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Abstract

We have previously shown a reduction in anaemia and wasting malnutrition in infants ,3 years old in Pemba Island,
Zanzibar, following repeated anthelminthic treatment for the endemic gastrointestinal (GI) nematodes Ascaris lumbricoides,
hookworm and Trichuris trichiura. In view of the low intensity of worm infections in this age group, this was unexpected,
and it was proposed that immune responses to the worms rather than their direct effects may play a significant role in
morbidity in infants and that anthelminthic treatment may alleviate such effects. Therefore, the primary aims of this study
were to characterise the immune response to initial/early GI nematode infections in infants and the effects of anthelminthic
treatment on such immune responses. The frequency and levels of Th1/Th2 cytokines (IL-5, IL-13, IFN-c and IL-10) induced
by the worms were evaluated in 666 infants aged 6–24 months using the Whole Blood Assay. Ascaris and hookworm
antigens induced predominantly Th2 cytokine responses, and levels of IL-5 and IL-13 were significantly correlated. The
frequencies and levels of responses were higher for both Ascaris positive and hookworm positive infants compared with
worm negative individuals, but very few infants made Trichuris-specific cytokine responses. Infants treated every 3 months
with mebendazole showed a significantly lower prevalence of infection compared with placebo-treated controls at one year
following baseline. At follow-up, cytokine responses to Ascaris and hookworm antigens, which remained Th2 biased, were
increased compared with baseline but were not significantly affected by treatment. However, blood eosinophil levels, which
were elevated in worm-infected children, were significantly lower in treated children. Thus the effect of deworming in this
age group on anaemia and wasting malnutrition, which were replicated in this study, could not be explained by
modification of cytokine responses but may be related to eosinophil function.
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Introduction

In endemic countries infants are exposed to gastrointestinal (GI)

nematode infections soon after birth and infection intensity

increases during childhood. Helminth infections in children are

associated with malnutrition [1,2], linear growth stunting [3] as

well as iron deficiency anaemia [4,5], effects related to the intensity

of infection [6] and generally attributed to the direct and indirect

effects of the worms on the gut i.e. blood loss, mucosal damage,

secondary infection, malabsorption [7–10]. Several studies have

now documented that deworming leads to improvements in

nutritional outcomes e.g. anaemia and wasting malnutrition and in

development of school-aged children who often harbour the

highest intensities of these worms [11–13]. However, a recent

study in Pemba found significant benefits of anthelminthic

treatment on growth, anaemia and appetite in children ,30

months of age who harboured very light GI nematode infections

[14]. Indeed the benefits of mebendazole were significant only in

this younger age group and not in children 30–71 months old. In

view of this unexpected effect of deworming very lightly infected

children, it was suggested that the nutritional benefit may be

related to prevention of the indirect effects of the worms such as on

the immune responses they induce rather than to their direct

effects.

Various aspects of the immune response to the initial/early

exposure to GI nematodes might contribute to anaemia and

malnutrition, and this may be alleviated by worm treatment. Pro-

inflammatory cytokines and acute phase proteins can suppress

appetite [15,16], induce protein loss [17] and raise the levels of

resting energy expenditure [18,19], as well as affect anaemia (the
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anaemia of chronic disease) [15–17,19,20]. One possibility therefore

is that primary exposures to GI nematode infections induce

inflammatory (Th1-mediated) responses in a significant proportion

of the infants resulting in anaemia and malnutrition. Although older

humans in endemic areas generally develop Th2 dominated

cytokine responses to GI nematode infections, characterised

functionally by IgE and eosinophilia [21–23], some studies have

shown that Th1 cytokines are induced [24]. The responses to initial

exposures in infants has not been studied previously but studies of

gut nematode infections in mice have shown that, depending on the

worm species and host genotype, the response to primary infection

can be polarized to either Th1 or Th2 [25] and influenced by

infection intensity [26]. By analogy, it may be hypothesised that

light primary exposures in the human population may result in Th1

responses, in at least a proportion of individuals.

Th2-mediated responses may also affect gut function leading to

impaired nutrition. Studies of GI nematode infections in mice

have shown that the barrier function of the mucosa can be

profoundly altered by the action of Th2 cytokines on epithelial

cells and/or mast cells resulting in increased mucosal permeability,

reduced glucose absorption, increased ion secretion and intra-

luminal fluid accumulation [27–30]. Infections of Ascaris suum in

pigs, which are considered a relevant model for human ascariasis,

cause similar effects coincident with upregulated expression of Th2

cytokines [31]. In humans, T. trichiura can induce mast cell

infiltration and an immediate hypersensitivity response in the

colon of infected children leading to release of histamine [32].

During T. suis infection in pigs, a good model for human

trichuriasis, upregulation of expression of Th2 cytokines in the

mucosa parallels mucosal hypertrophy characterised by infiltration

of mast cells and eosinophils which may play an immunopatho-

logical role [33]. Similarly in humans, hookworm infections result

in eosinophil infiltration [34], Charcot-Leyden crystal production

[35] and, following infection with Ancylostoma caninum, eosinophilic

enteritis [36]. Worm-induced Th2 cytokines can also induce

increased smooth muscle contractility in mice [28,37,38] and pigs

[31] and, in mice, can induce epithelial cell turnover [39], goblet

cell hyperplasia and mucus secretion [40,41].

The current immunological study was a trial within a larger field

based randomised treatment trial (manuscript in preparation) to

confirm the beneficial effects of treating intestinal helminth

infections in early childhood on anaemia and malnutrition [14].

The immunological study was a primary aim of the project designed

to investigate possible immunological mechanisms involved in the

pathogenesis of these early infections and the amelioration of this by

deworming. The specific aims were to establish (i) if measurable

immune responses to worm infections (cytokines, acute phase

proteins) could be demonstrated in very young (6–24 months)

children harbouring light infections (ii) if so, whether such infants

made predominantly Th1 or Th2 cytokine responses or some one

and some the other; (iii) whether such responses were altered by

periodic (3-monthly) anthelminthic treatment which might explain

the benefits afforded by such treatment in this age group.

Materials and Methods

This study was nested within a community-based treatment trial

designed to test whether periodic mebendazole treatment in 6–24

month old infants would decrease rates of severe anaemia and

protein-energy malnutrition (International Standard Randomised

Controlled Trial Number 83988447). The study was performed

between September 2003 and October 2004 at the Public Health

Laboratory-Ivo de Carneri, Pemba Island, Zanzibar, United

Republic of Tanzania. Pemba Island is densely populated and

mostly rural, with subsistence farming as the main economic

activity. Plasmodium falciparum malaria is holoendemic, as are the

geohelminths, Ascaris lumbricoides, Trichuris trichiura, Ancylostoma

duodenale, and Necator americanus.

Study participants
Initially 2664 children aged 6–23 months were screened for

helminth infection. During the screening process, age-matched

triplets of infants (comprising 2 infected (matched for infection

species) and 1 uninfected infant) were formed and randomised for

treatment stratified by age (3 groups 6–11, 12–17 and 18–23

months) and by infection status (Ascaris, Trichuris, Ascaris and

Trichuris, hookworm with or without any other infection). These

children formed the immunology study cohort; 335 infants were

randomised to placebo and 318 to mebendazole treatment. The

CONSORT protocol is in Figure S1 and Protocol S1. All children

screened but not selected for the immunology study were

subsequently randomised in the main community-based treatment

trial with random allocation to treatment or placebo groups. The

immunology study children were still involved in the randomised

treatment trial (manuscript in preparation). Age-matched selection

into the immunology study was essential to the design, because the

probability of infection was very strongly related to infant age.

Without age-matched selection, the infected children would

naturally have been older than the uninfected children, creating a

biased comparison with regard to infection status. Having created

the age-matched samples of infected and non-infected children, we

then analysed the data without regard to the original matching. This

is a valid approach for matched follow-up (cohort) studies [42]. At

baseline blood was taken for the immunological investigations after

which the infants were treated with a 3 day course of mebendazole,

100 mg twice daily, or identical placebo that was repeated every 3

months over a study period of 12 months. A blood sample was again

taken for immunological studies 1 month after the 3rd treatment

round to allow time for any possible effects of worm reductions on

cytokine responses to develop. The study was approved by the

ethical review committees of the London School of Hygiene and

Tropical Medicine, Johns Hopkins Bloomberg School of Public

Author Summary

Infants and very young children commonly become
infected with intestinal nematode infections. However,
the worm burdens are generally very light, so a beneficial
effect of deworming on wasting malnutrition and anaemia
in this age group which we have demonstrated was
unexpected and the mechanism unclear. To investigate
this, we have, for the first time, determined whether such
worm infections in infants induce significant immune
reactions which might be detrimental to nutrition and
growth e.g. by inducing inflammation in the gut or by
cytokine effects on erythropoiesis. We also determined if
such responses are modulated by regular deworming over
a 9 month period. Peripheral blood cells from infants
infected with Ascaris and hookworms in particular
responded to stimulation with worm antigens, producing
predominantly Th2 cytokines. Although the Th2 cytokine
responses in the periphery were not significantly altered
by deworming, the levels of eosinophils, which are
regulated by the Th2 cytokine, IL-5, were lower after
treatment. It is possible that eosinophils play a role in gut
pathology leading to wasting malnutrition and anaemia in
the very young and that this effect is reduced by
deworming.

Cytokines to STHs in Infants
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Health, Cornell University, and the Ministry of Health of Zanzibar.

Because of the high rate of illiteracy amongst parents, verbal

informed consent was obtained from the mothers or from the

guardians of all enrolled infants, documented by signature of a

literate witness, following the ethical review committees’ approval.

Parasitology
Stool samples were collected on 2 consecutive days and stored at

4uC. Individual Kato-Katz slides were prepared from both

samples and the means taken [43]. The two samples were then

combined and 2 g were used for assessment by a sedimentation

technique [44]. In a small proportion of the Ascaris positive stool

samples (6.6%), the Ascaris egg counts were very high and egg

counts in individual Kato-Katz slides were stopped at 999 (i.e. 23,

976 epg). The percentage of egg reduction induced by treatment

(ERR) was estimated as 100[12exp(2D)]%], where D was the

mean difference for a particular treatment.

Antigen preparation
The somatic hookworm antigen from adult Necator americanus,

maintained in a hamster life cycle was prepared as described

elsewhere [35]. Necator americanus worms were kindly provided by

Prof. J Behnke, Prof. D Pritchard and Dr A Brown of Nottingham

University. The Trichuris suis and Ascaris suum were kindly provided

by Dr Dolores Hill and Dr Joseph Urban Jnr of the United States

Department of Agriculture. The Ascaris and Trichuris antigens were

prepared as described elsewhere [45,46]. In brief, the Ascaris

antigen was derived from adult A. suum that were homogenized,

extracted in 16 Dulbecco’s PBS overnight at 4uC, spun at

20,000 g, concentrated and dialysed against 10 mM TBS. The

supernatant was filter-sterilised, aliquoted and stored at 280uC.

Adult T. suis worms were cultured for 36 hours and culture fluid

used for the ES antigen. Somatic antigen from T. suis was prepared

as for A. suum above. Protein concentrations were determined

using the Bio-Rad protein assay.

Whole blood culture
The Whole Blood Assay (WBA) was carried out as described

elsewhere [35]. Heparinised venous blood was used no later than

4 hours after venepuncture. Preliminary validation of the helminth

antigens to induce recall cytokine responses in the WBA was

carried out in endemic helminth infected teenagers before use in

the infant studies. Ascaris and Trichuris antigens were used at a final

concentration of 30 mg/ml, whilst a pool of somatic hookworm

antigens was used at 20 mg/ml. Phytohemagglutinin and purified

protein derivative concentrations as well as haematology proce-

dures for differential cell counts were carried out as described

elsewhere [35].

Cytokine ELISA
Culture supernatants were stored at 280uC. Matched mono-

clonal antibody pairs from Pharmingen (Oxford, UK) or R & D

Systems (Abingdon, UK) were used according to the manufactur-

er’s instructions (IL-5: TRFK5 and JES1-5A10, IL-10: JES3-9D7

and JES3-12G8, IL-13: JES10-5A2 and B69-2 from Pharmingen;

IFN-c from R & D Systems). When a new kit was introduced it

was validated by testing in parallel with the previous kit using a

large batch of positive culture supernatant which was used

throughout the study.

Statistical analysis
All analyses were performed using the STATA statistical

analysis software package (version 9; Stata Corp). Medium alone

negative control values were subtracted from all results that were

above the lower limit of assay detection (i.e. 15 pg/ml). All ELISA

plate readings were standardised for each cytokine by use of the

positive control supernatant run on each plate in duplicate. Where

data are presented as percentage responders, a response was

defined as a cytokine concentration of .31.24 pg/ml, derived

from a comparison of the frequency of responses in worm negative

infants with worm positive infants, where a bimodal distribution

was observed. Contingency tables and Pearson’s Chi-squared tests

were used to compare proportions of responders. Fisher’s exact

test was used for small sample sizes. T test or ANOVA were used

with adjustment for multiple comparisons by Bonferroni proce-

dure. Effects of age and sex were investigated using ANOVA. Also

in view of the report of effects of malaria infection on helminth

cytokine responses [24], malaria infection status was included in

the analysis. Non-normally distributed variables were transformed,

or non-parametric tests (Mann Whitney test, Wilcoxon signed

rank test or Kruskal-Wallis test) were used. To examine the

relationships between two variables non-parametric regression

(Lowess) was used. If the relationship was approximately linear,

Pearson correlation coefficients were calculated and a linear

regression model was fitted. If the relationship was non-linear, the

data were transformed. If this failed to produce a linear

relationship, then the non-parametric correlation Spearman test

was used. Bootstrap was used to infer variances of regression

coefficients, P-values and 95% confidence intervals when the data

were not normal. Regression models were used to identify

predictors for cytokine response adjusting for age, sex and malaria.

Cure rates, percentage reduction in prevalence and egg reduction

rates were calculated as described [47]. Cytokine responses

measured from stimulation of whole blood with Trichuris ES and

somatic antigen were minimal in infants, and mean response to the

two antigens were used in analysis.

Results

Parasitology at baseline
The 666 subjects were selected on the basis of being (any) worm

positive or negative at a ratio of approximately 2:1 (70.7% were

worm positive) with age-matching of infected and uninfected

infants. Amongst the worm positive infants, 42.0% had Ascaris

infection (6other worms), 16.8% were positive for hookworm

(6other worms) and 71.5% were positive for Trichuris (6other

worms) (Table 1 and Figures S2, S3, and S4). Mean intensities

(eggs per gram [epg]) were 1061 for Ascaris, 213 for hookworm and

213 for Trichuris (see also Figure S5) and there was no significant

effect of co-infection with one of the other worms on intensities of

infection. According to WHO categorisation [48] the majority of

the infants harboured ‘‘light’’ infections (80.4% Ascaris, 1–4999

epg, 96.8% hookworm, 1–1999 epg, 89.9% Trichuris, 1–999 epg).

Egg counts were significantly positively associated with age for

Ascaris egg positive infants (n = 184, b= 1.06, P = 0.047, 95% CI

1.00–1.12) but this was not significant for Trichuris or hookworm

egg positive infants. There was no significant association between

intensity and sex. The prevalence of Plasmodium species infection in

this age group was 24.9%.

Exposure of infants to GI nematode infections induces
predominantly Th2 cytokine responses

The frequency of subjects making cytokine responses above the

cut off (i.e. .31.24 pg/ml, see Materials and Methods) at baseline

for the Ascaris, and Necator antigens is shown in Figure 1.

Amongst Ascaris egg positive infants, 47% and 46% respectively

made IL-5 and IL-13 responses whilst only 20% and 12%

Cytokines to STHs in Infants
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respectively made IFN-c and IL-10 (Figure 1A). A significantly

higher proportion of infants in the Ascaris positive group made IL-5

and IL-13 responses compared to both worm negative infants and

Ascaris negative/other worm positive infants. The percentage of

IL-5 and IL-13 responders was also significantly higher in Ascaris

negative/other worm positive infants compared to worm negative

infants. The percentage of IFN-c or IL-10 responders was similar

between the infection groups.

Similarly, 54% of hookworm egg positive infants made IL-5 and

IL-13 responses to the homologous Necator antigen but only 6%

and 7% made IFN-c and IL-10 responses respectively (Figure 1B).

A significantly higher percentage of hookworm positive infants

made antigen-specific IL-5 and IL-13 positive responses compared

to both worm negative infants and to hookworm negative/other

worm positive infants. Hookworm negative/other worm positive

infants also had a significantly higher percentage of responders

compared to worm negative infants. The percentage of IFN-c and

IL-10 responders was very low in all groups.

There were minimal cytokine responses to the Trichuris antigen

amongst the infants, with a very low percentage of responders

(,5%), similar between the infection groups (data not shown).

The frequency of responses to phytohemagglutinin (PHA) and

purified protein derivative (PPD) which were included in all assays

were: IL-5, 85%; IL-13, 91%; IFN-c, 52% and IL-10, 56% for

PHA and the responses amongst BCG-vaccinated infants (BCG

scar-positive) to PPD were:- IL-5, 48%, IL-13, 50%; IFN-c, 78%

and IL-10, 24%.

The mean cytokine concentrations produced in cultures to the

helminth antigens for responders (.31.24 pg/ml) are shown in

Figure 2 and reflect the data on frequency of responses.

The mean levels of IL-5 and IL-13 to Ascaris antigen were

higher albeit not significantly in both Ascaris positive and Ascaris

negative/other worm positive infants compared to worm negative

infants (Figure 2A). The mean levels of IL-5 and IL-13 to

hookworm antigen were significantly different between the

infection groups (IL-5: ANOVA F(4, 189) = 4.58 P = 0.011, IL-

13: ANOVA F(4, 179) = 5.98 P = 0.003). Mean IL-5 and IL-13

levels in the hookworm positive responders were significantly

higher compared to worm negative infants (IL-5: P = 0.023, IL-13:

P = 0.027), and IL-13 levels for the hookworm positive responders

were also significantly higher compared to hookworm negative/

other worm positive infants (P = 0.011) (Figure 2B). The mean

responses to Trichuris antigen (,200 pg/ml) were not significantly

different between the different infection groups (data not shown).

Different Th2 cytokine responses were positively
correlated and there was not a subset of infants making a
predominantly Th1 response

The above data showed that Th2 cytokine responses to Ascaris

and hookworm antigens predominate amongst infected infants. To

demonstrate the reliability of the IL-5 and IL-13 results as an

indicator of overall Th2 responsiveness we plotted the correlation

between the levels of these two cytokines for the Ascaris antigen

stimulations. IL-5 and IL-13 responses to Ascaris antigen in worm

positive infants have a significant positive association (n = 471,

repetitions = 1000, Bootstrap coefficient = 1.31, SE = 0.11,

P,0.001, 95% CI 1.09–1.53, r2 = 0.8438). A similar correlation

holds for hookworm antigen responses (data not shown).

Although there was no significant association between Th2 (IL-

5 and IL-13) responses and IFN-c responses in worm positive

infants, the relatively few infants who made elevated IFN-c
responses to Ascaris and hookworm antigens also made elevated

Th2 responses, whilst many infants who did not make IFN-c
responses made high IL-5 responses. Thus there was not a subset

of infants who made a Th1 biased response.

Level of cytokine response in relation to age and
infection status

Figure 3 shows the levels of Th2 cytokine responses to Ascaris

and hookworm antigen respectively in relation to age and infection

status.

Ascaris antigen-specific cytokine responses. For Ascaris-

positive subjects (Figure 3A), there was a positive albeit not significant

trend for IL-5 and IL-13 responses with age, whilst these cytokines

were significantly positively associated for the Ascaris negative/other

worm positive group (n = 273, bootstrap repetitions = 500; IL-5 b

Table 1. Demographic and parasitological characteristics of subjects at baseline.

Infection group N (%) Sex (M:F)
Age mean,
months (95% CI)

Malaria
infection (%) N

Infection intensity (epg,
mean (95%CI)

Worm negative 195 (29.3) 107:88 15.6 (15.0–16.1) 24.6 0

Pl 101 50:51 15.7 (14.9–16.5) 30.7 0

Mbz 94 57:37 15.4 (14.5–16.2) 18.1 0

Ascaris positive 198 (42.0) 96:102 15.9 (15.3–16.5) 22.3 184* 1060.8 (840.1–1339.5)

Pl 97 50:47 16.07 (15.2–16.9) 18.6 94 1224.9 (891.6–1682.6)

Mbz 96 42:54 15.5 (14.7–16.3) 26.0 90 912.8 (645.7–1290.43)

Hookworm positive 79 (16.8) 41:38 17.0 (16.1–18.0) 26.7 63* 213.2 (161.4–281.5)

Pl 37 17:20 17.1 (15.7–18.5) 21.6 32 187.9 (126.7–278.6)

Mbz 38 22:16 16.9 (15.5–18.4) 31.6 31 242.9 (161.1–366.2)

Trichuris positive 337 (71.5) 170:167 17.5 (17.1–18.0) 27.3 308* 212.8 (186.8–242.5)

Pl 169 86:83 17.7 (17.1–18.2) 24.3 162 212.4 (177.4–254.2)

Mbz 157 77:80 17.3 (16.7–17.9) 30.6 146 213.3 (176.1–258.4)

NOTE: CI, confidence interval. epg – eggs per gram of faeces (from duplicate Kato-Katz); values were log transformed and the geometric mean is presented. M, male F,
female.
*The numbers of infants contributing to intensity determination was lower than for prevalence since the latter was based on Kato Katz plus stool sedimentation whereas
intensity was based on Kato Katz alone.

doi:10.1371/journal.pntd.0000433.t001
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coeff = 13.116SE 3.81 95% CI 5.65–20.57 P = 0.001; IL-13 b
coeff = 7.866SE 2.12 95% CI 3.70–12.01 P,0.001) and the any

worm positive infants (n = 471, bootstrap repetitions = 1000; IL-5 b
coeff = 9.096SE = 2.82 95% CI 3.56–14.62 P = 0.001; IL-13 b
coeff = 5.796SE = 1.88 95% CI 2.10–9.48 P = 0.002). IL-10 and

IFN-c responses were not significantly associated with age in any of

the worm infected groups (data not shown). There were no significant

associations between age and any cytokine in worm negative infants

or between cytokine response and egg count for Ascaris positive infants

(data not shown).

Hookworm antigen-specific cytokine responses. As seen

in Figure 3B, a clear trend with age was seen for IL-5 and IL-13

responses in the hookworm positive group which reached

significance for IL-13 (n = 79, bootstrap repetitions = 500 b
coeff = 28.186SE 12.60 95% CI 3.49–52.87 P = 0.025). IL-5

and IL-13 also had significant positive associations with age in any-

worm positive (n = 391, bootstrap repetitions = 1000; IL-5 b
coeff = 18.046SE 4.57 95% CI 9.09–26.99 P,0.001; IL-13 b
coeff = 14.656SE 3.62 95% CI 7.54–21.75 P,0.001) and

hookworm negative/other worm positive infants (n = 312,

bootstrap repetitions = 500; IL-5 b coeff = 16.286SE 4.59 95%

CI 7.29–25.28 P,0.001; IL-13 b coeff = 10.156SE 2.45 95% CI

5.35–14.95 P,0.001). There was weak but significant correlation

between IL-10 and age for the hookworm negative/other worm

positive (n = 312, bootstrap repetitions = 500; b coeff = 0.326SE

0.15 95% CI 0.03–0.61 P = 0.03) and all worm positive groups

(n = 391, bootstrap repetitions = 1000; b coeff = 0.326SE 0.14

95% CI 0.05–0.58 P = 0.018) (data not shown). There were no

significant associations between IFN-c and age in any of the

infection groups (data not shown) or between cytokine response

and egg count for all hookworm positive infants (data not shown).

Trichuris antigen-specific cytokine responses. Very few

infants made cytokine responses to the Trichuris antigens and the

levels of response were very low. Although worm positive infants

made higher IL-5 and IL-13 responses compared to worm

negative infants there was no significant association with age and

cytokine concentration to the Trichuris antigens in any of the

infection groups (data not shown).

Figure 1. Frequency of IL-5, IL-13, IFN-c & IL-10 responses in infants by infection status. Percentage of IL-5, IL-13, IFN-c and IL-10
responders (cytokine responses .31.24 pg/ml) to:- A) Ascaris antigen in Ascaris positive infants (Asc+, n = 198); Ascaris negative/other worm positive
infants (OW+, n = 273); and worm negative infants (W2, n = 195) or B) hookworm antigen in hookworm positive infants (HW+, n = 79); hookworm
negative/other worm positive infants (OW+, n = 312); and worm negative infants (W2, n = 164). * P = 0.01–0.05, ** P = 0.001–0.01, *** P,0.001.
doi:10.1371/journal.pntd.0000433.g001

Cytokines to STHs in Infants
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Periodic treatment successfully reduces prevalence and
intensity of infection

The parasitology data following the last round of 3-monthly

mebendazole treatment are shown in Figure 4A and 4B. In the

mebendazole treated group the prevalence of any worm infection

at follow-up (40.9%) was reduced by 42% compared to baseline

(70.3%) (z = 7.20 P,0.001, data not shown) and was 41% lower

compared to the placebo group (69.9%) (Chi2 = 50.7237

P,0.001). In the placebo group there was no significant difference

between prevalence at baseline (68.9%) and follow-up (69.9%).

The reduced prevalence in the mebendazole compared with the

placebo treated infants was also seen when stratified by worm

species (Ascaris 2.7 vs 19.9% z = 6.6352 P,0.0001, Trichuris 36.8 vs

64.7% z = 6.8413 P,0.001, and hookworm 8.4 vs 14.7%

z = 2.3954 P = 0.0166). The egg reduction rate followed a similar

pattern with mebendazole causing a greater reduction in egg count

for Ascaris infections, followed by Trichuris and then hookworm

infections (Figure 4B).

Effects of treatment on the cytokine response to
helminth antigens in all infants: Frequency of responders

Ascaris antigen-specific cytokine responses. As shown in

Figure 5A, in both the placebo and mebendazole treated groups,

the percentage of responders increased significantly at follow-up

Figure 2. Mean level of IL-5, IL-13, IFN-c and IL-10 responses in infants by infection status. Mean levels of cytokine responses (+SEM)
amongst responders (responses .31.24 pg/ml) to:- A) Ascaris antigen in Ascaris positive (Asc+) infants ( n = 94, 91, 40 and 24, respectively, for IL-5, IL-
13, IFN-c, IL-10); Ascaris negative/other worm positive (OW+) infants (n = 97, 101, 52 and 29, respectively, for IL-5, IL-13, IFN-c, IL-10); and worm
negative (W2) infants (n = 30, 33, 34 and 16, respectively, for IL-5, IL-13, IFN-c, IL-10) or B) hookworm antigen in hookworm positive (HW+) infants
(n = 43, 43, 5 and 6, respectively, for IL-5, IL-13, IFN-c, IL-10); hookworm negative/other worm positive (OW+) infants (n = 122, 113, 15 and 10,
respectively, forIL-5, IL-13, IFN-c, IL-10) and worm negative (W2) infants n = 29, 28, 6 and 0 respectively for IL-5, IL-13, IFN-c, IL-10) * P = 0.01–0.05.
doi:10.1371/journal.pntd.0000433.g002
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compared with baseline for IL-5, IL-13 and for IFN-c whilst the

frequency of IL-10 responders was significantly higher in the

mebendazole treated group only. However, anthelminthic

treatment during this period had no significant effect on the

overall frequency of responders to any of these cytokines.

Hookworm antigen-specific cytokine responses. As for

Ascaris, the percentage of responders to hookworm antigen in both

the placebo and mebendazole groups increased for all cytokines

from baseline to follow-up but again treatment did not significantly

alter the frequency of response except for a modest reduction in

the IFN-c response in the mebendazole treated group (z = 2.36

P = 0.0185) (Figure 5B).

Trichuris antigen-specific cytokine responses. The

percentage of responders to the Trichuris antigen was very low at

both baseline and follow-up and was similar between the placebo

and mebendazole groups at follow-up (Figure 5C).

Figure 3. Distribution of IL-5, IL-13 responses to Ascaris and hookworm antigens with age by infection status. The lines describe the
estimated linear relationship between cytokine responses and age. A) responses to Ascaris antigen by (i) all Ascaris positive infants, n = 198; Aii) all
Ascaris negative/other worm positive infants, n = 273; Aiii) worm negative infants, n = 195 and in Bi) all hookworm positive infants, n = 79; Bii) all
hookworm negative/other worm positive infants, n = 312; Biii) worm negative infants, n = 164.
doi:10.1371/journal.pntd.0000433.g003
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Effects of treatment on the cytokine response to
helminth antigens in all infants: Mean level of response in
relation to treatment in responders

Ascaris antigen-specific cytokine responses. As for the

frequency of response, so the mean levels of cytokine responses in

both placebo and mebendazole treated groups increased

significantly from baseline to follow-up for IL-5 and IL-13 but

treatment had no significant effect on the overall cytokine levels

compared with placebo at follow-up (Figure 5A).

Hookworm antigen-specific cytokine responses. The

level of response to hookworm antigen also showed a tendency

to increase between baseline and follow-up for IL-5 and IL-13

although this was only significant in the placebo group (Figure 5B).

Again treatment had no significant effects on the response with the

exception that the level of IL-10 was higher in the treated group

(t = 3.5732 P = 0.001).

Trichuris antigen-specific cytokine responses. Responses

were low and not significantly different between baseline and

follow-up or between treated and not treated infants (Figure 5C).

Blood eosinophilia in infants
In view of the correlation between worm infection and levels of

IL-5, which controls eosinophil production, maturation, migration

and persistence in the tissues [49–52], the pattern of blood

eosinophilia was of interest. As seen in Figure 6, worm positive

infants had a significantly higher mean eosinophil count compared

to worm negative infants at baseline (Figure 6A) and at follow-up

(Figure 6B). Also the mean count was slightly but significantly

lower (P = 0.0039) in mebendazole treated infants compared with

placebo (Figure 6C). By comparison, basophil counts in infants

were minimal (,1%) throughout.

Discussion

In this study the goals at baseline were i) to establish that GI

nematode specific cytokine responses could be measured in infants

and ii) to determine the levels and balance of Th1/Th2 cytokines

induced by initial exposure of infants to infections with A.

lumbricoides, hookworm or T. trichiura. The prevalence of infection

with these helminths in 5–11 month old infants in Pemba at the

time of this study was only 26.5% [44] but previous studies in

Pemba have shown that the prevalence reaches 90% by the age of

3–5 yr [14]. Transmission on the island is year round and so it is

likely that many of the infections detected in the 6–24 month old

infants in this study would represent recent primary exposures to

infection. Despite this and the fact that the majority of infections

were very light, cytokine responses to Ascaris and to hookworm

antigens could be demonstrated in significant proportions of the

infants. Notably cytokines of the Th2 subset predominated

amongst responders and there was no evidence of a subset of

individuals who made Th1 polarised responses. This is in contrast

to primary exposures of mice to the nematode T. muris which

induces Th2 responses in certain inbred strains but Th1 responses

in others [39].

Although T. trichiura was a common infection in this age group

minimal cytokine responses were seen to Trichuris antigen. Low

cytokine responses to Trichuris antigens have also been reported in

some studies of older humans [53,54] while others have reported

higher responses [55,56]. We do not consider that the failure to

detect cytokine responses to T. trichiura infection in the infants was

due to the use of the heterologous Trichuris suis antigen since we

showed in preliminary studies with the WBA that this antigen was

able to stimulate cytokine production from blood of T. trichiura

infected Pemban teenagers. Furthermore, we also found that

heterologous antigen from T. muris (kindly provided by Prof J

Bradley, University of Nottingham, UK), which has been shown to

induce cytokine responses in older humans in other studies [55,56]

also failed to stimulate cytokine production from our T. trichiura

infected infants (data not shown). It is possible that the apparently

greater sensitization to Ascaris and hookworm antigen compared to

Trichuris is due to the fact that, unlike Trichuris, Ascaris and

hookworms have a larval migratory phase which may have a

major role in immune stimulation as was reported in an

experimental hookworm infection [35].

The cytokine responses to Ascaris and hookworm antigens were

significantly positively associated with age at baseline and also

consistently increased between baseline and follow-up. These

differences between baseline and follow-up were not due to

technical differences since there was overlap between the testing of

the samples from the baseline and follow-up and validation of all

cytokine assays over the course of the study using a pool of positive

control supernatant which was included on all plates. Since, the

cytokine responses to PHA or PPD did not show this consistent

increase at follow-up (data not shown) we conclude that the

increased response reflects increased worm exposure over time.

The greater frequency and level of Th2 compared with Th1

responses to Ascaris and hookworm antigen seen at baseline were

maintained over a year of further exposure. Such a Th2 bias is also

apparent following prolonged exposure to Ascaris and Trichuris

infections [22,55] but a more balanced Th1/Th2 cytokine

Figure 4. Effects of tri-monthly mebendazole or placebo
treatment in infants on parasitology. A. Prevalence of infection
after 4 rounds of tri-monthly mebendazole (n = 296) or placebo
(n = 307) treatment on any worm positive infants, Ascaris lumbricoides
positive infants (Asc), Trichuris trichuria positive infants (Tric), hookworm
positive infants (HW). B. Egg reduction rate after 4 rounds of tri-monthly
mebendazole (n = 296) or placebo (n = 307) treatment on Ascaris
lumbricoides positive infants (Asc), Trichuris trichuria positive infants
(Tric), hookworm positive infants (HW). * P = 0.01–0.05, *** P,0.001.
doi:10.1371/journal.pntd.0000433.g004
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Figure 5. Comparison of cytokine responses at baseline and follow-up in mebendazole or placebo treated infants. Left hand graphs
show the percentage of responders (responses .31.24 pg/ml), right hand graphs show the mean (+SEM) response of responders to A) Ascaris
antigen, B) hookworm antigen C) Trichuris antigens for IL-5, IL-13, IFN-c, and IL-10 in infants treated with placebo (PL) or mebendazole (MBZ) at
baseline and follow-up. * P = 0.01–0.05, ** P = 0.001–0.01, *** P,0.001 significantly different from baseline.
doi:10.1371/journal.pntd.0000433.g005
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response has been reported in hookworm infection in children and

adults [24,57,58] although these studies employed purified

peripheral blood cell in culture rather than whole blood which

may have influenced the cytokine profiles demonstrated.

Amongst the Ascaris or hookworm egg positive infants there were

a higher proportion of responders to the homologous antigen than

amongst egg negative infants or infants with a different species of

worm indicating some degree of specificity in the antigen responses

to particular worms. However, a proportion of infants lacking Ascaris

or hookworm infections but harbouring one or both of the other

worms also responded to Ascaris or hookworm antigens respectively.

This could be due to antigen-specific sensitization by prepatent

infections in these individuals or to a failure of parasitological

detection of infection. However, it may also reflect a degree of cross-

reactivity in the responses to the worm antigens as previously

suggested [22,59]. Antigenic cross-reactivity is also supported by the

work of Jackson et al 2004 [56] who reported that cytokine

responses to somatic T. trichiura, T. muris and A. lumbricoides antigens

in WBA were strongly intercorrelated even though the majority of

people in the study area had single T. trichiura or A. lumbricoides

infections. Another possible explanation for positive responses in

parasitologically negative infants could be prenatal priming to

helminth antigens in helminth infected mothers [60].

A proportion of infants who were infected with Ascaris and

hookworm did not make detectable antigen-specific cytokine

responses. This was not correlated with intensity of infection and

so does not seem to be due to a sub-threshold level of immune

priming. A possible explanation is that the larval phase of infection

rather than the persisting egg-laying adult worms may be largely

responsible for the cytokine production [35] and so responders

may be the more frequently/more recently exposed individuals.

With regard to our starting hypothesis, that the immune

response to the worms may contribute to anaemia and wasting

malnutrition in infected infants it is clear that the idea of Th1

sensitisation leading to pro-inflammatory cytokines such as TNF-a
and IL-6 affecting nutrient metabolism, erythropoiesis and

appetite is not supported by this data. The analysis of acute phase

proteins and nutritional indicators will be reported elsewhere

(manuscript in preparation). It is conceivable that the GI

nematode-specific Th2 cytokines demonstrated in infants could

be responsible for impaired nutrition due to effects on gut function

as demonstrated in mice and pigs [27–31] and/or increased

nutritional demand due to the generation of immune components.

However, we found no evidence that periodic anthelminthic

treatment reduced the level of systemic Th2 responses although it

again led to reduced anaemia and wasting malnutrition (manu-

script in preparation). The only response correlating with worm

infection status which was significantly altered by treatment was

the decline in peripheral blood eosinophilia. Eosinophil infiltration

local to sites of worm infestation has been shown in humans

harbouring light T. trichiura infections [61] and eosinophils have

been implicated in the enteritis induced by zoonotic hookworms

[36]. So perhaps eosinophils are involved in mediating gut

inflammation and impairing nutrition. Other locally generated

responses could impact on gut inflammation and function e.g.

helminth-infected infants make more pronounced inflammatory

cytokine responses to generic TLR ligands [62]. It should be

pointed out that immune responses local to the worms in the gut

may differ from recall responses seen in the periphery e.g. in pigs

T. suis induces a much higher frequency of IL-4 positive cells in

ileo-caecal lymph node lymphocytes compared to PBMCs [63]. So

reduction in the numbers of worms by chemotherapy may

significantly reduce local immunopathological effects in the gut

even in the face of unaltered systemic immune responses.

Following the implementation of various helminth control

programmes in Pemba Island, the prevalence and intensity of

infections in the infants in this study were low and Trichuris

predominated. Similar studies in areas of higher transmission and

with other species predominating would be of interest.

Supporting Information

Figure S1 Consort flow chart. W+ = worm positive infants,

W2 = worm negative infants

Figure 6. Peripheral blood eosinophil counts at baseline and
follow-up and treatment effects. A) worm egg +ve or 2ve infants
at baseline; B) worm egg +ve or 2ve at follow-up, C) MBZ- vs PL-treated
children at follow-up. *** P,0.001.
doi:10.1371/journal.pntd.0000433.g006
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Found at: doi:10.1371/journal.pntd.0000433.s001 (0.06 MB TIF)

Figure S2 Number of infants infected by Ascaris with age. Worm

infection status based on faecal egg examination presented by

number of infants infected (Ai & Bi) and as a percentage of each

age class within the overall study population (Aii & Bii). A)

Ascaris6other worms B) Ascaris infections only.

Found at: doi:10.1371/journal.pntd.0000433.s002 (0.58 MB TIF)

Figure S3 Number of infants infected by hookworm with age.

Worm infection status based on faecal egg examination presented

by number of infants infected (Ai & Bi) and as a percentage of each

age class within the overall study population (Aii & Bii). A)

hookworm6other worms B) hookworm infections only.

Found at: doi:10.1371/journal.pntd.0000433.s003 (0.53 MB TIF)

Figure S4 Number of infants infected by Trichuris with age.

Worm infection status based on faecal egg examination presented

by number of infants infected (Ai & Bi) and as a percentage of each

age class within the overall study population (Aii & Bii). A)

Trichuris6other worms B) Trichuris infections only.

Found at: doi:10.1371/journal.pntd.0000433.s004 (0.62 MB TIF)

Figure S5 Distribution of helminth infection intensity by age

group. Infection intensity (geometric mean (695% CI)) based on

faecal egg examination presented by age in A) Ascaris positive

infants only. 6–13 n = 59, 14–18 n = 69, 19–24 n = 56, B)

hookworm positive infants only. 6–13 n = 14, 14–18 n = 23, 19–

24 n = 26 and C) Trichuris positive infants only. 6–13 n = 50, 14–18

n = 113, 19–24 n = 145.

Found at: doi:10.1371/journal.pntd.0000433.s005 (0.28 MB TIF)

Protocol S1 Protocol for Trial 83988447 (Bickle MS)

Found at: doi:10.1371/journal.pntd.0000433.s006 (0.11 MB PDF)
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