that TCUs were not distinguished

by specific characteristics (e.g., land use and prevalence of

Table 2. Summary statistics of surveyed drain segments.

Characteristics Municipality

Kinondoni Temeke Ilala

Total number of drain segments 1,768 675 829

Total extension (km) 53.2 23.3 31.1

Total number of drains 172 81 85

Average extension per segment (m) 30.1 34.5 37.4

Average depth per segment (m) 0.5 0.7 0.7

Average width per segment (m) 1.0 1.2 1.2

Represented in the Cadastral maps (%) 39.2 26.1 8.2

Located in residential area (%) 89.9 92.4 80.3

Lined (%) 81.4 83.4 75.2

Open (%) 63.6 82.1 73.1

Constructed with cement slabs/blocks (%) 40.6 50.9 44.0

Constructed with concrete (%) 35.3 17.2 25.8

Accessible by truck (%) 84.1 67.9 78.8

Contained solid wastes (%) 46.6 66.8 48.5

Plastics (%) 29.3 51.2 29.9

Plastics and other garbage (%) 69.9 44.1 67.7

Water was stagnant (%) 27.7 8.4 26.9

Water was flowing at low velocity (%) 22.3 11.7 20.6

Water was flowing at normal velocity (%) 15.8 11.0 7.8

Dry segment (%) 33.1 67.8 44.6

Presence of human-made connection (%) 14.1 7.0 8.7

Contained Culex larvae (%) 19.4 12.3 12.9

Contained Anopheles larva (%) 18.6 6.5 12.6

Contained vegetation (%) 21.8 41.6 23.0

Cleaning efforts were being undertaken (%) 0.6 2.3 1.5

Surveyed in the dry
season – Jan–Feb/Jun–Sep (%)

74.9 27.7 65.9

Presented history of flooding (%) 51.3 21.6 23.2

doi:10.1371/journal.pntd.0000693.t002
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unplanned settlements) or by their size (geographical area and

residents) even though the spatial variation in habitat abundance is

likely to be partially influenced by these variables. However, the

clustering pattern demonstrated in our analysis is particularly

important as a first step toward better understanding of the local

variations of human exposure to LF and malaria, and could be

utilized for more targeted interventions [66–68].

The majority of open vector breeding sites could be readily

avoided by keeping the drain network in Dar es Salaam in good

condition, through the implementation of routine EM activities,

embedded in an integrated vector management (IVM) approach

[69] targeting multiple vector-borne diseases. This would not

only prevent drains to serve as breeding sites, but would also

reduce the number of other aquatic habitats by draining high

ground water level, which otherwise leads to pooling of stagnant

water on swampy grounds in lowland areas frequently used for

urban agriculture. Restoring the drains would also reduce UMCP

costs by eliminating, on average, around 42% of all potential

mosquito larval habitats that are currently treated with larvicides

in weekly intervals (Table 1). In addition, it could potentially

reduce other vector-borne and water-borne diseases, and

contribute to the improvement of local environmental conditions.

While initial EM activities focused on cleaning and repair may

demand significant financial resources (given the current

precarious conditions of drains in Dar es Salaam), they tend to

have a short duration and are immediately followed by routine

and much less expensive maintenance activities with long-lasting

impacts [27,70–73].

These activities would greatly benefit from involvement of

community members [74–76], one of the characteristics of an

IVM approach [69]. This would contribute to engage local

residents, to develop a sense of ownership, to improve environ-

mental responsibility among the population, to avoid further

constraints to the currently insufficient health staff, and to

ultimately facilitate actions toward poverty alleviation and

sustainable development [74,77]. In addition, efforts should

include local capacity building [69], since much of the skilled

personnel needed to properly plan, implement, monitor, and

evaluate vector control interventions, including EM-related

activities, is scarce in LF- and malaria-endemic countries. The

establishment of multidisciplinary groups, bringing together

entomologists, physicians, social scientists, biologists, engineers,

hydrologists, and urban planners, could certainly improve vector

control activities, and facilitate the dialogue and collaboration

between different government sectors, that rarely work in

partnership [78].

Such multidisciplinary and community-based approaches applied

to contemporary EM interventions would represent an important

distinction from historical EM efforts, which were mainly vertical

(and often authoritarian) programs [31,33,79,80]. Also, previous EM

programs were heavily based on new engineering works, while

contemporary programs demand a special attention to recover and

maintain existing infra-structure (likely to be over utilized and

deteriorated as a result of fast city growth and deficient maintenance).

In addition, the planning, implementation and evaluation of routine

sensitization and educational programs targeted to disseminate

Table 3. Logistic regression models on the presence of larvae in drain segments.

Model 1 - Anopheles Model 2 - Culex

Odds ratio 95% CI p-value Odds ratio 95% CI p-value

Drain segment contains a
human-made connection

1.56 1.07 2.26 0.020 1.80 1.28 2.53 0.001

Drain segment is lined 0.86 0.60 1.24 0.429 1.00 0.71 1.41 0.990

Drain segment is located in a
residential area

2.91 1.83 4.64 ,0.001 0.37 0.25 0.55 ,0.001

Drain segment contains waste materials 1.27 0.92 1.74 0.141 3.48 2.52 4.80 ,0.001

Drain segment contains vegetation 3.39 2.50 4.61 ,0.001 1.81 1.36 2.42 ,0.001

Maintenance efforts to maintain the drain
segment clear are regularly undertaken

0.08 0.02 0.38 0.002 4.69 2.13 10.36 ,0.001

Drain segment has a history of flooding 0.76 0.55 1.05 0.092 1.99 1.46 2.72 ,0.001

Water in the drain segment flows at
low velocity

5.93 4.06 8.66 ,0.001 2.32 1.62 3.32 ,0.001

Water in the drain segment is stagnant 8.32 5.84 11.86 ,0.001 5.55 3.95 7.80 ,0.001

Drain segment accessible by a truck 1.23 0.84 1.79 0.293 0.50 0.35 0.70 ,0.001

Drain segment surveyed during the
dry season

1.20 0.85 1.69 0.305 0.78 0.56 1.08 0.131

Drain built before 1992 1.01 0.75 1.37 0.931 1.77 1.33 2.37 ,0.001

Drain segment located in Temeke
Municipality

0.42 0.25 0.73 0.002 1.66 1.05 2.63 0.029

Drain segment located in Kinondoni
Municipality

1.35 0.93 1.96 0.110 1.63 1.12 2.38 0.011

Drain segment contains Culex larvae 18.31 13.43 24.95 ,0.001

Drain segment contains Anopheles larvae 17.95 13.25 24.32 ,0.001

ROC 0.9249 0.9258

Each covariate is binary, and therefore the absence of the condition they describe comprise the reference group. In the case of Municipality, Ilala is the reference group.
doi:10.1371/journal.pntd.0000693.t003
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knowledge and to promote behavior change that could result in

reduction of human-made vector breeding sites has seen little

application in Africa [81,82].

A community-based pilot EM intervention conducted in Dar es

Salaam in 2008 provided initial evidence of the potential to

increase awareness and local engagement after sensitization

campaigns [73]. We argue that a sensitization effort should

engage community leaders (taking advantage of the current

neighborhood structure in Dar es Salaam, where each TCU has

an elected leader), local community groups (e.g., religious groups),

non-governmental organizations, school teachers, and local health

officials. The use of local community members modestly paid to

conduct vector control activities, including drain maintenance,

could be expanded given that proper supervision is in place

[56,73]. Initiatives to be promoted by sensitization campaigns

could include not only the dissemination of knowledge regarding

mechanisms of disease transmission and prevention, but also the

provision of information on ways to dispose waste, cultivate crops,

build/renovate houses, and create sewage connections that

minimize the risk of vector development. Further research and

experiments are needed to evaluate the best sensitization program

scope, structure, and targeted population to effectively promote

behavior change to reduce the number of larval habitats.

Currently, there is a lack of synergy between the National

Malaria Control Program (NMCP)/UMCP and the National

Lymphatic Filariasis Elimination Program (NLFEP), although

opportunities for combined action do exist. Strategies of the

NMCP in Dar es Salaam include the introduction of malaria rapid

diagnostic tests in health facilities, the distribution of long-lasting

insecticidal nets, the improvement of intermittent preventive

treatment of malaria in pregnancy, and wide access to artemisi-

nin-based combination therapy [83]; the UMCP focuses on

spraying larvicide in 15 wards, planned to be progressively scaled-

up to all urban wards of Dar es Salaam. With regards to LF, the

NLFEP began in 1997, focusing on mass drug administration

(MDA), lymphoedema management, and hydrocelectomies (sur-

gery for scrotal swellings) [5]. The first round of MDA was

launched in the United Republic of Tanzania in 2000, using a

combination of ivermectin (MectizanH) and albendazole. The

MDA conducted in Dar es Salaam in 2006–2007 covered

approximately 65% of the population. Although vector control

focusing on treated nets and reduction of mosquito breeding sites

also comprise the list of the NLFEP recommended strategies, these

activities are currently regarded as NMCP tasks, and LF control is

heavily based on MDA. Nonetheless, MDA alone may not be

sufficient to achieve LF elimination due to potential development

of drug resistance, resource constraints, and operational difficulties

to achieve high coverage in urban areas [3,84]. These challenges

become more critical considering that the drugs utilized on MDA

efforts suppress the production of new microfilariae but do not kill

adult worms, and therefore, the duration of the MDA should

exceed the average longevity of adult worms, 5–10 years [85].

Implementation of vector control is critical to minimize transmis-

sion when MDA efforts have moderate coverage or are

prematurely ceased.

Considering the importance of drains as larval habitats for both

LF and malaria vectors, and the often constrained availability of

financial resources in countries endemic to both diseases [4,86],

the need for integrated EM efforts stands out as crucial. Although

our analysis focused on open habitats, a large number of culicines

breed in closed habitats [53], and therefore the EM efforts here

described are not the single solution to reduce LF vectors. Further

studies are needed in order to investigate the dynamics of LF

transmission by different mosquito species, originating from

different habitats, as well as the potential importance of LF and

malaria co-infections on levels of disease transmission [4].

Strategies to reduce larval development in closed habitats have

been successfully adopted in Dar es Salaam and elsewhere [87,88],

and they need to be incorporated in an IVM approach [69],

jointly planned and launched by LF and malaria control

programs.

In 1997, the World Health Assembly called for LF elimination

after the International Task Force for Disease Eradication

identified the disease as potentially eradicable [89]. A decade

later, a call for malaria eradication was made during the Gates

Malaria Forum [90,91]. A synergy between efforts to control each

disease where they co-exist, identifying common strategies,

combining monitoring activities, optimizing the use of limited

financial resources, and carefully evaluating the cost-effectiveness

of the joint venture can potentially contribute to successful

outcomes, as well as provide important lessons for other potential

concerted control efforts. Ultimately, an initiative to promote

community-based EM and sensitization and educational pro-

grams, as part of a larger IVM approach that also targets open

breeding habitats, is expected to optimize current efforts of the

NMCP/UMCP and the NLFEP, mitigate some of the conse-

quences of the current pace and pattern of urban growth [50], and

add to the city’s efforts to ensure environmental sustainability [92],

as proposed by the Millennium Development Goal 7 (http://

www.undp.org/mdg/goal7.shtml). Further studies are needed to

provide definite evidence of such potential successful outcomes.
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