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Abstract
The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctua-

tions, and the irregular circulation of its four serotypes. It is believed that this behaviour

arises from the interplay between environmental drivers and serotype interactions. The

exact mechanism, however, is uncertain. Constraining mathematical models to patterns

characteristic to dengue epidemiology offers a means for detecting such mechanisms.

Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of den-

gue models, driven by combinations of temporary cross protective-immunity, cross-

enhancement, and seasonal forcing, on their ability to capture the main characteristics of

dengue dynamics. We show that all proposed models reproduce the observed dengue pat-

terns across some part of the parameter space. Which model best supports the dengue

dynamics is determined by the level of seasonal forcing. Further, when tertiary and quater-

nary infections are allowed, the inclusion of temporary cross-immunity alone is strongly sup-

ported, but the addition of cross-enhancement markedly reduces the parameter range at

which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The

implication of these structural uncertainties on predicted vulnerability to control is also dis-

cussed. With ever expanding spread of dengue, greater understanding of dengue dynamics

and control efforts (e.g. a near-future vaccine introduction) has become critically important.

This study highlights the capacity of multi-level pattern-matching modelling approaches to

offer an analytic tool for deeper insights into dengue epidemiology and control.

Author Summary

The fluctuations of multi-serotype infectious diseases are often highly irregular and hard
to predict. Previous theoretical approaches have attempted to disentangle the drivers that
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may underlie this behaviour in dengue dynamics with variable success. Here, we examine
the role of such drivers using a pattern-oriented modelling (POM) approach. In POM,
multiple patterns observed at different scales are used to test a model’s proficiency in cap-
turing real-world dynamics. We examined dengue models with combinations of cross-
immunity, cross-enhancement, seasonal fluctuations in the transmission rate, and with
sensitivity analyses of asymmetric transmission rates between serotypes as well as the pos-
sibility for four subsequent heterologous infections. We demonstrate the ability of POM to
model dynamical drivers that have gone unnoticed in single pattern or synthetic likelihood
approaches. Further, our results present a determining role of seasonality in the selection
and operation of these processes in governing dengue dynamics, in particular when full,
heterologous immunity is assumed to occur after a secondary infection. We show that this
structural model uncertainty can have important practical significance, as demonstrated
by the differences in control efforts required to disrupt transmission. These results high-
light the importance of localised model selection and calibration using multiple data-
matching, as well as taking explicit account of model uncertainty in predicting and plan-
ning control efforts for multi-serotype diseases.

Introduction
With a 30-fold increase in incidence over the last five decades, dengue poses an increasing
threat to about two thirds of the world population [1]. Dengue, caused by a group of viruses
belonging to the Flavivirus genera, circulates in four major serotypes (DENV 1–4) [2], and
manifests in a wide spectrum of clinical forms, from subclinical to classic dengue fever to the
more serious forms of the disease, namely, dengue haemorrhagic fever (DHF) and dengue
shock syndrome (DSS). In the absence of treatment, dengue can be highly fatal in subjects with
DHF or DSS, with a case-fatality rate of 15%, which may be reduced to 1% with adequate medi-
cal intervention [3]. Despite on-going efforts, no effective antiviral drugs are available against
the disease and the potential impact of the recently licenced vaccine has yet to be determined.
This limits control efforts primarily to vector control [4].

Dengue dynamics are characterized by highly seasonal, multi-annual fluctuations, with
replacement of serotypes occurring at varying intervals. An example of these patterns arising in
a newly emerging dengue setting is illustrated in (Fig 1) [5,6]. This is thought to result from a
complex interplay between environmental factors, vector ecology and host-pathogen dynamics
[7]. Various hypotheses have been proposed to uncover the main drivers of dengue dynamics
and to reveal how such drivers interact among themselves to govern infection and disease pat-
terns in the field. Emphasis has been on unravelling the roles that cross-immunity (CI), cross-
enhancement between serotypes, and seasonal variation in the transmission rate, play in cap-
turing the complex dynamics of dengue [8]. Cross-enhancement is believed to be caused by
antibody-dependent enhancement (ADE), where heterotypic antibodies facilitate cell entry
through the formation of virion-antibody complexes, ultimately leading to increased viral titers
upon secondary infection [9,10]. This is thought to result in increased susceptibility to a sec-
ondary heterologous infection and, upon these secondary infections, in a more serious form of
disease and increased infectiousness. Enhanced disease severity is however believed to have
minor impact on the dynamics as the proportion of DHF and DSS cases is substantially small
(1% of confirmed cases [11]). By contrast, including sufficiently high levels of enhanced infec-
tiousness or susceptibility (60–130%) in simulation models has been found to induce asynchro-
nous outbreaks of different serotypes [12,13], an outcome which has been indicated to underlie

Serotype Interactions and Seasonality in Dengue Epidemiology

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004680 May 9, 2016 2 / 25

Competing Interests: The authors have declared
that no competing interests exist.



the manifestation of the 3–5 year epidemic cycles observed for dengue dynamics in Thailand
[14,15]. Decomposing ADE into both enhanced infectiousness and susceptibility has further
been shown to mimic this effect at lower, more realistic values of ADE, while also reducing the
magnitude of oscillations to more plausible levels and decreasing the risk of stochastic extinc-
tion [15]. Similarly, relaxing the common assumption of complete immunity after two heterol-
ogous infections results in asynchronous, multi-annual outbreaks at lower levels of ADE and
R0 [16]. While most modelling endeavours have assumed serotypes to have identical character-
istics, allowing for a small amount of asymmetry in the transmission rate is found to increase
serotype persistence in the presence of ADE [17]. Furthermore, the inclusion of short-lived
cross-immunity in models was found to be sufficient to reproduce the observed out-of-phase,
irregular oscillations and 3-year cycles [18–21]. An alternative hypothesis has been proposed
by Lourenço et al., who demonstrated that spatial segregation between human hosts and its
vectors can be sufficient to capture the semi-regular dengue patterns observed, even in the
absence of immune interactions [22]. By contrast, to mimic the distinct seasonal signature of
dengue dynamics, the incorporation of seasonal forcing into the vector population dynamics
or transmission rate has been found to be essential [19,22,23].

The above results hint at the complexity of dengue transmission and suggest that multiple
mechanisms could underlie disease dynamics in any particular site. A key question in under-
standing dengue dynamics and control, therefore, is how best to use observed data in order to
identify the processes governing the transmission of the disease in a given location. Recently,
there has been increasing recognition that for complex systems, such as dengue, model match-
ing to single or a few patterns is not sufficient to narrow down the range of possible explanatory
mechanisms [24], and that matching to multiple patterns observed at various scales and hierar-
chical levels is required for identifying the mechanisms that generate such patterns, and hence
are likely to be key elements of the system’s structure. Tying ecological models to multiple sys-
tem patterns concurrently may also aid in detecting the right level of complexity and improve
the predictive ability of such models for replicating local dynamics [24]. Methods such as Pat-
tern Oriented Modelling (POM) allow for such a multi-scope approach by facilitating the
design, selection, and calibration of models of complex systems [25–30].

Fig 1. Dengue epidemiology in Trinidad and Tobago.Weekly number of confirmed dengue fever cases
with circulating serotypes in Trinidad and Tobago over the period 1997–2009.

doi:10.1371/journal.pntd.0004680.g001
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This study applied a POM approach to modelling global dengue infection data in order to
determine whether the above proposed mechanisms related to serotype interactions and sea-
sonal forcing of the transmission rate were able to explain all of the observed dynamical pat-
terns in the field. We further used the modelling results to investigate the vulnerability of
dengue to interruption in transmission as a result of vector control, and examined how such
vulnerability was related to the identified processes governing disease transmission. We dem-
onstrate that model selection is largely driven by the seasonality of the system, with CI being a
preferred mechanism in the case of low, and ADE in the case of highly seasonal transmission
regimes. At similar levels of transmission rate, resistance to control efforts was found to
increase in dengue systems with CI. The results highlight the utility of the POM approach for
detecting and fitting of appropriately structured disease transmission models based on
observed data. In addition, they also reveal challenges in structural and parameter identifiabil-
ity that would remain unnoticed when guided by individuals patterns used in isolation.

Methods

The patterns in the reported dengue case data
Five characteristic dengue patterns were used to filter out unrealistic model structures and
reduce parameter uncertainty. The patterns were selected to reflect the breadth of characteris-
tics used in single pattern matching approaches [12,15,16,18,22], include strong and weak pat-
terns that are common across endemic regions and those which are relatively stable over time
and encompass different levels of organization [24]. The patterns (i.e. mean duration between
peaks, multi-annual fluctuations, frequent replacement of one circulating serotype by another,
serotype co-dominance and asynchronous serotype cycling) were derived from literature
describing dengue case data and serotype epidemiology from different endemic regions across
the world [5,6,31–42]. The observed patterns are described in Table 1.

The model
We used a deterministic Susceptible-Infected-Recovered (SIR) modelling framework to
describe the circulation of four different dengue serotypes (DENV1-4) in a population [13].
The full system of ordinary differential equations is shown in (Fig 2). The model consists of 26
compartments, each of which represents a fraction of the population. The population size is
modelled to be stationary; hence births and deaths occur at an equal rate (μ). New-borns are
assumed to be immunologically naïve to all serotypes and are born into the class of susceptibles
(S). Although the presence of maternal antibodies is shown to affect the risk of infection, the
impact on the overall dynamics is believed to be minimal and thus not taken into consideration
[43]. Susceptibles become primarily infected by serotype i (Ii) at rate βSIi and αTRANSβSIji pro-
portional to the number of primarily and secondarily infectious individuals respectively. The

Table 1. Characteristics for pattern-orientedmodelling.

Characteristics Range in the literature Range for analysis Source

Lower limit Upper limit

Mean inter-peak period 1.4–1.6 1 1.8 [6,34,36–39,41,42]

Multi-annual signals 2–6 years 2 years 6 years [6,31–35,40]

Duration of serotype replacement 1–6 years 1 years 6 years [5,6,22,33,36,37,39–41]

Intensity single serotype emergence Both multi and single- serotype prevalence 0.01 0.99 [5,6,22,33,36–39,41]

Phase-locking Incomplete - - [5,6,22,33,36,37,39–41]

doi:10.1371/journal.pntd.0004680.t001
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parameter αTRANS>1 indicates enhanced transmissibility of secondarily infected individuals. A
seasonal change in the transmission rate (β(t)) is incorporated through a sinusoidal function
with a forcing period of one year: β(t) = β0(1−β1 cos(2πt)) where β0 indicates the mean trans-
mission rate and β1 the strength of seasonal fluctuation and t time in years. The transmission
rate (β(t)) is assumed to be equal across serotypes. Individuals remain infectious for a period of
1/γ. After recovery from a primary infection, individuals become immune to all serotypes (Ci)
for a period 1/ρ after which they move to the partially immune stage (Pi). The P-class individu-
als are assumed to experience full immunity against the serotype i and enhanced susceptibility
(αSUS>1) to all other serotypes. They acquire secondary infection (Iij) at rates αSUSβPiIj and
αTRANSαSUSβPjIkj proportional to the number of cases respectively primarily and secondarily
infectious to a different serotype (with k6¼j and j 6¼i). The duration of the infectious period is
assumed to be equal upon secondary and primary infection. To account for imported cases and
prevent the ODE-models to simulate unrealistically low levels of infections, individuals (sus-
ceptible or partially immune) can also acquire infection through an infectious contact with an
individual from an external population at rate βδ, where δ signifies the import rate [23]. As ter-
tiary and quaternary infections are rarely observed [44], we assume that after recovery from a
secondary infection, individuals become life-long immune to all serotypes. An adaptive time
step fourth and fifth -order Runge-Kutta solver was used with initial conditions for I1-4 1x10

-7,

2x10-7, 3x10-7 and 4x10-7 and S ¼ 1�
Xi

1�4

Ii. All other state variables were initialized at zero.

The implementation of the model, as well as the analysis of its simulation results were carried
out in the Matlab, version 2014b (www.mathworks.com).

Model hypotheses
In this analysis we assume the following hypotheses (see Table 2). H1: The most parsimonious
hypothesis is represented by the base-model with neither ADE (αSUS = 1 and αTRANS = 1) nor

Fig 2. System of differential equations and flow diagram of multi-serotype model. The circles represent
the infection related states: susceptible (S), infectious (I), cross-immune (C), partially susceptible (P) and
recovered (R), solid arrows depict the transition from one state to another and the dashed arrows indicate
transmission. Parameters are described in Table 3. Simulations are based on a four serotype (DENV1-4)
model, where i, j and k denote primary (first subscript) or secondary (second subscript) infection with DENV1-
4. The full system consists of 26 compartments. For simplicity, the flowchart for one serotype is shown.

doi:10.1371/journal.pntd.0004680.g002
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CI (individuals upon recovery from primary infection go straight to the P-class). H2: The base-
model with CI. H3: The base-model with enhanced susceptibility, further referred to as ADE
(αSUS>1 and αTRANS = 1). H4: H3 with CI. H5: The base-model with both enhanced suscepti-
bility and transmissibility (i.e. ADEx2 with αSUS>1 and αTRANS>1) but no CI. H6: H5 with CI.
In all models, an annual seasonal forcing in the transmission rate is assumed.

Defining dengue characteristics in simulated data
The variables that we estimated from the simulated data to contrast the dynamics of each
model against the characteristics of dengue dynamics are: 1) Mean inter-peak period; 2) Pres-
ence of a multi-annual signal; 3) Duration of serotype replacement; 4) Intensity of single-sero-
type emergence; and 5) Serotype phase-locking.

Themean inter-peak period (MIPP) is defined as:MIPP ¼ Y
N
, where Y is the number of years

analysed and N the number of peaks occurring during that period. To ensure comparability of
the simulated estimates with reported observations on the inter-epidemic period, peaks were
defined to have a minimum proportion of infectious people of 1/4000. To assess the presence
of significantmulti-annual signals in addition to the near yearly MIPP, a spectral density
approach was used. To reduce the confounding effect of very low amplitude fluctuations, the
time series were smoothed using a moving average filter. The power spectral density of the
smoothed time series was assessed with the Welch’s overlapped segment averaging estimator
[45]. To evaluate the significance of the periodic signals, the signals were compared to the null-
continuum. The null-continuum is a greatly smoothed version of the raw periodogram, encap-
sulating the underlying shape of the distribution of variance over frequency [46]. A signal was
assessed to be significant if the lower bound of the 90% confidence interval of the raw periodo-
gram exceeded the null continuum [46]. The duration of serotype replacement is defined as the
mean number of years before a dominant serotype during a peak is replaced by another sero-
type in a subsequent peak. The intensity of single serotype emergence (ε) was defined as by

Recker et al. [47]:ε ¼ 1
N

XN

i

gimax � gisub
gimax

; where N defines the number of peaks occurring during

the analysed number of years,gi max the prevalence of the dominant serotype and gisub
the prevalence of the serotype with the second-highest peak. Model runs with either complete
co-dominance (ε<0.01) (i.e. there are multiple serotypes present at any point in time) or com-
plete single serotype dominance (ε>0.99) were omitted. Lastly, serotype phase-locking here is
defined as the perfect synchronization of serotypes and is detected by comparing the MIPP of
serotype i to the aggregated MIPP. Simulations in whichMIPP =MIPPi are discarded based on
the presence of perfect phase-locking.

Table 2. Model hypotheses.

Model Seasonality Cross-Immunity Enhanced susceptibility Enhanced transmissibility

1 Base X

2 CI X X

3 ADE X X

4 ADE+CI X X X

5 ADEx2 X X X

6 ADEx2 + CI X X X X

Models are built as described in Fig 2. In the absence of cross-immunity, individuals are assumed to move straight from the infectious state (I) to the

partially susceptible state (P). In the absence of enhanced susceptibility and enhanced transmissibility αSUS and αTRANS respectively, are set equal to 1.

doi:10.1371/journal.pntd.0004680.t002
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Data-model pattern matching
To determine which of the hypotheses or models capture the observed dengue dynamics and at
which parameter values, we used a pattern oriented modelling approach (Fig 3) [25–28].
Model performance was assessed based on the extent to which a model captured all the 5 char-
acteristics of dengue simultaneously, as defined above (Table 1). Models were assessed using
the following steps. First, Latin hypercube sampling [48] was employed to select a sample of O
(= 5,000) parameter vectors from a conjoint parameter distribution, encompassing the trans-
mission rate (β0), the level of seasonal forcing or seasonality (β1) and, depending on the model,
a combination of enhanced susceptibility (αSUS), enhanced transmissibility (αTRANS) and the
rate of loss of CI (ρ) (Table 3). Uncertainty in the values of these parameters was addressed by
assigning uniform distributions from their ranges deemed realistic according to literature
(Table 3). The resulting ensemble of models (Model 1–6 with O parameter vectors) was run for
1400 years. The model outputs for the last 400 years were considered to determine whether the
model mimicked all five dengue characteristics (a model is assumed to match a characteristic if
the simulated response falls within the range of that characteristic pattern given in Table 1).

Fig 3. Flow chart of Pattern Oriented Modelling approach. A set of 6 alternative models are identified and
compared with respect to their ability to replicate patterns observed in dengue case data. Each model is run
for a set of 5,000 different parameter combinations, sampled from plausible parameter ranges using Latin
hypercube sampling. The resulting patterns from each simulation are compared to the observed patterns.
The parameter sets that match all 5 patterns of interest are assembled into the passing parameter set, which
forms the input for model comparison and the examination of model behaviour.

doi:10.1371/journal.pntd.0004680.g003
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The resulting set of passing (good) parameters G (where G� O) was retained as a multivariate
distribution for further analysis.

Sensitivity analysis
To assess the impact of simplifying model assumptions on pattern-matching, we repeated the
POM exercise for two distinct scenarios. One, we allowed for transmission rates to be uneven
between serotypes (the asymmetric model). More specifically, serotype-specific transmission
rates were drawn from a normal distribution with standard deviation 0.15 [17]. Two, we used a
model variant that allows for four heterologous infections prior to acquiring complete immu-
nity (the 4-infection model, equations are provided in S1 Text [52]).

Parameter sensitivity and identifiability
We used logistic regression to assess the sensitivity of pattern-matching (binary response vari-
able) to the parameters (independent variables). We normalised the independent variables on a
0 to 1 scale to obtain comparable regression coefficients: coefficients larger than|3| indicate
strong sensitivity while parameters with small coefficients (<<|1|) have little impact on the
model matching the patterns [53]. Two-way interactions were included in the construction of
the logistic regression models: logit(p) = b0+b1β0+b2β1+b3αSUS+b4αTRANS+b5ρ+interactions,
with p being the probability of a pattern-match, b0 the intercept and b1-n the regression
coefficients.

Additionally, the identifiability of each of the parameters was examined using a principal
component analysis (PCA) [54,55]. The identifiability of a parameter is a function of depen-
dence, prior uncertainty and the model’s sensitivity to the parameter and defines how well one
can estimate a parameter. We assessed the parameter identifiability for the full model (ADEx2
+CI), using its passing distribution (G). First, the variance-covariance matrix(S)was con-
structed from the log-transformed G. Next, the principal components (PCs) were derived from
S. The PCs of S define the 5-dimensional ellipsoid that approximates the population of passing
parameter values. The eigenvalues (λi) denote the respective radii and the eigenvectors repre-
senting how much each parameter contributes to the direction of each radius. As such, λi gives
an indication of the variance explained by the ith PC. The overall variance of all PCs was

defined as
X5

i¼1
li ¼ traceðSÞ, thus the proportion of the total variation in G that was

explained by the ith PC is was estimated by: l
traceð

P
Þ :We interpret these results as follows: A

Table 3. Model parameters.

Symbol Description Value Range Source

β0 mean transmission rate, year-1 400 100–400 [13,18]

β1 seasonal forcing 0.05 0–0.35 [20,23]

μ host life expectancy, year-1 1/70 fixed [13]

γ recovery rate, year-1 100 fixed [13,49]

ρ 1/ duration of cross-immunity, year 2 1/3–3 [23]

αTRANS infectiousness enhancement >1 1–2.4 [15]

αSUS susceptibility enhancement >1 1–2.4 [15]

δ import rate 1e-10 fixed [20,23,50,51]

Parameter values used in the model simulations, where Value indicates the best estimate from literature and Range depicts the boundaries of the uniform

prior from which is sampled for the POM-approach.

doi:10.1371/journal.pntd.0004680.t003
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smaller λi indicates that the model is more sensitive to changes in the direction described by
the ith component, whereas a larger λi signifies that the model is less sensitive to changes in the
direction of the component. Parameters contributing most to a large λi are responsible for a big
portion of the variation in the parameter space and are thus considered less identifiable.

Vulnerability to disruption in dengue transmission
We examined the vulnerability of the models to sudden reductions in the transmission rate
that may be brought about by vector control. The models were run for all parameter sets in G
for a burn-in period of 1000 years after which the system was perturbed by a reduction in the
transmission rate (i.e. β0 is reduced by 90%) for a control period of w weeks per year. We varied
w from 1 week to 52 consecutive weeks, starting at the valley of the sinusoidal function, which
mimics the onset of the rainy season. After the control period of w weeks, β0 returns to its origi-
nal value. These control runs were performed for 30 years after the burn-in period. The inter-
vention of w weeks was assumed to be successful if no more than one peak occurred over the
time-course of the model simulation. We assessed the probability of control for model i, where
i represents 1 to 6, by calculating the proportion ðPwi

Þ of Gi presenting successful control as a

function of the number of weeks the transmission was disrupted. Here, Pwi
¼ Nwi

Gi
with Nwi

being the number of parameter vectors out of Gi that showed successful control for model i
given w weeks of interruption in transmission. A composite average (Pw) for each control
period w was derived by weighing the individual probability values of the models by the sizes

of their passing parameter distributions (Gi), such that:Pw ¼
X6

i¼1

Nwi

Gi

.

Lastly, we estimated the values of the basic reproduction rate (R0) for each of the parameter
vectors in G to assess the relation between transmission potential and the models’ vulnerability.
The R0 of the model was derived using the next generation method [56–58] (Proof provided in

S2 Text) and is defined as: R0 ¼ b0
gþm, where β0 defines the transmission rate, 1/γ the duration of

the infectious period and 1/μ the average life expectancy of the human host [59].

Results

Model performance
2-infection models. We compared the ability of six 2-infection models to reproduce the

main characteristics of dengue epidemiology listed in Table 1. Table 4 shows the proportions
of parameter sets for which the models were able to capture the dengue dynamics by reproduc-
ing the five characteristics, either all simultaneously (values in bold) or each individually. Each
of the six models investigated in this study was capable of simultaneously reproducing the five
patterns of dengue dynamics, albeit at different proportions of the parameter space. The per-
centage indicates how robustly a model could replicate the patterns across the parameter space.
While each pattern, independent of the others, could be reproduced at a relatively high proba-
bility, the simultaneous reproduction of all five patterns was found to occur rarely. In general,
one would expect models with increasing complexity to perform better than simpler models.
Indeed, the full model performed best overall (10.98%). However, here, the base-model was
found to perform nearly as good as the second best model (i.e. the ADE+CI model); the respec-
tive overall proportions were similar in magnitude (5.54% versus 5.76%). Both the CI- and
ADE-only models performed poorly, with overall proportions of 1.16% and 2.02%, respec-
tively. The model with the decomposed ADEs approximately performed twice as well as either
of these two models.
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The performance of each model can also be examined by their ability to reproduce each
characteristic separately. In this case, the base-model generally performed worse than the other
models, yet it appeared to be equally proficient at simultaneous reproducing all characteristics
or patterns as the ADE+CI-model, a more complex model than the base-model. While the
MIPP is best captured by the base- and ADE-model (Table 4), all other characteristics

Table 4. Model performance.

2-infection symmetric model 2-infection asymmetric model 4-infection symmetric model

Base-model 5.54 4.34 0.06

Mean inter-peak period 74.2 65.8 95.2

Multi-annual signal 34.6 46.6 59.2

Duration of serotype replacement 49.3 43.2 12.5

Single serotype emergence 34.6 92.3 57.3

Absence of phase-locking 10.7 14.3 16.1

CI 1.10 1.20 21.9

Mean inter-peak period 27.9 22.3 63.4

Multi-annual signal 91.7 90.8 87.3

Duration of serotype replacement 87.6 90.6 70.2

Single serotype emergence 87.0 96.8 95.8

Absence of phase-locking 34.0 40.4 76.4

ADE 1.88 7.04 1.94

Mean inter-peak period 88.0 71.9 78.2

Multi-annual signal 63.7 64.2 64.6

Duration of serotype replacement 23.1 42.4 24.1

Single serotype emergence 54.8 96.9 84.7

Absence of phase-locking 18.2 33.2 74.7

ADE+CI 5.76 5.70 12.54

Mean inter-peak period 41.7 33.2 78.1

Multi-annual signal 91.8 88.8 83.2

Duration of serotype replacement 81.6 86.0 38.5

Single serotype emergence 86.5 97.9 98.8

Absence of phase-locking 42.0 52.6 88.7

ADEx2 3.4 7.06 0.96

Mean inter-peak period 47.6 38.9 28.9

Multi-annual signal 73.3 71.4 66.0

Duration of serotype replacement 45.2 62.2 53.8

Single serotype emergence 79.2 99.1 94.2

Absence of phase-locking 72.4 86.1 94.0

ADEx2+CI 10.98 9.78 4.82

Mean inter-peak period 50.9 50.2 76.1

Multi-annual signal 84.7 79.7 77.2

Duration of serotype replacement 62.5 62.6 20.0

Single serotype emergence 89.8 98.6 98.9

Absence of phase-locking 91.2 94.6 97.5

Percentage of runs (n = 5,000) that meets the characteristics of dengue dynamics for each model structure. In the 2-infection symmetric model,

heterologous immunity is assumed after a second infection and serotypes are assumed to have equal transmission rates. In the 2-infection asymmetric

model, the four serotypes differ in transmission rates. In the 4-infection symmetric model, no heterologous immunity is assumed until one has recovered

from all four serotypes. ADE = antigen dependent enhancement and CI = cross-immunity.

doi:10.1371/journal.pntd.0004680.t004
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demonstrate preference to the models that include CI. The model’s proficiency to reproduce
the multi-annual signal however interferes with its ability to capture the seasonal signature in
the MIPP (Table 4). As such, the POMmethodology appears to penalize for overly specialized
model hypotheses.

Both the base-model and ADE-model are hampered in their performance by large regions
of phase-locking (S1aEA and S1aEC Fig) and to a lower extent, complete single serotype domi-
nance (S1aDA and S1aDC Fig). The parameter space in which phase-locking occurs is largely
reduced by the addition of decomposed ADE as well as CI, which both induce irregular, asyn-
chronous serotype circulation (S1aED and S1aEE Fig).

Asymmetric 2-infection models. Relaxing the assumption of symmetry in transmission
rates does not affect the level of overall fit of the base-model or any of the models with CI.
However, models with ADE or decomposed ADE performed better upon the inclusion of
asymmetry. Across all models, the parameter space at which complete serotype co-dominance
occurred was reduced by the inclusion of asymmetric transmission rates. This co-dominance
seemed to be a strong constraint on the ADE and ADEx2 models in the 2-infection case and is
the reason for the markedly improved fit in the asymmetric case.

Symmetric 4-infection models. The impact of the relaxing the assumptions of full immu-
nity after the second heterologous infection is substantial. The simple CI-model performed far
better than any other models, with a 10-fold increased performance relative to its 2-infection
counterpart. In the 4-infection case, the performance of the full model was about twice better
than the 2-infection case. This is largely due to reduced phase-locking in the 4-infection case
[16]. The phase-locking was the foremost restricting factor of the CI-model in the 2-infection
case. The base-model in this case, however, showed a markedly reduced performance as a result
of shortened time required for serotype replacement. This indicates that the permanent heterol-
ogous immunity only after two infections was the driver of the serotype interactions sufficient to
result in desynchronized oscillations in the 2-infection base-model. The few fits (0.06% of 5000,
see Table 4) of the base-model occur because of an additional implicit serotype interaction. Since
no more than one infection is assumed to occur concurrently, this introduces short cross-immu-
nity that lasts for the infectious period. Indeed, when we allowed for more than one infection in
the 4-infection base-model, the out-of-sync oscillations disappear completely (S6 Fig).

Model calibration and selection
Fig 4 demonstrates the accepted parameter distributions (G) for the 2-infection models. While
some parameters demonstrate broad distributions indicating limited uniqueness and abundant
parameter interactions, others show clear preferential values and ranges that are sensitive to
the structural components of the model. Overall it appears, as can be expected, that the more
complex models fit the patterns at a wider parameter range.

Fig 4A shows that models with CI selected for relatively higher transmission levels relative
to models with ADE only. For low transmission levels, the full model outcompeted all the
other models, indicating that more complex models may be necessary to fit dengue dynamics
at lower values of R0. These results are insensitive to the assumption of low levels of asymmetry
in transmission rates (S2aA Fig). In contrast to this, the 4-infection models display similar fits
at lower transmission levels (S2bA Fig).

Seasonality appeared to be the most prominent driver of model fit and selection in the
2-infection model (Fig 4B). Models with CI showed a marked shift towards lower seasonal forc-
ing relative to the base-model. In fact, at low seasonality (β1<0.06) there is a strong preference
for the inclusion of CI, as is especially notable from the elevated density levels of the ADE+CI
and ADEx2+CI models. At high seasonality (β1>0.17) only the more complex models
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provided an adequate fit. At intermediate levels of seasonality (β1: 0.1–0.15) multiple models
were equally proficient at replicating the dynamics, indicating a region of large model uncer-
tainty. The model’s structural sensitivity to seasonality persisted when asymmetry in transmis-
sion rates was assumed (S2aB Fig). However, when we allowed for tertiary and quaternary
infections, the medians and shapes of the passing parameter distributions for β1 were similar
across the models (S2bB Fig).

The addition of CI to models with ADE results in higher levels of αSUS (Fig 4C), yet had
minor impact on the median levels of αTRANS (Fig 4D). While previous publications suggested
reduced estimates of αSUS and αTRANS upon the inclusion of decomposed ADE, analysis of the
2-infection model does not support this observation [15]. We did, however, observe this pat-
tern in the 4-infection and asymmetric 2-infection model (S2aD and S2bD Fig).

Fig 4. Model parameter distributions. Parameter distributions for passing parameter sets (G) for different
model hypotheses (with ADE = antibody dependent enhancement, CI = cross-immunity) for (A) the
transmission rate (β0), (B) seasonality (β1), (C) enhanced susceptibility (αSUS), (D) enhanced infectiousness
(αTRANS), and (E) 1/duration of cross-immunity (ρ). The vertical lines depict the median values for each
distribution with the colours indicating the corresponding model hypothesis.

doi:10.1371/journal.pntd.0004680.g004
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The inclusion of ADE to the models with CI profoundly affects the estimated duration of
cross-immunity by allowing for the selection of a much wider range of ρ (Fig 4E). Whereas the
CI-model by itself only captures the characteristics at durations of cross-immunity shorter
than half a year, the inclusion of ADE allows for cross-immune periods of up to 2 years, which
is in line with the previous estimates [21]. Interestingly, in the case of 4-infection, the CI-only
model performed well for a wider range of durations of cross-immunity, including estimates
from Reich et al. [21].

The role of seasonality and cross-immunity
Exploring the behaviour of the models in terms of MIPP and duration of serotype replacement
(Table 4) reveals as to why there are differences in model fits across the range of seasonal forc-
ing (S1aAA–S1aAF and S1aCA–S1aCF Fig). Increased levels of seasonal forcing are associated
with longer MIPP. Temporary CI introduces a lag before a secondary infection can be acquired
and thus generates a necessary build-up time period during which susceptible individuals accu-
mulate in sufficient number to fuel the next outbreak. Thus, while an increase in seasonal forc-
ing is characterized by longer inter-epidemic periods, at similar levels of seasonal forcing, the
models with CI demonstrate a longer MIPP than the models without CI (S1aAA–S1aAF Fig).
This allows the CI-only models capture the characteristic MIPP at lower seasonal levels than
the models with just ADE. At higher levels of seasonal forcing, CI contributes to MIPPs that
are longer than are characteristic to dengue. This effect is less pronounced in the 4-infection
models. The overall immune population is smaller in the 4-infection models and therefore of
less influence on the frequency of outbreaks. The same can be observed for the duration of
serotype replacement (S1aCA–S1aCF Fig). In contrast to CI, the inclusion of ADE to the
model results in shorter cycles, thus successful fits are observed at higher levels of seasonal forc-
ing (S1aAA–S1aAF Fig).

Lastly, we observe a prominent impact of seasonal forcing on the occurrence of phase-lock-
ing. S1aEA–S1aEF Fig demonstrate a threshold-like value of β1 above which the system is
forced into synchronized serotype dynamics. This threshold is relatively stable across the sim-
ple model structures (see also Fig 4B) and unaffected by the value of R0. Only the addition of
decomposed ADE disrupts this behaviour, thereby being a possible driver of irregular serotype
behaviour at higher seasonal regions. These phase-locking thresholds are stable to some level
of asymmetry in transmission rates (S1bEA–S1bEF Fig), however they completely vanish in
the case of 4-infection models (S1cEA–S1cEF Fig).

Parameter sensitivity and identifiability
The logistic regression coefficients for the full-model given in Table 5 illustrate the differential
roles each of the parameters play in explaining the dengue characteristics. β0 is found to be an
important driver of the multi-annual signal. And in conjunction with β1 and αTRANS, it is the
dominant factor for the absence of phase-locking. As can be expected, β1 is the main driver for
reproducing a seasonal signature. The parameter for CI (ρ) interacts with β1 in reproducing
this pattern and is thus also an important determining factor in fitting the MIPP. The R2-values
for each of the regression models illustrate that the separate parameter values provide reason-
able information about whether a characteristic is met or not. However, when assessing the
simultaneous fit, the predictive power of the parameters is negotiated by interactions between
the parameters and the separate characteristics. In particular the interactions between β1 and ρ
govern simultaneous fitting (S3a Fig). These interactions are conserved when fitting the asym-
metric 2-infection and symmetric 4-infection model (S3b and S3c Fig).
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Strong, multi-level parameter interactions typically result in limited parameter identifiabil-
ity. Indeed, the PCA reveals that, in particular the estimates for β1 and ρ are found to be little
constrained by the characteristic patterns (Fig 5). The parameters β1 and ρ dominate the first
two components, which explain the largest portion of the total variance in the passing parame-
ter space (Gfull) (55%). While this observed lack of uniqueness may result from the limited
influence the parameters have on replicating the dynamics and the substantial width of the cri-
teria, complex interactions between patterns and parameters can also underlie this phenome-
non. Indeed, as observed earlier, β1 and ρ are correlated with each other as well with other
model parameters, which substantially impedes parameterization efforts (S3a Fig). Parameters
β0, αSUS and αTRANS contribute equally to the smallest component, indicating that these are
more constrained by the examined characteristics and the level of uncertainty and are less
affected by dependence to other parameters (Fig 5). Allowing for asymmetry in transmission
or tertiary and quaternary infections reduces the contribution of seasonality to the first compo-
nent, leaving the duration of cross-immunity as the most important factor in explaining the
variance in the passing parameter distributions (S5a and S5b Fig).

Vulnerability to disruption in dengue transmission
Fig 6 depicts the probability of achieving successful control (� 1outbreak in 30 years) as a func-
tion of w weeks of reduced transmission (e.g. due to implementation of vector control). The
duration of control required to reach a desired probability of successful control can be used to
quantify the level of resistance or vulnerability of a dynamical transmission system.

Table 5. Sensitivity analysis of model fit full model.

Pattern R2 P-value Coefficients

intercept β0 β1 αSUS αTRANS ρ

Mean inter-peak period 0.49 <0.005 -9.84 0.571 15.3 1.372 1.003 5.99

Multi-annual signal 0.21 <0.005 4.43 3.08 -2.49 -2.33 -3.25 -2.35

Duration of serotype replacement 0.47 <0.005 4.43 2.09 -4.96 0.914 -0.275 0.066

Intensity single serotype emergence 0.08 <0.005 0.757 0.398 1.099 0.6410 1.3311 0.51

Phase-locking 0.52 <0.005 -0.3512 6.27 -3.28 2.1013 4.61 2.84

Simultaneous fit 0.07 <0.005 -7.88 2.93 4.23 4.06 2.69 5.94

Logistic regression model coefficients with pattern-match as binary response variables and the parameters (scaled 0–1) as independent variables. Two-

way interactions are taken into account (coefficients in S1 Table). Bold are high coefficient values (>|3|). Coefficients are significant (p<0.005) unless

stated otherwise:
1p = 0.04,
2p = 0.03,
3p = 0.12,
4p = 0.15,
5p = 0.67,
6p = 0.93,
7p = 0.1,
8p = 0.52,
9p = 0.08,
10p = 0.28,
11p = 0.40,
12p = 0.58,
13p = 0.02

doi:10.1371/journal.pntd.0004680.t005
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The inclusion of ADE or ADEx2 reduces the resistance of the model to perturbations (dark
blue and pink lines), provided no CI is assumed (Fig 6). Including CI to the model offsets this
effect and demonstrates a resistance profile similar to the base-model at longer control efforts,
yet shows larger vulnerability at shorter durations of control. The exception is the full-model,
which converges with the ADE-model at longer control durations.

Fig 5. Principal component analysis. Principal component analysis of passing parameter space (G) of the
full model (ADEx2+CI). The first component explains 30% of the total variance, the second 25%, the third
18% and fourth 16% and the 5th 11%. The pie charts show the contribution of the parameters to each
component. β1 and ρ dominate the first component, indicating reduced identifiability. β0, αSUS and αTRANS
dominates the fifth component and thus contribute most to the stiffest (i.e. most sensitive direction in the
parameter space).

doi:10.1371/journal.pntd.0004680.g005

Fig 6. Overall vulnerability to control. Probability of successful control (a maximum of 1 outbreak during 30
years) given the duration (weeks/year) of consecutive control (temporary reduction of transmission: β0(1–
90%) for different model hypotheses (with ADE = antibody dependent enhancement, CI = cross-immunity).
The probability is defined as the proportion of the passing parameter sets (Gi) that reach successful control.
Here i refers to the six models, shown by the individual keys. The dotted line shows the mean probability
across all models.

doi:10.1371/journal.pntd.0004680.g006
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The large resistance to control in the base-model is a consequence of the high values of R0

required for this model to meet the criteria (R0>2.2) (Fig 7A). At those levels of R0 the ADE-
model demonstrates higher vulnerability to control as a result of decreased persistence (Fig
7C). The enhanced vulnerability of the ADE-model relative to the base-model as seen in Fig 6
is a consequence of low transmission rates. The inclusion of CI to either model enhances the
resistance of the model especially at lower values of R0 (Fig 7D). Longer durations of cross-
immunity are associated with greater resistance (S7DE Fig), while increased enhancement
results in decreased resistance (S7CC and S7DC Fig).

This differential vulnerability is in part due to low infection persistence levels, a typical
property of models with ADE only [12,15,23]. The addition of CI counters this effect with and
without ADE (Fig 7C, 7D and 7F). This difference in infection persistence between CI and
ADE systems, however, diminishes at high levels of seasonal forcing and R0. At these high
transmission levels, both the models with CI (ADEx2+CI) and without CI (ADEx2) represent
extreme fluctuations and long periods of non-persistent dynamics (S4aF and S4aG Fig). Thus,
the differential model preference affects predicted control efforts more substantially in lower
than higher seasonal scenarios.

Discussion
We used a pattern-oriented modelling approach to test a range of multi-serotype models and
parameter values for their ability to simultaneously replicate multiple dengue fever patterns
derived from literature (Table 1) and case data from Trinidad and Tobago (Fig 1). Despite
using such a multiple-pattern data fitting approach, we show that all the investigated model
structures were effective at fitting each of the characteristic dengue patterns across some part of
the model parameter space, suggesting the occurrence of equifinality, i.e. that observed infec-
tion patterns can be reproduced by more than one mechanism or combinations of mechanisms
[60]. This implies that there could be multiple acceptable models for describing globally

Fig 7. Vulnerability to control as a function of R0. Required duration (weeks/year) for achieving successful
control is shown with respect to the basic reproduction number R0 (= β0/(γ+μ)) for the different model
hypotheses: are base (A), CI (B), ADE (C), ADE+CI (D), ADEx2 (E), and ADEx2+CI (F), with ADE = antibody
dependent enhancement, CI = cross-immunity.

doi:10.1371/journal.pntd.0004680.g007
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observed dengue dynamics, none of which can easily be rejected and therefore should all be
considered in assessing the mechanisms determining disease transmission [61–63]. Three
major efforts that would help disentangle the dominant drivers of dengue are: 1) better esti-
mates of model parameters, in particular the duration of cross-immunity and the strength of
seasonal forcing; 2) improved understanding on the contribution of post-secondary infections
to dengue transmission dynamics; and 3) additional, more detailed patterns, such as (i) time
series of serotype-specific dengue cases and (ii) levels of sero-prevalence in populations. Some
of these patterns may well differ across geographic regions.

Based on the sizes of the passing parameter distributions, a preference for the most complex
2-infection model was apparent (Table 4). Remarkably, the model that performs best across all
models is the 4-infection model with CI only. This indicates that, in some instances, the use of
multiple patterns for model selection can help filter out overly specialized models and fetch
simple, more generalized models that perform better across different scales. Additionally, it
helps reveal the impact of simplifying assumptions on model selection and parameterization, i.
e. allowing for quaternary infections enables us to reveal a simpler model framework that out-
competes its 2-infection equivalent. Also, it sheds new light on the need for ADE in replicating
dengue dynamics. The role of ADE is not supported when allowing quaternary and tertiary
infections while it is preferred in the 2-infection case, with and without asymmetry in transmis-
sion rates.

The performance of the base-model is noteworthy, given that it does not include the explicit
serotype interactions deemed necessary to replicate asynchronous serotype oscillations. How-
ever, there are two implicit serotype interactions that likely underlie this behaviour. First, in the
2-infection model, serotypes affect each other’s dynamics by causing complete immunity to all
serotypes after recovery from the second infection. The observed collapse in model fit of the
base-model when we allowed for tertiary and quaternary infections supports this hypothesis.
However, the 4-infection base-model also generates desynchronized behaviour of serotypes
albeit in a very sparse region of the parameter space. This may result from the other implicit
serotype interaction as a result of constraining individuals from acquiring more than one infec-
tion at the same time. In other words, this second type of interaction arises because individuals
infected with one serotype are cross-immune to the remaining serotypes for the duration of the
infectious period. This interaction may be enough to underlie a few, sparse fits across the
parameter space. Indeed, when the model is extended to include more than one concurrent
infection, the out-of-sync oscillations observed in the 4-infection base-model disappear (S6 Fig).

An additional result revealed by the POM-approach is that model preference appears to be
governed by the level of seasonal fluctuations. Namely, the support for models with CI is larger
in low seasonal settings, whereas the inclusion of decomposed ADE is required to reproduce
the observed dengue patterns in the presence of strong seasonal fluctuations (Fig 4B). However,
when tertiary and quaternary infections are allowed, this pattern disappears and all models
apart from the base-model reveal similar median values for seasonal forcing (S2bB Fig). Addi-
tionally, we observe that the estimates for the duration of cross-immune period differ markedly
upon inclusion of ADE or when relaxing the two infection assumption. In fact, without the
inclusion of ADE, the CI-only 2-infection model does not encapsulate the best estimate of the
duration of the cross-immune period, as proposed by Reich et al. [21]. The CI-model in the
4-infection framework, does meet the values estimated. These findings highlight that improved
understanding of the extent to which post-secondary dengue infections contribute to overall
dengue transmission, may greatly aid in disentangling the dominant drivers of dengue
dynamics.

The public health importance of knowing the processes governing dengue transmission in a
specific setting is highlighted by our results on achieving transmission interruption by vector
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control. The results indicated that the vulnerability of the models to disruption in transmission
at equal levels of R0, was driven by the immune interactions incorporated in the model, with CI
increasing resistance in low transmission settings, while ADE has the opposite effect. It is com-
mon practice to favour the most parsimonious model when the candidate models are equally
efficient; however, the differences in model resistance we found here suggest that it is prudent
to be extra cautious while making such a decision. Given their decisive role in selecting and
quantifying the predominant mechanisms as well as determining the projected effects of inter-
ventions, in addition to R0-estimates, obtaining improved, localised estimates of seasonal forc-
ing and the duration of cross-immunity should be prioritized towards better-informing
modelling endeavours.

While efforts to disentangle the extent to which internal and external drivers influence the
dynamics of multi-serotype systems have been made [64], adequately incorporating both the
complex serotype interactions as well as the effects of coupling and decoupling between sea-
sonal forcing and incidence remains an important issue. This is more so because long time
series for serotype-specific incidence and vector abundance are scarce and case data are dis-
torted by misclassification and underreporting. The core of the POM approach lies in the
appreciation that single data patterns (e.g. multi-annual signals) usually do not contain enough
information to unambiguously identify the mechanism generating such patterns; additional
patterns from data are needed to fit several model responses simultaneously [65]. As pointed
out above, we have shown here that, even with sparse data and relatively wide criteria, POM
can be a useful tool to distinguish between different conceptual models for capturing dengue
dynamics and assessing their vulnerability to control.

While the use of multiple patterns enhances the process of model selection greatly, it is not
always clear whether a model capable of replicating the observed patterns can react realistically
to environmental perturbations. This may especially be pertinent here as the models are fitted
to macroscopic data using the average behaviour of the dynamical system rather than lower
level processes [24]. While the proposed framework could be extended to incorporate addi-
tional, lower level patterns, such as serotype driven variation in disease severity, age-distribu-
tions of sero-prevalence, or age at first infection, these are likely to vary across regions and
would greatly enhance the parameter dimension to be studied, diminishing the transparency
and insights gained into the distribution and behaviour of model parameters which is our main
focus. Similarly, matching to multiple patterns may not be sufficient to overcome the suspicion
that the models demonstrate unrealistic resistance to control, as over 40 weeks of interrupted
transmission is required to bring about an 80% probability of success (Fig 6). The import factor
prevents the models from showing unviable dynamic behaviour that results from unrealisti-
cally low levels of infections innate to ODE-systems in general and especially prevalent in mod-
els with ADE(x2), yet also enhances the resistance of models. While the absolute levels of
control are thus of limited practical use, the overall conclusion of differential resistance is
found to persist across models with a lower import factor as well (S8 Fig), highlighting a funda-
mental challenge arising from structural model uncertainty.

The criteria derived and used in this work may be subjective. By basing the criteria on cur-
rent literature and the available data and keeping the characteristics broad, we aimed to limit
such subjectivity. By focussing on patterns that are common across endemic regions, the
derived patterns are inherently weaker than for a localised approach, yet the outcomes are
more generalizable. The broadness of the characteristics does lead to decreased uniqueness (as
model fits to dengue patterns can be found across the entire parameter space) [66] and a wide
range of model behaviours (S4a–S4c Fig) [67]. To reduce subjectivity, we have used uniform
distributions bounded by ranges informed by literature. For model calibration, too restricted
ranges may underestimate the level of uncertainty around a parameter value, whereas in model
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selection, the proportion of passes is sensitive to the width of the range. Also, the comparison
between the models with different numbers of sampled parameters has underlying difficulties.
In more complex models, the passing parameter space may be underrepresented, giving rise to
a local decrease in likelihood and wider parameter bounds [68]. However, given the small num-
ber of parameters and large number of parameter combinations examined, the severity of
under-sampling in this exercise is limited. Finally, caution should be taken in judging the likeli-
hood of models based on the number of passes, as no correction is made for the differential
complexity between the models.

The six models examined were chosen based on their proven performance in the literature
[13,15,19]. However, the models contain some inherent limitations. The limited persistence
typical in highly seasonal models with (decomposed) ADE may in part result from the lack of
stochasticity in the model [12,23]. Serotype persistence is also believed to be affected by the
assumed symmetry in transmission rate and or virulence between serotypes [17]. We indeed
observe less wild fluctuations upon the inclusion of asymmetry and a consequential increase in
the fit of models with ADE (S4b Fig). Further, the inclusion of explicit vector dynamics has
been found to increase the robustness of the system to changes in cross-immunity and ADE
parameters, resulting in a larger parameter space with regular (1–2 year inter-epidemic peri-
ods) dynamics and moderate amplitude fluctuations [69]. Therefore, including vector popula-
tion dynamics may affect the quantitative conclusions of this study, especially when high
seasonal fluctuations are assumed. The inclusion of explicit vector dynamics would further
allow for a more quantitative assessment of required control efforts, which will be a focus of
future work.

Lastly, no long-term variation in parameter values was taken into account. Yet, fertility rates
have decreased and life expectancy has gone up in most dengue endemic countries over the last
decades [70]. Cummings et al. showed that a decrease in birth rate might result in a decrease in
the force of infection and increase in the mean age of infection [71]. The same authors also
demonstrate that this demographic shift may have induced prolonged multiannual oscillations
[71]. Additionally, vector control has intensified over the years with varying success [72]. The
on-and-off vector control is likely to act as a distorting factor in the estimation of the role of
seasonality, as the climate driven signal in the incidence data may be weakened by these control
measures. Therefore, ignoring on-going control measures may have had some influence in our
model selection and predictions. Further research will focus on disentangling the complex
interplay of dengue dynamics with non-stationary factors such as intervention efforts, demog-
raphy and climate.

With the expanding spatial spread of dengue and the increase of frequency and size of out-
breaks, understanding dengue disease dynamics and the consequences of control efforts (e.g. a
near-future vaccine introduction) has become critically important. Indeed, the present work
stresses that ignoring model uncertainty in prediction exercises can skew the impact of vector
control substantially. It also emphasizes that the wider use of improved data-model assimila-
tion approaches, such as the POMmethod, could play a significant role in overcoming this
problem.

Supporting Information
S1 Fig. Outcome measures plane plots for the symmetric 2-infection (a), asymmetric
2-infection (b) and symmetric 4-infection model (c). Analysis of the parameter space of each
model structure (with ADE = antibody dependent enhancement, CI = cross-immunity) for sea-
sonality (β1) and the basic reproduction number (R0). From top to bottom, outcomes are mea-
sured with respect to (A) mean inter-peak period, (B) presence of multi-annual signal
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(red = present, blue = absent), (C) duration of serotype replacement, (D) single serotype emer-
gence and (E) absence of phase-locking (red = absent, blue = present).
(PDF)

S2 Fig. Model parameter distributions for the asymmetric 2-infection (a) and symmetric
4-infection model (b). Parameter distributions for passing parameter sets (G) for different
model hypotheses (with ADE = antibody dependent enhancement, CI = cross-immunity). The
vertical lines depict the median values for each distribution with the colours indicating the cor-
responding model hypothesis.
(PDF)

S3 Fig. Correlation matrix full model for the symmetric 2-infection (a), asymmetric
2-infection (b) and symmetric 4-infection model (c). Correlation between passing parame-
ters in full model (ADEx2+CI) with red numbers depicting a significant correlation coefficient.
The respective parameter distributions are shown on the diagonal.
(PDF)

S4 Fig. Qualitative comparison observed dengue case data and passing model simulations
for the symmetric 2-infection (a), asymmetric 2-infection (b) and symmetric 4-infection
model (c).Qualitative comparison between observed dengue incidence data and model sim-
ulations at median levels of seasonal forcing. Dengue incidence data from Trinidad and
Tobago (1997–2009) were duplicated for comparison with model simulations (A). The dot-
ted vertical lines indicate the length of the original dataset. Other parameter values are
derived at random from the passing parameter distribution G with: (a) the symmetric
2-infection model: (A)β0 = 344, β1 = 0.1, αSUS = 1, αTRANS = 1, ρ = NA (B), β0 = 204,
β1 = 0.06, αSUS = 1, αTRANS = 1, ρ = 2.8 (C), β0 = 240, β1 = 0.11, αSUS = 1.28, αTRANS = 1,
ρ = NA (D), β0 = 276, β1 = 0.05, αSUS = 1.64, αTRANS = 1, ρ = 2.0 (E), β0 = 228, β1 = 0.16,
αSUS = 1.05, αTRANS = 2.23, ρ = NA (F) and β0 = 220, β1 = 0.12, αSUS = 1.61, αTRANS = 1.39,
ρ = 2.37 (G) (b) asymmetric 2-infection model: (A)β0 = 252, β1 = 0.11, αSUS = 1, αTRANS = 1,
ρ = NA (B), β0 = 384, β1 = 0.24, αSUS = 1, αTRANS = 1, ρ = 1.5 (C), β0 = 323, β1 = 0.26,
αSUS = 2.23, αTRANS = 1, ρ = NA (D), β0 = 279, β1 = 0.3, αSUS = 1.86, αTRANS = 1.26, ρ = 2.0
(E), β0 = 228, β1 = 0.16, αSUS = 1.05, αTRANS = 2.23, ρ = NA (F) and β0 = 327, β1 = 0.30,
αSUS = 1.16, αTRANS = 1.54, ρ = 2.35 (G) (c) symmetric 4-infection model: (A)β0 = 249,
β1 = 0.07, αSUS = 1, αTRANS = 1, ρ = NA (B), β0 = 308, β1 = 0.29, αSUS = 1, αTRANS = 1, ρ = 1.26
(C), β0 = 161, β1 = 0.09, αSUS = 2.08, αTRANS = 1, ρ = NA (D), β0 = 188, β1 = 0.13, αSUS = 2.17,
αTRANS = 1, ρ = 1.0 (E), β0 = 198, β1 = 0.17, αSUS = 1.12, αTRANS = 1.40, ρ = NA (F) and
β0 = 125, β1 = 0.29, αSUS = 1.90, αTRANS = 1.68, ρ = 1.04 (G) (with β0 = mean transmission
rate, β1 = seasonal forcing, αSUS = susceptibility enhancement, αTRANS = transmissibility
enhancement, ρ = 1/duration of cross-immunity)
(PDF)

S5 Fig. Principal component analysis for the asymmetric 2-infection (a) and symmetric
4-infection model (b). Principal component analysis of passing parameter space (G) of the
full model (ADEx2+CI). The pie charts show the contribution of the parameters to each com-
ponent.
(PDF)

S6 Fig. Comparative model simulations of 4-infection base-model with and without con-
current infections.Model simulations at passing parameter sets of the 4-infection base-model
without concurrent infections (top row) and with concurrent infection (bottom row). The col-
ours indicate different serotypes. Parameter values are: (left)β0 = 249, β1 = 0.07, αSUS = 1,

Serotype Interactions and Seasonality in Dengue Epidemiology

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004680 May 9, 2016 20 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004680.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004680.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004680.s004
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αTRANS = 1, ρ = NA (middle), β0 = 333, β1 = 0.07, αSUS = 1, αTRANS = 1, ρ = NA (right),
β0 = 263, β1 = 0.14, αSUS = 1, αTRANS = 1, ρ = NA
(TIF)

S7 Fig. Vulnerability to control as a function of model parameters. Required duration
(weeks/year) for achieving successful control is shown with respect to fitted model parameters.
Different model hypotheses are (from top to bottom): base (A), CI (B), ADE (C), ADE+CI (D),
ADEx2 (E), and ADEx2+CI (F), with ADE = antibody dependent enhancement, CI = cross-
immunity. Model parameters assessed are (from left to right): (A) the transmission rate (β0),
(B) seasonality (β1), (C) enhanced susceptibility (αSUS), (D) enhanced infectiousness (αTRANS),
and (E) cross-immunity (ρ).
(TIF)

S8 Fig. Effect of import factor on vulnerability to control. Probability of successful control (a
maximum of 1 outbreak during 30 years) given different durations (10, 20, and 30 weeks/year)
of consecutive control (temporary reduction of transmission: β0(1−90%)for different model
hypotheses (with ADE = antibody dependent enhancement, CI = cross-immunity). The proba-
bility is defined as the proportion of the passing parameter sets (Gi) that reach successful con-
trol. Here i refers to the six models, shown by the individual keys. The top row (A, B, and C)
shows the results for the default import rate of 1e-10. The bottom row (D, E, and F) shows
results for a decreased import rate of 1e-12. The probability of successful control for the Base-
model and the CI-model in the default scenario are zero, as can also be seen in Fig 6.
(TIF)

S1 Table. Sensitivity analysis of model fits on all model parameterizations including interac-
tions. Logistic regression model coefficients with pattern match as binary response variables
and the parameters (scaled 0–1) as independent variables. Red are high coefficient values (>|3|).
(XLSX)

S1 Text. System of differential equations for 4-infection model.
(DOCX)

S2 Text. Proof R0.
(DOCX)
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